CN1285779C - 可拉伸非织造纤网及其制造方法 - Google Patents

可拉伸非织造纤网及其制造方法 Download PDF

Info

Publication number
CN1285779C
CN1285779C CNB028190610A CN02819061A CN1285779C CN 1285779 C CN1285779 C CN 1285779C CN B028190610 A CNB028190610 A CN B028190610A CN 02819061 A CN02819061 A CN 02819061A CN 1285779 C CN1285779 C CN 1285779C
Authority
CN
China
Prior art keywords
wing
nonwoven web
polymer
core
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028190610A
Other languages
English (en)
Other versions
CN1561412A (zh
Inventor
V·班萨尔
M·C·达维斯
T·M·福德
D·F·马索达
E·N·鲁迪西尔
H·V·萨米尔森
H·辛
G·P·维克斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INVISTA TECHNOLOGIES Sarl
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of CN1561412A publication Critical patent/CN1561412A/zh
Application granted granted Critical
Publication of CN1285779C publication Critical patent/CN1285779C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/609Cross-sectional configuration of strand or fiber material is specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/609Cross-sectional configuration of strand or fiber material is specified
    • Y10T442/61Cross-sectional configuration varies longitudinally along strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/609Cross-sectional configuration of strand or fiber material is specified
    • Y10T442/611Cross-sectional configuration of strand or fiber material is other than circular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/627Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • Y10T442/665Including a layer derived from a water-settable material [e.g., cement, gypsum, etc.]

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

本发明涉及含聚合物多组分纤维的非织造织物,所述纤维包括一个芯组分与多个附着在芯上的翼组分。聚合物芯组分的弹性大于至少一个翼聚合物组分的弹性。纤维呈螺旋形捻度构型,其中多个翼基本上绕芯呈螺旋形。在一个优选实施方案中,该非织造织物具有弹性拉伸与回复性和类似于织物的手感。

Description

可拉伸非织造纤网及其制造方法
技术领域
本发明涉及一种含多组分纤维的可拉伸非织造纤网,所述纤维包含一个弹性体聚合物芯和多个附着在芯上的聚合物翼,其中翼聚合物是非弹性体或其弹性小于芯聚合物的。在适当热处理后,该多组分纤维形成螺旋形捻度而且还能形成三维卷曲。
背景技术
可拉伸非织造织物是本领域内已知的。例如,授予Gessner等的U.S.专利5,997,989公开了一种纺粘弹性非织造织物,它包含一种热塑性弹性体长丝的粘结纤网,以低于约2000m/min的速度操作的狭缝拉伸纺粘法制成。弹性体熔喷纤网也是已知的,例如,聚醚酯聚合物的熔喷纤维网在授予Morman等的U.S.专利4,741,949中已有所述。
由弹性体聚合物形成的非织造织物一般都具有一种不理想的橡胶状手感,并因此而常用在层合板中,其中弹性体纤网被粘结在非弹性体层的一面或两面,例如,在一种拉伸-粘结或颈缩-粘结的复合材料层合板中。使用高含量弹性体聚合物形成的非织造织物一般都很贵,因为许多弹性体聚合物的成本高。弹性体纤网层也倾向于彼此粘结,例如,当卷绕在辊上时,这是本领域称之为“粘连”的一种现象。
包含一个弹性体组分和一个非弹性体组分的多组分纤维是本领域内已知的。例如,授予Ishii的U.S.专利4,861,660描述了适用于制造可拉伸纺织与针织物的复合长丝。
包含含有2种或多种收缩能力不同的合成组分的横向偏心多组分纤维的非织造织物也是本领域内已知的。当让纤维在基本无张力状态下经历收缩条件而活化卷曲时,这类纤维形成三维螺旋形卷曲。螺旋形卷曲不同于机械卷曲纤维的二维卷曲,如填塞箱卷曲纤维。螺旋形卷曲纤维一般以类似弹簧的方式拉伸与回复。
授予Kuroda等的U.S.专利4,405,686描述了一种可高度拉伸的共轭长丝纱线,它由分别包含一种热塑性弹性体与非弹性体聚酰胺或聚酯的复合组分制成,各组分的截面为压缩扁平形。
授予Austin的U.S.专利6,225,243描述了一种多组分股线的粘结纤网,股线内包括一个第一聚合物组分和一个第二聚合物组分,第二聚合物组分的弹性低于第一聚合物组分的。
目前仍需要具有高度可回复伸长率、手感更好且比本领域已知的弹性非织造织物的总成本更低的弹性非织造织物。
附图简述
图1A与1B示意适用于形成本发明多组分非织造织物的纤维,其中螺旋形捻度是基本周向的(1A)和其中螺旋形捻度是基本非周向的(1B)。
图2给出了一根6-翼多组分纤维的横截面示意图,其中翼在一个规则十二边形弹性体芯的周围对称地分布。
图3是一根特定的对称2-翼纤维横截面的显微镜照片,该纤维在芯的周围与两翼之间有一薄层鞘。
图4是一根6-翼纤维横截面的显微镜照片,其中一部分弹性体芯以单个花键伸进各翼的形式伸进翼。
图5是一根6-翼纤维横截面的显微镜照片,其中一部分弹性体芯伸进翼,在各翼内形成多个凸起。
图6是一根5-翼纤维横截面的显微镜照片,其中一部分弹性体芯伸进各翼以及其中芯的各伸入部分在紧挨芯处都有一个颈缩段而在远离芯处有一个较粗段,这样翼与芯便机械锁扣在一起了。
图7是一根6-翼纤维横截面的显微镜照片,其中芯包围翼的部分侧面使翼伸进了芯。
图8是一根6-翼纤维的横截面示意图,其中芯伸进了翼。
图9是一根6-翼纤维的横截面示意图,其中交替地翼伸进芯和芯伸进其余翼。
图10是适用于形成本发明可拉伸非织造织物的纺粘工艺的侧视示意图。
图11A与11B是适用于图10中纺粘工艺的两种不同构型的S形拉伸辊的示意图。
图12示意了一种工艺,它适用于制造适合于制备本发明某些非织造织物的纤维。
图13是适合于制造用来制造本发明非织造织物的纤维的喷丝板组件的截面示意图。图13A示意图13中一块喷丝板A上的一个孔,图13B示意图13中一块分配板B上的一个孔,以及图13C示意图13中一块计量板C上的几个孔。图13D示意图13中一块替代计量板C上的多个孔,它适合于制造芯聚合物伸进翼聚合物的6-翼纤维。
图14A、14B和14C示意适合于形成适用于制造本发明非织造织物的3-翼纤维的喷丝板、分配板和计量板。
图15是用图14A、14B和14C所示的纺丝组件板制造的翼伸进芯的3-翼纤维横截面的显微镜照片。
图16示意实施例中用来形成5-翼多组分纤维的喷丝板上的一个孔。
图17是用来制造本发明非织造织物的纺粘设备的侧视图。
具体实施方式
本发明的目标是多组分非织造纤网,它具有弹性拉伸性能和类似于织物的手感,而且与使用主要由弹性体聚合物组成的纤维所制成的非织造织物相比,成本更低。本发明的非织造织物可以单层使用,同时提供一种类似于织物的手感而无需层压到其它织物层上。这种非织造织物可制成比先有技术中的多层弹性织物更透明、更轻。
本发明的非织造织物包含合成多组分聚合物纤维,所述纤维包含一根热塑性弹性体轴芯和多个附着在芯上的翼。聚合物芯组分的弹性高于至少一个聚合物翼组分的弹性。芯与翼聚合物组分在弹性上的差别应足以使纤维呈现基本螺旋形捻度构型,如下文更全面的叙述。螺旋形捻度构型可在合适的热处理后形成。在一个实施方案中,至少一个翼包含至少一种可永久拉伸的热塑性非弹性体聚合物。非织造织物的拉伸性能可以通过适当选择翼与芯聚合物组分而裁制。本发明非织造织物的膨松度也可通过选择各种几何和/或组成对称性的截面进行调节。例如,当纤维具有基本径向对称的截面时,会形成低膨松非织造织物。具有非对称截面的纤维一般形成三维卷曲,卷曲程度取决于纤维截面的非对称程度。增加卷曲程度使非织造织物体积更大。
术语“聚烯烃”如本文所用,拟指由至少50重量%不饱和烃单体所制成的聚合物的均聚物、共聚物和共混物。聚烯烃的实例包括聚乙烯、聚丙烯、聚甲基戊烯-1和由乙烯、丙烯和甲基戊烯单体的各种不同组合制成的其聚物、乙烯/α-烯烃共聚物、含或不含二烯交联剂的乙烯/丙烯烃类橡胶、乙烯/醋酸乙烯酯共聚物、乙烯/丙烯酸甲酯共聚物、乙烯/丙烯酸甲酯/丙烯酸三元共聚物、苯乙烯/乙烯-丁烯嵌段共聚物、苯乙烯-聚(乙烯-丙烯)-苯乙烯嵌段共聚物等等。
术语“聚乙烯”(PE),如本文所用,不仅要包括乙烯的均聚物,而且还包括重复结构单元中至少85%是乙烯单元的共聚物。
术语“线形低密度聚乙烯”(LLDPE),如本文所用,是指密度范围为约0.91g/cm3-约0.94g/cm3的线形乙烯/α-烯烃共聚物。本发明中所用的线形低密度聚乙烯是由乙烯与α、β-烯类不饱和烯烃共聚单体(α-烯烃)的共聚所制成的,共聚单体的每个α-烯烃分子中含3-12个碳原子,优选每个α-烯烃分子含4-8个碳原子。适用于本发明、能与乙烯共聚而形成LLDPE的α-烯烃包括丙烯、1-丁烯、1-戊烯、1-己烯、1-辛烯、1-癸烯或它们的混合物。优选α-烯是1-己烯、1-辛烯或1-丁烯。适用于本发明的线形低密度聚乙烯可以用Ziegler Natta或单点催化剂如茂金属催化剂制造。适用的商品LLDPE的实例包括产自DowChemical Company的那些,如ASPUN型6811A(密度0.923g/cm3)、Dow LLDPE 2500(密度0.923g/cm3)、Dow LLDPE型6808A(密度0.940g/cm3)、Elite5000 LLDPE(密度0.92g/cm3)(Dow Chemical Co.)和产自Exxon Chemical Company的EXACT和EXCEEDTM LLDPE系列聚合物,如Exact 2003(密度0.921g/cm3)和Exceed 357C80(密度0.917g/cm3)。用单点催化剂制造的密度低于约0.91g/cm3的乙烯/α-烯烃共聚物一般都是弹性体,叫做热塑弹性体。
术语“高密度聚乙烯”(HDPE),如本文所用,是指密度至少约0.94g/cm3,优选约0.94g/cm3-约0.965g/cm3或更高的聚乙烯均聚物。
术语“聚酯”,如本文所用,要包括至少85%重复单元是二羧酸与二羟基醇的缩合产物、带有因形成酯单元所产生键的聚合物。包括芳族、脂族、饱和与不饱和二元酸与二元醇。术语“聚酯”,如本文所用,也包括共聚物(如嵌段、接枝、无规和交替共聚物)、共混物及它们的改性物。聚酯的普通例子是聚对苯二甲酸乙二醇酯(PET),它是乙二醇与对苯二甲酸的缩聚产物。
如本文所用,“热塑性塑料”是指能反复“熔体加工”(例如熔纺)的聚合物。
所谓“可永久拉伸”是指聚合物有一个屈服点,如果该聚合物被拉伸到超过该点,则它将不可能回复到其原长。
所谓“弹性体聚合物”是指如下一种聚合物:在无稀释剂的单组分纤维形式下,断裂伸长率超过100%,当将它拉伸到其原长的2倍,维持5秒钟,然后松开时,在松开后1分钟内收缩到小于其原长1.5倍。在用来形成本发明非织造织物的多翼纤维中,芯的弹性体聚合物,当在基本如本文所述的条件下纺成的单组分纤维中存在时,可以有一个低于约14,000磅/英寸2(96,500kPa),更优选低于约8500磅/英寸2(58,600kPa)的弯曲模量。
如本文所用,“非弹性体聚合物”是指不是弹性体聚合物的任何聚合物。非弹性体聚合物在本文也叫做“硬”聚合物。
术语“回复”,如本文所用,是指材料在偏力作用下拉伸后,在偏力终止时拉伸材料的回缩。例如,如果在松弛非受力状态下长1cm的材料被拉伸60%而达到1.6cm长,则该材料的伸长率是60%(0.6cm),拉伸后的长度是其松弛长度的160%。如果在除去偏力和拉伸力时允许该已伸长材料回缩即回复到1.2cm长,则该材料就已回复了其0.6cm伸长的67%(0.4cm)。回复可表示为[(最大伸长长度-除去拉伸力后最终样品的长度)/(最大伸长长度-起始样品长度)]×100。
术语“可回复伸长率”,如本文所用,是一个样品怎样容易永久变形的量度。术语“弹性体非织造织物”,如本文所用,是指当它被拉伸到典型的使用伸长率时可回复伸长率大于50%(永久变形小于50%)的非织造织物或纤网。一种织物在低(使用水平)形变下可能是弹性体织物,而在进一步拉伸时可能发生塑性形变(或断裂)。在加载/卸载循环期间为达到一定伸长率所需的力在本文称为“回复能力”。
术语“无纺”织物、片材或纤网,如本文所用,是指各纤维、长丝或线方向性地或无序地取向并靠摩擦力和/或内聚力和/或粘结力粘结在一起的织物结构,这种结构不同于机械交织的规则图形,即它不是纺织或针织物。非织造织物与纤网的实例包括纺粘连续长丝纤网、机梳纤网、气流成网纤网和湿法成网纤网。适用的粘结方法包括热粘结、化学或溶剂粘结、树脂粘结、机械针剌、液压针剌、线圈结合等。
术语“纺粘”纤维,如本文所用,是指将熔融热塑性聚合物材料从喷丝板的许多毛细孔内挤出然后通过拉伸与骤冷这些长丝使挤出长丝的直径迅速减小而形成的纤维。纺粘纤维一般是连续的,平均直径大于约5μm。对于本发明非织造织物中所用的具有多翼截面的纤维,纤维直径计为与多翼纤维截面积相同的圆的直径。纺粘非织造织物或纤网是通过将纺粘纤维无序地铺在诸如筛网或带之类的收集表面上而形成的。纺粘纤网可以用本领域内已知的方法粘结起来,如热辊压延或让纤网通过高压饱和蒸汽室。例如,纤网可以在位于纺粘织物上的许多热粘点上热点粘结在一起。
术语“多组分纤维”和“多组分长丝”,如本文所用,是指由至少两种不同聚合物组成的任何纤维或长丝。术语“双组分纤维”和“双组分长丝”如本文所用,是指由两种不同聚合物组成的多组分纤维或长丝。所谓“不同聚合物”是指至少两种聚合物中的每一种都排布在多组分纤维横截面上的不同区域内且沿纤维长度延伸。多组分纤维不同于由聚合物材料的均匀熔体共混物挤出成型的纤维,在后者中并未形成不同的聚合物区域。本专利中可采用的至少两种不同的聚合物组分可以是化学上不同的聚合物,也可以是化学上相同的聚合物但具有不同的物理特性,如立构规整度、特性粘度、熔体粘度、挤出胀大、密度、结晶度和熔点或软化点。例如,两个组分可以是一种弹性体聚丙烯与一种非弹性体聚丙烯。至少两种不同聚合物材料中的每一种本身能包含两种或多种聚合物材料的共混物。术语“纤维”,如本文所用,同时指非连续与连续纤维。术语“长丝”,如本文所用,是指连续纤维。适用于本发明非织造织物的多翼纤维是多组分纤维,在其中,芯包含不同聚合物组分中的一种弹性体聚合物,而附着在芯上的翼包含至少一个不同的其它聚合物组分,该组分的弹性小于弹性体芯聚合物的弹性。例如,聚合物翼组分能包含一种可永久拉伸的硬聚合物。术语“多组分非织造纤网”和“多组分非织造织物”在本文中可用来分别指包含多组分纤维或长丝的非织造纤网或织物。术语“双组分纤网”,如本文所用,是指包含双组分纤维或长丝的多组分纤网。
术语“单组分纤维”如本文所用是指由单一聚合物组分制成的纤维。单一聚合物组分可主要由一种聚合物组成,也可以是多种聚合物的均匀共混物。
如本文所用,术语“S形辊”是指串联的两个或多个辊,它们彼此间的排布会使纤维相继朝辊的下方或上方在每个辊上包一圈,而且两个辊以相反方向转动。
在一个优选实施方案中,本发明的多组分非织造纤网包含多组分纤维,纤维包含一个合成热塑性弹性体聚合物的轴芯组分和多个附着在芯上的翼组分,翼组分包含至少一种可永久拉伸的非弹性体热塑性聚合物。术语“翼”,如本文所用,是指自纤维中心的轴芯伸出、基本上沿纤维长度延伸的的凸起。翼有别于鞘芯-纤维中形成的周向凸脊,后者如授予Muramoto等的U.S.专利5,352,518所述。
用来形成本发明非织造织物的纤维能具有径向对称或径向非对称截面。所谓“径向对称截面”是指如下一种截面:在其中翼的位置与尺寸使纤维围绕其纵轴旋转360°/n时会得到与旋转前基本相同的截面,其中“n”是一个大于1的整数,代表纤维的“n重”对称性。在确定纤维的对称性时,要取垂直于纤维轴的横截面。对称性是在纤维纺丝时形成的,并可以在纤维收缩后完全拉直的纤维的截面上测量,如果纤维未被纺丝后的工艺所畸变。在确定卷曲纤维的对称性时,应在测量纤维横截面之前将纤维的所有卷曲都拉出以使纤维伸直。
除具有几何意义上的径向对称性之外,“径向对称”还指在聚合物组成上纤维截面是基本对称的。也就是说,在让纤维围绕其纵轴旋转360°/n后,纤维本身在翼组成上基本上与旋转前的纤维不可区分,其中n是一个大于1的整数。纤维的有些翼能由不同于其它翼的聚合物形成,同样只要保持径向几何与聚合物组成对称性即可。但是,为便于制造和容易获得径向对称性,当希望纤维基本上没有三维卷曲时,优选翼具有近似相同的尺寸,并由同种聚合物或聚合物的共混物制成。在本文中把径向不对称的纤维截面叫做径向非对称的并需要旋转360度才能在几何与组成上重现纤维截面。
术语“螺旋形捻度”在本文中用来指纤维围绕其纵轴加捻的捻度。包含一个弹性体芯与多个附着在芯上的非弹性体可永久拉伸翼、具有基本径向对称截面的多组分纤维,在适当的热处理后,基本形成“一维”螺旋形捻度。“一维”螺旋形捻度,如本文所用,是指虽然纤维的翼能基本上围绕纤维轴呈螺旋形,但即使在低张力下纤维轴也基本上是直的,不会明显形成三维卷曲。在径向对称纤维中会因纺丝期间或纺丝之后可能出现的些微不均匀性而形成很少量的卷曲。要求小于约10%伸长(以未拉伸纤维长度为基准计算)就能基本拉直纤维芯的纤维被看作具有一维螺旋形捻度。更典型地,这类纤维需要小于约7%的伸长,例如,约4%-约6%的伸长。以未拉伸长度为基准计算,要求大于10%伸长的纤维被认为具有较高维卷曲,并且认为它们基本上没有一维螺旋形捻度。业已观察到,为了在纤维中达到所要求的拉伸性能不一定要完全360°的螺旋形捻度。因此螺旋形捻度可以包括i)翼的螺旋形基本上完全围绕弹性体芯的螺旋形捻度(基本周向螺旋形捻度)和ii)翼的螺旋形仅部分围绕芯的螺旋形捻度(基本非周向螺旋形捻度)。在具有基本周向螺旋形捻度的纤维中,在翼围绕纤维芯螺旋旋转至少360°之前,翼螺旋始终沿纤维长度的一个方向而不倒向,即翼在倒向之前要完全绕纤维芯周向螺旋旋转至少一次。在具有基本周向螺旋形捻度的纤维中,加捻方向能在沿纤维长度上的一个或多个反转结处倒向。例如,沿纤维长度可以有许多个反转结,在每个结上螺旋形捻度倒向。在具有基本非周向螺旋形捻度的纤维中,翼螺旋仅部分地(即小于360°)围绕芯,围绕芯的翼螺旋频频倒向。纤维能具有各种周向与非周向捻度的组合,分别如图1A与1B所示。当包含一个弹性体芯和多个附着在芯上的非弹性体可永久拉伸翼的纤维具有几何和/或组成上的径向非对称截面且要经受适当的热处理时,这种纤维会同时形成螺旋形捻度和高维卷曲。例如,纤维能形成三维卷曲,如三维螺旋形卷曲,其中纤维轴形成一个螺旋状构型,或其它更无规的三维卷曲。
当在螺旋形加捻的弹性体非对称纤维上施加张力时,随纤维被拉直,三维卷曲先被拉出,最终在纤维轴基本伸直时成为具有基本一维螺旋形捻度的张紧纤维。当施加附加张力时,随翼的“解捻”,弹性体芯伸展,螺距增加,直到最终拉直翼组分,使它们基本延纤维长度纵向延伸。形成的三维卷曲程度取决于纤维截面的组成和/或几何不对称程度。
芯聚合物
多组分纤维中所用的芯聚合物能从任何成纤热塑性弹性体聚合物组合物形成。适用弹性体的实例包括热塑性聚氨酯、聚酯、聚烯烃和聚酰胺弹性体。两种或多种弹性体聚合物的共混物或至少一种弹性体聚合物与一种或多种硬聚合物的共混物都可用作芯聚合物。如果用一种弹性体与一种硬聚合物的共混物,则硬聚合物的加入量应足够低,使聚合物共混物保留上文定义的弹性体性质。
适用的热塑性聚氨酯芯弹性体包括从聚合物二醇、二异氰酸酯和至少一种二元醇或二元胺扩链剂制成的那些。优选二元醇扩链剂,因为由其制成的聚氨酯的熔点比用二元胺作为扩链剂时的低。适合于制备弹性体聚氨酯的聚合物二醇包括聚醚二醇、聚酯二醇、聚碳酸酯二醇和它们的共聚物。这类二醇的实例包括聚亚乙基醚二醇、聚四亚甲基醚二醇、聚(四亚甲基/2-甲基-四亚甲基醚)二醇、聚(己二酸亚乙基酯/己二酸1,4-亚丁基酯)二醇、聚(己二酸亚乙基酯/己二酸1,2-亚丙基酯)二醇、聚(己二酸六亚甲基酯/己二酸2,2-二甲基-1,3-亚丙基酯)二醇、聚(己二酸3-甲基-1,5-亚戊基酯)二醇、聚(壬二酸3-甲基-1,5-亚戊基酯)二醇、聚(十二烷酸2,2-二甲基-1,3-亚丙基酯)二醇、聚(戊烷-1,5-碳酸酯)二醇以及聚(己烷-1,6-碳酸酯)二醇。适用的二异氰酸酯包括1-异氰酸酯基-4-[(4-异氰酸酯基-苯基)甲基]苯、1-异氰酸酯基-2-[(4-异氰酸酯基苯基)甲基]苯、异佛尔酮二异氰酸酯、1,6-己烷二异氰酸酯、2,2-双(4-异氰酸酯基苯基)丙烷、1,4-双(对-异氰酸酯基,α,α-二甲基苄基)苯、1,1′-亚甲基双(4-异氰酸酯基环己烷)以及2,4-甲苯二异氰酸酯。适用的二元醇扩链剂包括乙二醇、1,3-丙二醇、1,4-丁二醇、2,2-二甲基-1,3-丙二醇、二甘醇及它们的混合物。优选的聚合物二醇是聚(四亚甲基醚)二醇、聚(四亚甲基/2-甲基-四亚甲基醚)二醇、聚(己二酸亚乙基酯/己二酸1,4-亚丁基酯)二醇和聚(十二烷酸2,2-二甲基-1,3-亚丙基酯)二醇。优选的二异氰酸酯是1-异氰酸酯基-4-[(4-异氰酸酯基苯基)甲基]苯。优选的二醇扩链剂是1,3-丙二醇和1,4-丁二醇。可加入单官能度链终止剂如1-丁醇之类来控制聚合物的分子量。聚氨酯弹性体包括产自Dow Chemical Company的Pellethane热塑性聚氨酯,这是一种优选的芯聚合物。
适用的热塑性聚酯弹性体包括由聚醚二醇与一种低分子量二元醇,例如分子量低于约250的二元醇,与一种二羧酸或其二酯反应得到的聚醚酯。适用的聚醚二醇包括聚(亚乙基醚)二醇、聚(四亚甲基醚)二醇、聚(四亚甲基/2-甲基四亚甲基醚)二醇[衍生自四氢呋喃与3-甲基四氢呋喃的共聚物]和聚(亚乙基/四亚甲基醚)二醇。适用的低分子量二元醇包括乙二醇、1,3-丙二醇、1,4-丁二醇、2,2-二甲基-1,3-丙二醇以及它们的混合物;优选1,3-丙二醇和1,4-丁二醇。适用的二羧酸包括任选地含少量(例如,<20mol%)间苯二甲酸的对苯二甲酸及其二酯。商品聚酯弹性体的优选实例包括产自E.I.du Pont de Nemoursand Company,Wilmington,DE(杜邦公司)的Hytrel聚醚酯。Hytrel弹性体是聚对苯二甲酸1,4-丁二醇酯硬(结晶)段与长链聚醚二醇如聚(四亚甲基醚)二醇-基软(无定形)段的嵌段共聚物。
能用来制造本发明纤维芯的适用热塑性聚醚酰胺弹性体包括U.S.专利号3,468,975中所述的那些,该专利包括于此供参考。例如,这类弹性体能用聚酯段制备,聚酯段由乙二醇、1,2-丙二醇、1,3-丙二醇、1,4-丁二醇、2,2-二甲基-1,3-丙二醇、1,5-戊二醇、1,6-己二醇、1,10-癸二醇、1,4-二(羟甲基)环己烷、二甘醇或三甘醇与丙二酸、丁二酸、戊二酸、己二酸、2-甲基己二酸、3-甲基己二酸、3,4-二甲基己二酸、庚二酸、辛二酸、壬二酸、癸二酸或十二烷双酸或它们的酯制成。这类聚酯酰胺中的聚酰胺段的实例包括由己二胺或癸二胺与对苯二甲酸、乙二酸、己二酸或癸二酸的反应或由己内酰胺的开环反应制成的那些。
热塑性聚醚酯酰胺弹性体,如U.S.专利号4,230,838中所述的那些,也能用来制造纤维芯,该专利包括于此供参考。这类弹性体可通过制备二羧酸-终止的聚酰胺预聚体来制造,所述预聚体由低分子量(例如,约300-约15,000)聚己内酰胺、聚庚内酰胺、聚十二内酰胺、聚十一内酰胺、聚(11-氨基十一烷酸)、聚(12-氨基十二烷酸)、聚己二酸六亚甲基酯、聚壬二酸六亚甲基酯、聚癸二酸六亚甲基酯、聚十一烷酸六亚甲基酯、聚十二烷酸六亚甲基酯、聚己二酸九亚甲基酯等与丁二酸、己二酸、辛二酸、壬二酸、癸二酸、十一烷双酸、对苯二甲酸、十二烷双酸等制成。然后让预聚体与一种羟端基聚醚,例如聚(四亚甲基醚)二醇、聚(四亚甲基/2-甲基四亚甲基醚)二醇、聚(亚乙基醚)二醇、聚(亚乙基醚)二醇等发生反应。商品聚醚酯酰胺弹性体的实例包括产自Atofina(Philadelphia,Pa)的Pebax聚醚酯酰胺。
适用的聚烯烃弹性体的实例包括聚丙烯-基共聚物或三元共聚物以及聚乙烯-基共聚物或三元共聚物。一类优选的弹性体聚烯烃是产自Dow Chemical Company的商品名为Engage聚合物的乙烯/1-辛烯共聚物。Engage聚合物一般含约15-约25mol% 1-辛烯。其它烯烃基弹性体包括产自ExxonMobil的商品Exact树脂和产自Dow ChemicalCompany的商品Affinity树脂,密度小于约0.91g/cm3。这些全都是由单点催化剂制成的乙烯与1-辛烯、1-己烯、1-丁烯的共聚物,一般统称为热塑弹性体。随α-烯烃共聚单体量的增加,弹性一般提高,而密度一般降低。产自Dow Chemical Company的商品Affinity热塑性弹性体含约3-约15mol%1-辛烯。弹性体聚烯烃,包括弹性体聚丙烯在内,都能按照授予Paton等的U.S.专利6,143,842中所述的方法形成,该专利包括于此供参考。
其它适用的弹性体包括有或没有二烯交联剂的乙烯/丙烯烃类橡胶,如产自杜邦公司Dow Elastomers(Wilmington DE)的Norbel弹性体。
也能用1991年3月13日出版的欧洲专利申请出公开0416379所公开的弹性体聚烯烃作为弹性体芯组分,该专利包括于此供参考。这类聚合物是非均相嵌段共聚物,包括一个结晶基聚合物组分和一个具有弹性的无定形共聚物组分,后者通过半结晶均聚物或共聚物组分与结晶基聚合物嵌段连接。在一个优选实施方案中,基本结晶的热塑性烯烃聚合物由至少约60-85份结晶聚合物组分、至少约1-小于15份半结晶聚合物组分和至少约10-小于39份无定形聚合物组分组成。更优选基本结晶的烯烃嵌段共聚物包含65-75份结晶共聚物组分、3-小于15份半结晶聚合物组分和10-小于30份无定形共聚物组分。
适用的聚烯烃弹性体包括非均相共聚物中结晶基聚合物段是丙烯与至少一种通式为H2C=CHR的α-烯烃的共聚物,其中R是H或一个C2-6直链或支链烷基部分。优选非均相共聚物中具有弹性的无定形共聚物嵌段包含一种α-烯烃和丙烯,不论有无二烯,或一种不同的α-烯烃的三元共聚物,以及半结晶共聚物嵌段是一种低密度基本线形共聚物,后者基本上由制备无定形嵌段所用的α-烯烃单元或在用两种α-烯烃制备时制备以最大量存在的无定形嵌段所用的α-烯烃组成。
适用于本发明的其它弹性体聚合物包括高压乙烯共聚物。实例包括乙烯-醋酸乙烯酯共聚物(例如产自杜邦公司的ELVAX聚合物)、乙烯-丙烯酸甲酯共聚物(例如产自ExxonMobil的Optema聚合物)、乙烯-丙烯酸甲酯-丙烯酸三元共聚物(例如产自ExxonMobil的Escor聚合物)以及乙烯-丙烯酸和乙烯-甲基丙烯酸共聚物(例如,产自杜邦公司的Nucrel聚合物)。
适用于作为弹性体芯聚合物的其它热塑性弹性体包括通式为A-B-A′或A-B的苯乙烯嵌段共聚物,其中A和A′分别是各聚合物的端嵌段,含苯乙烯部分如聚乙烯基芳烃,B是弹性体聚合物中间段,如共轭二烯或较低级烯烃聚合物。A-B-A′型嵌段共聚物能含有A与A′不同或相同的嵌段聚合物。这类嵌段共聚物的实例包括共聚(苯乙烯/乙烯-丁烯)、苯乙烯-聚(乙烯-丙烯)-苯乙烯、苯乙烯-聚(乙烯-丁烯)-苯乙烯、聚(苯乙烯/乙烯-丁烯/苯乙烯)等。这类嵌段共聚物的商品实例是产自Kraton Polymers(先前产自Shell Chemical Company ofHouston,Texas)的Kraton嵌段共聚物。这类嵌段共聚物的实例在U.S.专利4,663,220和U.S.专利5,304,599中已有所述,这些专利包括于此供参考。
由弹性体A-B-A-B四嵌段共聚物组成的聚合物也能用作轴芯聚合物。这类聚合物在授予Taylor等的U.S.专利5,332,613中已有所述,该专利包括于此供参考。在这类聚合物中,A是一种热塑性聚合物嵌段,B是一种已氢化到基本上为聚(乙烯-丙烯)单体单元的异戊二烯单体单元。这类四嵌段共聚物的实例是苯乙烯-聚(乙烯-丙烯)-苯乙烯-聚(乙烯-丙烯)或SEPSEP弹性体嵌段共聚物,产自KratonPolymers(先前产自Shell Chemical Company of Houston,Texas),商品名为KratonG-1659。
翼聚合物
多组分纤维中的聚合物翼组分可以由非弹性体或弹性体聚合物形成。如果聚合物翼组分是弹性体,则要将它们选为弹性低于聚合物芯组分的才能使纤维形成所需要的基本上沿纤维长度方向的螺旋形捻度。例如,聚合物芯组分可选为弯曲模量低于8500磅/英寸2(58,600kPa)的弹性体聚合物,而聚合物翼组分的弯曲模量至少为8500磅/英寸2。更进一步,聚合物翼组分的弹性模量可以在8500磅/英寸2-14,000磅/英寸2(58,600kPa-96,500kPa)之间。优选翼聚合物的弹性体要大大低于芯聚合物的,例如,芯聚合物可以是一种弯曲模量低于8500磅/英寸2(58,600kPa)的弹性体聚合物,而翼聚合物要选为弯曲模量约12,000磅/英寸2-14,000磅/英寸2(82,700kPa-96,500kPa)。例如,聚合物翼组分能包含一种Affinity聚烯烃热塑性弹性体,而聚合物芯组分能包含一种Hytrel弹性体聚酯或一种Engage弹性体聚烯烃。
翼也能由任何热塑性非弹性体(硬)可永久拉伸聚合物形成。这类聚合物的实例包括非弹性体聚酯、聚酰胺和聚烯烃。
适用的热塑性非弹性体翼聚酯包括聚对苯二甲酸乙二醇酯(2GT)、聚对苯二甲酸丙二醇酯(3GT)、聚对苯二甲酸丁二醇酯(4GT)和聚2,6萘二羧酸乙二醇酯、聚对苯二甲酸14-环己烯二亚甲酯、聚丙交酯、聚壬二酸乙二醇酯、聚2,7-萘二羧酸乙二醇酯、聚乙醇酸、聚丁二酸乙二醇酯、聚α,α-二甲基丙内酯、聚对羟基苯甲酸酯、聚氧基苯甲酸乙二醇酯、聚间苯二甲酸乙二醇酯、聚对苯二甲酸四亚甲基酯、聚对苯二甲酸六亚甲基酯、聚对苯二甲酸十亚甲基酯、聚对苯二甲酸1,4-环己烷二亚甲基酯(反式)、聚1,5-萘二羧酸乙二醇酯、聚2,6-萘二羧酸乙二醇酯、聚对苯二甲酸1,4-环亚己基二亚甲基酯(顺式)和聚对苯二甲酸1,4-环亚己基二亚甲基酯(反式)。
优选的非弹性体聚酯包括聚对苯二甲酸乙二醇酯、聚对苯二甲酸丙二醇酯和聚对苯二甲酸1,4-丁二醇酯以及它们的共聚物。当用熔点较高的聚酯如聚对苯二甲酸乙二醇酯时,在聚酯中可加入共聚单体使之能在较低的温度下纺丝。这类聚合物在本文中统称为共聚酯。适用的共聚单体包括含4-12个碳原子的线形、环状和支化脂族二羧酸(如戊二酸);除对苯二甲酸以外的含8-12个碳原子的芳族二羧酸(如间苯二甲酸);含3-8个碳原子的线形、环状和支化脂族二元醇(如1,3-丙二醇、1,2-丙二醇、1,4-丁二醇和2,2-二甲基-1,3-丙二醇);以及含4-10个碳原子的脂族或芳脂族醚二醇(如氢醌双(2-羟基乙基)醚)。共聚单体在共聚酯中可以约0.5-15mol%的量存在。对于聚对苯二甲酸乙二醇酯,优选的共聚单体是间苯二甲酸、戊二酸、己二酸、1,3-丙二醇和1,4-丁二醇,因为它们容易购得而且便宜。
翼聚酯也能含少量其它共聚单体,只要这些共聚单体对纤维性能无不良作用即可。这类其它共聚单体包括,例如,磺基间苯二甲酸5-钠,含量在约0.2-5mol%。为控制粘度可加入非常少量,如组分总量的约0.1重量%-约0.5重量%的三官能度共聚单体,如偏苯三酸。
适用的热塑性非弹性体翼聚酰胺包括聚己二酰六亚甲基二胺(尼龙6,6);聚己内酰胺(尼龙6);聚庚内酰胺(尼龙7);尼龙10;聚十二内酰胺(尼龙12);聚己二酰四亚甲基二胺(尼龙4,6);聚癸二酰六亚甲基二胺(尼龙6,10);正十二烷双酸与六亚甲基二胺的聚酰胺(尼龙6,12);十二亚甲基二胺与正十二烷双酸的聚酰胺(尼龙12,12);衍生自双(4-氨基环己基)甲烷与十二烷双酸的PACM-12聚酰胺,30%间苯二甲酸六亚甲基二胺与70%己二酰六亚甲基二胺的共聚酰胺、最多30%双-(对-酰胺基环己基)亚甲基和对苯二甲酸与己内酰胺的共聚酰胺、聚4-氨基丁酸(尼龙4)、聚8-氨基辛酸(尼龙8)、聚庚二酰七亚甲基二胺(尼龙7,7);聚辛二酰八亚甲基二胺(尼龙8,8)、聚壬二酰九亚甲基二胺(尼龙9,9)、聚壬二酰十亚甲基二胺(尼龙10,9)、聚癸二酰十亚甲基二胺(尼龙10,10)、聚[双(4-氨基-环己基)甲烷-1,10-癸二羧酸酰胺]、聚己二酰间二甲苯二胺、聚癸二酰对二甲苯二胺、聚庚二酰2,2,2-三甲基六亚甲基二胺、聚癸二酰哌嗪、聚11-氨基-十一内酰胺(尼龙11)、聚间苯二甲酰六亚甲基二胺、聚对苯二甲酰六亚甲基二胺、聚9-氨基壬酸(尼龙9)、聚己内酰胺。也能用共聚物,如聚(己二酰六亚甲基二胺/己二酰2-甲基五亚甲基二胺),其中六亚甲基部分可占二胺衍生部分总量的约75-90mol%。
适用的聚烯烃包括聚丙烯、聚乙烯、聚甲基戊烯和一种或多种乙烯或丙烯与其它不饱和单体的共聚物和三元共聚物,以及它们的共混物。
弹性体芯与非弹性体翼聚合物的组合物能包括一种聚醚酰胺,例如,一种聚醚酯酰胺、带聚酰胺翼的弹性体芯和带聚酯翼的聚醚酯弹性体芯。例如,一种翼聚合物能包含尼龙6-6及其共聚物,例如,聚(己二酰六亚甲基二胺/2-甲基五亚甲基二胺),其中六亚甲基部分的存在量为约80mol%,任选地与约1重量%-最多约15重量%尼龙-12混合,而芯聚合物能包含一种弹性体嵌段聚醚酯酰胺。“嵌段”聚醚酯酰胺是指含有软段(长链聚醚)与硬段(短链聚酰胺)共价结合(通过酯基)的聚合物。类似的定义对应于嵌段聚醚酯、嵌段聚氨酯等等。尼龙12能提高翼与芯的粘结性,尤其当芯以尼龙12为基时,例如,由Atofina Chemicals(Philadelphia,Pa)供应的PEBAX3533SN聚醚嵌段聚酰胺弹性体。
另一种优选的翼聚合物能包含一种选自下列一组的非弹性体聚酯:聚对苯二甲酸乙二醇酯及其共聚物、聚对苯二甲酸丙二醇酯和聚对苯二甲酸丁二醇酯。宜与它们一起使用的弹性体芯可包含一种聚醚酯,该聚醚酯包含选自聚(四亚甲基醚)二醇和聚(四亚甲基/2-甲基四亚甲基醚)二醇的聚醚二醇与对苯二甲酸或对苯二甲酸二甲酯和一种选自1,3-丙二醇与1,4-丁二醇的低分子量二元醇的反应产物。
弹性体聚醚酯芯也能与非弹性体聚酰胺翼一起使用,尤其当用促粘添加剂时,如本文其它地方所述。例如,这种纤维的翼可选自下列一组:(a)聚己二酰六亚甲基二胺及其与己二酰2-甲基五亚甲基二胺的共聚物以及(b)聚己内酰胺,而这种纤维的芯能选自聚(四亚甲基醚)二醇或聚(四亚甲基/2-甲基四亚甲基醚)二醇与对苯二甲酸或对苯二甲酸二甲酯及选自1,3-丙二醇与1,4-丁二醇的二元醇的反应产物。
制造上述聚合物的方法是本领域内已知的,能包括使用催化剂、共催化剂和链支化剂,如本领域所知。在多翼多组分纤维纺丝中所用的聚合物能包含常用添加剂,添加剂能在聚合过程中加入或加到已形成的聚合物或非织造制品中并能有利于提高聚合物或纤维的性能。这类添加剂的实例包括抗静电剂、抗氧化剂、抗菌剂、阻燃剂、染料、光稳定剂、聚合催化剂和助剂、促粘剂、去光剂如二氧化钛、亚光剂和有机磷酸盐。
本发明的非织造纤网包括连续长丝纤网和非连续短纤维纤网,它们包含具有多翼截面的多组分可拉伸合成纤维,其中一种弹性体聚合物形成芯和一种或多种可永久拉伸的硬聚合物形成多个翼,翼附着在弹性体芯上并沿芯的长度方向延伸。或者,翼组分也能包含一种其弹性低于芯聚合物的弹性体聚合物。翼能在纤维或非织造织物加工期间变成沿某些纤维长度断断续续地脱粘。翼不一定要连续地附着在纤维长度上,只要不防碍纤维沿大部分纤维长度形成所需要的螺旋形捻度构型即可。例如,非织造纤网可以是在纺粘过程中形成的连续长丝纤网。或者,非织造纤网也可以是一种用梳理或弹毛机制成的梳理短纤维纤网,或通过将短纤维释放进空气流,由气流将纤维引至纤维沉落在其上的收集表面而制成的气流成网纤网。非织造纤网可以是一种通过将纤维以极高的稀释度分散在水中的湿法成网纤网。在湿法成网工艺中,要将分散体喂进一个箱内,在其中水通过一个移动筛网流出,纤维就沉积在筛网上。非织造纤网能包含不同旦数的纤维,在纤维与纤维之间,弹性体芯聚合物与非弹性体翼聚合物的比例可以不同。
非织造纤网还能包含多翼多组分纤维与其它第二或“伴侣纤维”的共混物。适用的伴侣纤维的实例包括聚酯或聚烯烃的单组分纤维,如聚对苯二甲酸乙二醇酯或聚丙烯。当非织造纤网包含一种具有潜在螺旋形捻度(即在适当热处理时收缩变形为螺旋形捻度)的多翼纤维与热处理期间收缩率低于多翼纤维的伴侣纤维的共混物时,该非织造纤网是一种“自膨松”纤网。当潜在螺旋形捻度被激活时,多翼纤维就收缩,使伴侣纤维弯曲,因为它们与螺旋段衔接在一起,由此就增加了非织造纤网的体积。
多组分纤维的翼从它们所附着的芯向外伸出并至少部分地围绕芯形成螺旋圈,尤其在有效的热处理后(松弛)。形成螺旋形捻度的热处理能在形成非织造纤网之前或之后进行。多翼多组分纤维至少有2个翼,优选3-8个翼,非常优选5或6个翼。所用的翼数可取决于纤维的其它特性及其制造和使用中的条件。翼数较多时,例如5个或更多个,翼间距常足以包围芯,从而在纤维或非织造织物制造过程中保护弹性体免于接触辊、导辊等。与如果采用较少的翼相反,这样就减少了纤维断裂、包辊和相互磨擦的可能性。较高的拉伸比和纤维张力会将纤维紧压在辊与导辊上,从而因翼向外张开而使弹性体芯接触辊或导辊;因此在高拉伸比与纤维张力下优选较多的翼数,尤其当多组分纤维中弹性体是低熔点聚合物组分时。当需要多纤维纱线时,如在纺制用来制造短纤维的纱线时,可以用少至2或3个翼,因为弹性体芯与辊或导辊之间的接触被其它纤维的存在所减少了。在粘结是通过弹性体芯聚合物实现的热粘结非织造纤网中优选用较少的翼。翼数可加以选择以提供易加工与热粘的最佳平衡。
2001年9月28日提交的共同未决非临时申请号09/966145和09/966037描述了几种适用于针织与纺织物的可拉伸纤维,它们包含一个由弹性体聚合物形成的轴芯和多个附着在弹性体芯上、由非弹性体聚合物形成的翼。这些申请包括于此供参考。
图2是适用于本发明非织造织物的纤维的截面示意图,它示意对称分布并围绕一个轴芯的6个翼。应注意在图3-7和15中,纤维一般标为10,轴芯标为12以及翼标为14。虽然为便于制造,优选翼不连续地围绕芯,但翼聚合物也能在芯周围形成一个连续或不连续的薄鞘。鞘厚可以是纤维芯最大半径的约0.5%-约15%。较厚的鞘会减少可能形成的螺旋形捻度,从而导致降低的拉伸性能。鞘能通过为芯与翼聚合物之间提供更多的接触点而有助于翼与芯的粘结,如果多组分纤维中的聚合物彼此粘结不好,这是一个特别有用的性能。鞘也能减少芯与辊、导辊等之间的磨耗接触,特别当纤维具有为数不多的翼时。图3示意了一个带有鞘16的2-翼纤维。
纤维芯的高弹性体使之在纤维受拉与松弛时吸收因所附翼扭转而产生的压缩、扭转和拉伸力。如果翼与芯聚合物之间的附着力太弱,则这些力能造成它们之间的脱粘。能提高芯与翼组分之间的粘结性的途径如下:选择一个或多个翼与芯组合物,或使用如前所述的鞘和/或在一种或两种聚合物中使用提高粘结性的添加剂。添加剂可加进一个或多个翼中,使每个翼与芯具有相同或不同的附着力。一般地说,芯和翼聚合物的选择要使它们具有足够的相容性,以便彼此粘结,从而尽量减小纤维制造及其后使用中的分离。
加进翼与芯聚合物的添加剂能提高粘结性。实例包括马来酸酐衍生物(杜邦公司注册商标为BynelCXA和Atofina商标为Lotader的乙烯/丙烯酸酯/马来酸酐三元共聚物),它能用来改进聚醚酰胺弹性体以提高其与聚酰胺的粘结性。作为另一个实例,能将一种数均分子量约400-约5000的热塑性酚醛清漆树脂(产自SchenectadyInterna-tional的HRJ 12700)加进弹性体(共)聚醚酯芯以提高其与(共)聚酰胺翼的粘结性。酚醛清漆树脂的用量应在1-20重量%范围内,更优选2-10重量%。适用于此的酚醛清漆树脂的实例包括,但不限于,苯酚-甲醛、间苯二酚-甲醛、对-丁基苯酚-甲醛、对-乙基苯酚-甲醛、对-己基苯酚-甲醛、对-丙基苯酚-甲醛、对-戊基苯酚-甲醛、对-辛基苯酚-甲醛、对-庚基苯酚-甲醛、对-壬基苯酚-甲醛、双酚-A-甲醛、羟基萘甲醛和松香(尤其是部分马来酸酯化松香)的烷基(如叔丁基)苯酚改性酯(如季戊四醇酯)。PCT公开WO 2001016232公开了提高共聚酯弹性体与聚酰胺间粘结性的技术,该文献包括于此供参考。
用马来酸酐(“MA”)官能化的聚酯也能作为促粘添加剂用。例如,按照J.M.Bhattacharya,Polymer International(August,2000),49:8,pp.860-866,聚对苯二甲酸丁二醇酯(“PBT”)能用MA在双螺杆挤出机内通过自由基接枝而官能化,该文献包括于此供参考。Bhattacharya还报告了用百分之几重量的所得PBT-g-MA作为聚对苯二甲酸丁二醇酯与尼龙66以及聚对苯二甲酸乙二醇酯与尼龙66二元共聚物的相容剂。这种添加剂也可用来更牢固地粘结本发明纤维的(共)聚酰胺翼与(共)聚醚酯芯。
业已发现,在聚合物组分彼此间粘结性差的纤维内,如果让组成纤维的聚合物组分之一伸进另一种聚合物组分,则可大大减少或消除分裂(脱粘)。也就是说,至少一个或多个翼中一个翼聚合物的一部分伸进芯聚合物或至少一部分芯聚合物伸进一个翼聚合物。这种行为是出乎意外的,因为原先预期在应力作用下弹性体聚合物容易变形并从与非弹性体聚合物的互穿连接中拔出来。
芯与翼聚合物的穿入可以用任何能有效地减少纤维分裂的方法实现。例如,在一个实施方案中,穿入聚合物(例如芯聚合物)能相当深地伸进被穿入聚合物(例如翼聚合物),以致使穿入聚合物象一个花键(见图4)。花键具有基本均匀的直径。在另一个实施方案中,穿入聚合物(例如翼聚合物)能象牙根一样伸进被穿入聚合物(如芯聚合物),从而形成多个凸起(图5)。在还有一个实施方案中,至少一种聚合物具有至少一个翼伸进芯或芯伸进翼的突出部分,该突出部分包括一个较粗的远端段和一个较细的缩颈段,连接至少一种聚合物的端部与其余部分,以在其中形成至少一个颈缩部分,如图6所示。通过这种粗端段与缩颈段彼此依附的翼与芯称做“机械锁扣”。为便于制造且更有效地粘结翼与芯,常优选以上最后提到的有一个颈缩部分的实施方案。其它伸出方法是本领域内的技术人员可想象的。例如,如图7所示,芯可以包围一个或多处翼的一部分侧面,使翼伸进芯。为了芯与翼之间的最佳粘结,一般在纤维总重量中有约5-30重量%可以是伸进芯的非弹性体或弱弹性体翼聚合物或伸进翼的弹性体芯聚合物。
在芯组分或翼组分穿进另一组分的实施方案中,纤维具有一个外半径和内半径的轴芯(例如,分别为R1和R2和R′1和R′2),如图9所示。外半径是芯最外部分圆周的半径,而内半径是翼最内部分内切圆的半径。在本发明的非织造织物所用的纤维中,R1/R2一般大于约1.2。优选R1/R2在约1.3-约2.0范围内。比值较低时防脱粘性降低,比例较高时,弹性体聚合物在翼内(或非弹性体聚合物在芯内)的高含量会降低纤维的拉伸与可回复性。当芯在翼内形成一个花键时,R1/R2接近于2。相反,在一种组分不穿入另一组分的图2中,R1和R2差不多相等。在纤维中有多个翼,而且纤维中某些翼聚合物伸进芯聚合物以及其它翼聚合物被芯伸进的情况下,R1和R2仅由对应于各翼的半径对确定,如图9所示,且每个R1/R2和R′1/R′2一般都大于1.2,优选在约1.3-2.0范围内。在另一个实施方案中,芯聚合物伸进一些翼,而不伸进相邻翼,则R1和R2要按伸进翼的关系确定。同样当仅有部分翼伸进芯时,R1和R2要按伸进翼的关系确定。芯伸进翼、翼伸进芯或基本上无伸进的所有组合都可采用。
翼聚合物总量与芯聚合物的重量之比可以改变,以获得所要求的综合性能,例如从芯得到所需的弹性体,从翼得到其它性能。例如,可以用翼聚合物与芯聚合物的重量比为约10/90-约70/30,优选约30/70-约40/60。
本发明非织造纤网中所用的多翼纤维的芯和/或翼都可以是实心体或包括空洞或孔隙。一般而言,芯和翼都是实心体。而且翼可以具有任何形状,如椭圆、T-形、C-形或S-形(见例如,具有C-形的图3)。适用翼形的实例可见诸于U.S.专利号4,385,886,该专利包括于此供参考。T-形、C-形或S-形会有助于保护弹性体芯免于接触导辊和辊,如前所述。芯也能具有任何形状,包括圆形、椭圆形和多边形。
当希望可拉伸纺粘非织造织物具有低体积和平坦、光滑的均匀表面时,优选纤维具有基本径向对称的截面。为达到最大的截面径向对称性,芯能具有基本圆形或规则多边形截面,例如,如图2所示。所谓“基本圆形”是指通过纤维截面中心以90°相交的两根轴线的长度之比不大于约1.2∶1。使用基本圆形或规则多边形的芯,与U.S.专利号4,861,660的芯相反,能在熔体纺丝或纺粘工艺期间保护弹性体免于接触辊,如关于翼数的内容所述。多个翼可以任何所需的方式分布在芯的周围,例如,如图2所示的不连续分布或如U.S.专利号3,418,200中图4和5所示的相邻翼在芯表面相接。多个翼可具有相同或不同的尺寸,只要保持基本径向对称性即可。当要制造含有两种以上聚合物组分的轴向对称多组分多翼纤维时,可以由一种不同于其它翼的聚合物形成两个或多个翼,再一次只要保持基本径向几何形状与聚合物组成的对称性即可。但是,为便于制造和容易获得径向对称性,优选翼具有差不多相同的尺寸并由同种聚合物或聚合物的共混物制成。虽然纤维截面可以在尺寸、聚合物组成和围绕芯的角间距方面基本对称,但应理解在任何纺丝过程中由于非均匀骤冷或不完善聚合物熔体流动或不完善纺丝孔等因素,一般会出现偏离理想对称性的微小变化。要理解在纺制具有径向对称截面的纤维时,这类变化是允许的,只要变化不致大到足以引起非织造织物产生不希望的膨松度即可。在按照本发明制备非膨松的非织造织物时,拉伸与回复通过一维螺旋形捻度发生,而三维卷曲很小。
具有径向非对称截面的纤维一般在适当热处理时能形成高维卷曲。在这类高维卷曲中,纤维纵轴本身呈现出锯齿形或螺旋形或其它非线性构型,这类构型使非织造织物比那些从基本径向对称截面的纤维所制成的非织造织物具有更高的膨松度。
径向对称截面能以多种途径实现。例如,相邻翼组分之间的间距可以不等或一个或多个翼的长度和/或形状可以不同,因此当纤维围绕其纵轴旋转360°/n时,其中“n”是一个大于1的整数,就得到一种与旋转前明显不同的截面。为了产生组成的不对称性,可以在一个或多个翼中使用不同的聚合物。例如,当多组分纤维中弹性体芯聚合物是一种低熔点聚合物组分时,一个或多个翼可包含弹性体,以便通过使弹性体具有更好的粘结性而提高热粘结性。一个或多个翼的全部或部分能包含弹性体。例如一个翼段能包含一种可永久拉伸的非弹性体聚合物与一种弹性体聚合物或熔点低于芯聚合物熔点的其它聚合物,位于至少翼的部分外表面。
图10是按照本发明使用上述多翼多组分纤维制成具有可回复拉伸性的双组分纺粘织物的生产线示意图。该生产线包括两个独立的聚合物挤出系统,以分别挤出聚合物A和聚合物B。聚合物A是一种热塑性弹性体,而聚合物B是一种可永久拉伸的硬聚合物。
正如可能需要,可以用本领域内已知的方法如立式料斗型干燥器(未示出)用加热干燥空气将聚合物A和B干燥到所要求的湿含量。空气温度的选择基于树脂的“粘结”点,一般约100℃。空气的露点优选低于-20℃。例如,当聚合物组合物是Hytrel3078共聚醚酯弹性体与Crystar4446共聚酯时,两种树脂都优选干燥到湿含量低于50ppm。有些弹性体聚合物与硬聚合物在加工前无需干燥。例如,产自Dow Chemical Company的Engage乙烯/1-辛烯共聚物树脂和其它聚烯烃硬聚合物如高密度聚乙烯、线形低密度聚乙烯和全同立构聚丙烯一般都不需要干燥。
该生产线包括两个挤出机12和12′,以分别挤出弹性体聚合物A和硬聚合物B。聚合物以熔体流从挤出机通过各自的输送线14和14′喂至纺丝梁16,在这里熔体从包含多个多组分挤出孔的喷丝板中挤出,挤出孔的构造已保证形成所需的多翼截面。纺粘工艺中所用的喷丝板是本领域内已知的,一般含有沿喷丝板长度分布的一排或多排挤出孔。纺丝梁一般包括一个分配与计量聚合物的纺丝组件。在纺丝组件内,第一与第二聚合物组分从图形开孔中流出,孔的分布要形成如上所述的那些所需的长丝截面,其中弹性体聚合物A形成长丝芯而硬聚合物B形成多个附着于弹性体芯上的翼组分。
聚合物从喷丝板挤出孔中被纺成许多垂直取向的长丝,它们形成一个向下移动的长丝帘。在图10所示的实施方案中,该帘由从3排双组分挤出孔中挤出的3排长丝18形成。喷丝板可以是一块预并喷丝板,在其中将不同的熔体聚合物流在流出挤出孔之前带到一起并作为一种层叠聚合物流从同一挤出孔中挤出来,以形成多组分纺粘长丝。或者也可以用一块后并喷丝板,在其中,使不同的熔体聚合物流自挤出孔挤出之后彼此接触,以形成多组分纺粘长丝。在后并法中,不同聚合物组分作为分立的聚合物股从多组分挤出孔中挤出,与从同组挤出孔中挤出的其它股连接而形成单根多组分长丝。
喷丝板内交替排中的挤出孔可以彼此犬牙交错,以避免骤冷区的“阴影效应”,在此处一排中的长丝阻挡相邻排中的长丝接触骤冷空气。优选用吹风机20提供的横流气体骤冷长丝。一般而言,骤冷气体是室温空气(约25℃),但也能冷冻或加热到约0℃-150℃之间的温度。或者,骤冷气体也可以从置于长丝帘对面的吹风机提供。
骤冷区长度的选择要使长丝冷却到当它们从骤冷区出来时不会出现进一步拉伸以及长丝不会彼此粘结。一般不需要使长丝从骤冷区出来时完全凝固。
在骤冷区靠近喷丝板表面处长丝因喂料辊22与22′产生的张力而受到拉伸。这一步一般以较低速度进行,优选300-3000m/min,更优选约150-1000m/min(以图10中喂料辊22和22′的表面速度测量)。从骤冷区出来后,长丝上可涂布纺丝整理剂如整理油,方法是,例如,使长丝与一个涂有整理剂并以低于长丝的速度运转的粘浆辊(未示出)接触。例如,如果希望非织造织物具有抗静电性,则可以在长丝上涂布抗静电整理剂。当使用纺丝整理剂时,如果整理剂油会减少辊与长丝之间的摩擦力,从而增加长丝在辊上打滑的可能性,以致降低产率并无法分段骤冷、拉伸和铺纤区之间的张力,则可以用每组多于两个辊的S形辊。例如,在拉伸区施加的张力能反馈回纺丝区,从而降低有效的机械拉伸并减少最终纤维中达到的卷曲和螺旋形捻度。在本发明的工艺中,这一点尤其是一个问题,在该工艺中,长丝在辊上包单圈而非传统熔纺工艺中常用的包多圈。辊数越多,包辊的可能性越大。为经济起见,优选该工艺不用纺丝整理剂(“无纺丝整理剂”)并在每组S形辊中用两个辊。
然后让垂直取向的骤冷多组分长丝帘通过两组驱动S形辊的上下,在每个辊上包一圈。在本文中把第一组S形辊22和22′称做喂料辊,第二组S形辊24和24′称做拉伸辊。每组S形辊包含至少两个辊。在图10所示的实施方案中,用两组S形辊,每组由两个辊组成。但是,应该理解,可以用每组多于两辊的S形辊。优选辊的定位要使长丝与辊之间的接触最大。在图11A与11B中,示意了两种不同的S形辊构造。在图11A中,包角θ为180°。包角定义为在辊的中心在长丝首先接触辊的点与长丝出辊的点之间测量的角度。在图11B中,包角θ′小于180°。优选包角约180°或更大,因为能为长丝与辊之间提供更好的接触与摩擦力,从而减少打滑。一般能用最大约270°的接触角。
喂料辊22与22′以差不多相等的速度但如箭头所示以相反方向旋转,并要加热到稳定化露点位置的温度。优选喂料辊以约150-1000m/min的表面速度运转。优选喂料辊保持在约室温(一般约25℃)与约110℃之间的一个温度下。如果喂料辊温度太高,则长丝会粘在辊上,而如果喂料辊温度太低,则无法获得稳定的露点。或者长丝也能在两组S形辊之间加热,例如用蒸气体喷咀(100℃)或其它加热手段,如在两组辊之间的某一局部点拉伸长丝。
然后让拉伸长丝通过第二组辊,即S形辊24与24′的上下,两辊以差不多相同的速度反向旋转。拉伸辊的表面速度大于喂料辊22与22′的表面速度,因此为拉伸喂料辊与拉伸辊之间的长丝提供所需要的张力。拉伸辊的表面速度优选约2000-5000m/min。第二个拉伸辊24′的运转速度可以略高于第一拉伸辊24的。在纺粘纤维有一个5-翼截面而且使用Hytrel3078与Crystar4446的聚合物组合的一个实施方案中,优选喂料辊速度为400-800m/min,拉伸辊速度为2500-3500m/min。
拉伸辊速度的设定要使纤维在喂料辊与拉伸辊之间以约1.4∶1-6∶1的拉伸比进行机械拉伸。优选拉伸比为3.5∶1-4.5∶1。业已发现,喂料辊与拉伸辊之间的拉伸比越大,则纺粘长丝及由其得到的纺粘织物获得的弹性就越大。
以拉伸辊表面速度定义的最大运转速度最高能达约5200m/min。速度高于该值时,会出现过多的长丝断裂。当使用加热的喂料辊时,在长丝离开喂料辊22′处(即纤维最热处)附近的一个点上长丝被拉伸,而且先受到来自第二组辊子的张力,因而拉伸是在纤维接触拉伸辊24之前完成的。优选拉伸后长丝的单丝旦数约2-5,但对于要求长丝具有约1-20旦的单丝数,这可能是一种有效的工艺,而不必作大的工艺改进。
喂料辊22与22′以及拉伸辊24与24′可任选地配备长丝“剥棉辊”23,它大大延续驱动辊的长度并在长丝刚离开各辊处的下游轻轻接触辊子。长丝剥棉辊23一般位于辊子的切向,但对于一台给定的机器和一套工艺条件,使用剥棉辊所需的适当角度与安装很容易由本领域内的技术人员确定。长丝剥棉辊23能由任何刚度合适的卡片或由在喂料辊或拉伸辊表面不会熔化的薄膜原料制成。业已发现,产自杜邦公司的Kapton薄膜和NOMEX纸都适用于本发明。剥棉辊有助于防止因断纤引起的包辊,其途径是通过剥离紧挨各辊表面的空气界面层并将断纤抛进空气以落在纤网上使工艺正常进行而不形成包辊。
拉伸后,让长丝通过一个前进或下拉喷咀26,它为防止长丝在拉伸辊上打滑提供所需要的张力。在从前进喷咀出来后,长丝上的张力得以松弛。对于某些硬翼聚合物,特别是玻璃化转变温度较低的那些聚合物,当长丝从喷咀出来时,形成某种程度的螺旋形捻度。属硬聚合物并在拉伸中会永久变形的翼聚合物在拉伸状态下是稳定的,因此当一天和尚撞一天钟长丝从喷咀出来时不会发生明显的收缩。如果长丝的温度高于翼聚合物的玻璃化转变温度(Tg),则在长丝从喷咀出来后,芯会因张力的松弛而有一定程度的回缩,所以当翼沿芯形成螺旋形构型时,长丝的长度就缩短。当硬聚合物是一种聚烯烃如线形低密度聚乙烯、高密度聚乙烯或聚丙烯时,当长丝从前进喷咀中出来时,便会自发地形成一定程度的螺旋形捻度。当硬聚合物翼的Tg高于长丝从前进喷咀出来时的温度时,一般基本上不会形成螺旋形捻度,直到进行另外的热处理步骤。热处理步骤一般在高于硬聚合物Tg的温度下进行。在未形成明显螺旋形捻度的情况下,翼基本上沿纤维长度纵向延伸,直到进行适当的热处理。在形成螺旋形捻度时,翼形成沿纤维长度延伸的螺旋状构型。螺旋形捻度可以是基本周向的(见图1)或基本非周向的(见图1B)。
前进喷咀26一般是一个吸丝喷咀,它除了保持拉伸辊上的张力以在长丝上施加均匀的拉伸力以外,还提供一股气流,如空气喷流,以带走长丝并将它们推到移动收集器表面,如位于喷咀下面的带28上,以便形成非织造纤网30。标准的细化喷咀,如传统纺粘工艺中所用的狭缝喷咀,可用来作为前进喷咀。这类吸丝喷咀是本领域内周知的,一般包括一个拉伸垂直通道,通过该通道,长丝被从通道侧面进来并向下流过通道的吸入空气所拉伸。在不用拉伸辊的纺粘工艺中,吸丝喷咀为纺拉长丝提供拉伸张力,而在图10所示的工艺中,喂料辊与拉伸辊提供拉伸张力。收集器28一般是一种多孔筛或稀松布。在带的下面可以有一个吸气箱或真空(未示出),以除去来自前进喷咀的空气并使长丝一旦沉积在带上就定位在其上。
在本发明方法的一个第二实施方案中,可以取消拉伸辊,这样前进喷咀就同时起拉伸喷咀和前进喷咀的作用,拉伸喷咀为拉伸喷丝头表面附近的长丝提供拉伸张力(“纺拉”),而前进喷咀把拉伸纤维引至收集器表面。相信图10所示的拉伸辊工艺是优选工艺,因为该工艺能提供较高的拉伸张力以允许长丝在喂料辊与拉伸辊之间冷拉(“机械拉伸”)。机械冷拉所能达到的分子取向度一般比仅由纺拉达到的更高,冷拉发生在喷丝板表面附近的较高温度下。相信图10所示的拉伸辊工艺会比对应的拉喷工艺产生更高的螺旋形捻度和任选地更高的卷曲度。
虽然按照上述方法形成的纺粘长丝能在铺成纺粘纤网之前具有某种程度的螺旋形捻度,但一般希望长丝或纤网在长丝拉伸之后还要经受进一步的热处理步骤。热处理步骤能在长丝形成非织造纤网之前或形成非织造纤网之后进行。热处理温度优选如下,当加热介质是干燥空气时,约60℃-约120℃,当加热介质是热水时,约60℃-99℃,以及当加热介质是高压蒸气时(例如在热压釜内处理纤网或纤维),约101℃-约115℃。热处理步骤优选在长丝不受大张力作用时进行。
在如图10所示的纺粘工艺中,热处理步骤可以包括将拉伸辊加热到约60℃-约120℃范围内的一个温度下,或在拉伸辊与前进喷咀26入口之间使用大气压蒸气。业已发现,长丝在张力作用下进行热处理不能非常有效地产生高螺旋形捻度的长丝。优选用前进喷咀26中的加热气体(如热空气)实施热处理步骤。当从加热的前进喷咀中出来时,长丝上的张力就得以松弛并形成螺旋形捻度和任选地卷曲。或者,松弛热处理也可以在纤维从前进喷咀出来后或被收集在成形带上之后或在成形带上被收集为纺粘纤网后通过加热来进行。对纺粘纤网的热处理步骤可与粘结步骤一道进行,例如用气流粘结机或加热凝固/轧花辊。当纺粘长丝具有非对称截面时,该松弛步骤会导致形成三维卷曲和发展螺旋形捻度。
在长丝沉积在带28上以后,所得纤网一般要在线粘结,以形成粘结的纺粘织物,然后卷绕在辊上。如果纤网是在线粘结的,则为形成螺旋形捻度长丝构型和任何三维卷曲的热处理,优选在粘结前进行,以尽量增加螺旋形捻度和任选地发展卷曲。在粘结前可以用一个压辊轻轻压一下纤网。粘结能用热粘结法实现,在其中纤网要加热到低熔点聚合物组分软化或熔化的一个温度,使长丝彼此粘结或熔并在一起。例如,纤网可以在织物表面分立的粘结点上热点粘结以形成内聚非织造织物。在一个优选实施方案中,采用热点粘结或超声点粘结。一般而言,热点粘结包含在织物表面的分立点上加热加压,方法是,例如,让非织造层通过一个带图形加热压延辊与一个光滑辊所形成的间隙。在热点粘结期间,低熔点聚合物组分在与图形加热辊上凸起对应的分立区内部分地熔化,造成熔并粘结,把该复合材料的非织造层结合在一起,形成内聚粘结非织造织物。粘结辊的图形可以是本领域内已知的任何图形,且优选分立的点粘结。这种粘结可以是连续或非连续图形,均匀或无规的点或它们的组合。粘结点可以是圆的、方的、矩形的、三角形的或其它几何形状。粘结尺寸和粘结密度要调节到实现所要求的织物性能。较高的粘结密度一般会降低非织造织物的拉伸性能。优选纺粘织物在机器方向与横向上的弹性伸长至少约10%,更优选至少约30%。非织造纤网也能用气流粘结法粘结,在其中让加热气体,一般是空气,通过纤网。气体要加热到一个足以软化或熔化低熔点组分的温度,使长丝在它们的交叉点上粘结。气流粘结机一般包括一个接收纤维的多孔辊和一个围绕多孔辊的罩。加热气体的流向是从罩通过纤网进入多孔辊。一般地说已气流粘结的纤网比用热点粘结法制成的纤网有更高的膨松度。
或者,也可以用包括液压缠结(液压针剌)和针剌(机械针剌)在内的非热粘技术代替热粘法。非织造纤网也能用树脂粘结剂粘结。例如,可以用乳胶树脂浸渍非织造纤网,例如在本领域内已知的浸-挤工艺或涂布工艺中。或者也能通过在非织造纤网上以一种图形,例如分立点或线,涂布树脂而断断续续地粘结。
用来制备弹性体纺粘织物的一种优选弹性体芯聚合物是产自杜邦公司的Hytrel共聚醚酯。例如包含一种Hytrel共聚醚酯芯和选自下列一组的翼聚合物的纤维是适用的:聚对苯二甲酸1,4-丁二醇酯、聚对苯二甲酸丙二醇酯、各种共聚酯、高密度聚乙烯、线形低密度聚乙烯、全同立构或间同立构聚丙烯和聚(4-甲基戊烯-1)。Hytrel共聚醚酯弹性体也能与一种硬质非弹性体Hytrel聚合物组合在翼组分中,例如产自杜邦公司的Hytrel7246(弯曲模量570MPa)。硬和软Hytrel聚合物按硬段与软段的比例区分。
其它组合包括优选的Engage芯聚合物与线形低密度聚乙烯翼或高密度聚乙烯翼,这类组合适合形成适用于本发明非织造织物的螺旋形捻度。
取决于芯与翼聚合物的选择,在某些情况下,芯聚合物将是最低熔点组分,而在另一些情况下,翼聚合物是最低熔点组分。对于Hytrel弹性体芯/聚对苯二甲酸,14-丁二醇酯翼、Hytrel弹性体芯/共聚酯翼、弹性体Hytrel/硬Hytrel翼、Engage芯/LLDPE翼和Engage芯/HDPE翼的组合,弹性体是最低熔点组分,因此热粘是通过芯聚合物发生的。翼数与间距能选择,以允许良好的热粘结而不会在纺粘工艺期间引起粘辊或包辊等问题。对于Hytrel弹性体芯/高密度聚乙烯翼、Hytrel弹性体芯/线性低密度聚乙烯翼、Hytrel弹性体芯/聚对苯二甲酸丙二醇酯翼和Pellethane芯/HDPE翼的组合,翼聚合物是最低熔点聚合物组分,因此热粘是通过翼聚合物发生的。当非织造织物是一种热粘非织造织物时,优选最低熔点聚合物组分的熔点比另一种聚合物组分的熔点低至少10℃。当一种或多种聚合物组分没有确定的熔点时,软化温度最低的聚合物组分的软化温度应比另一种聚合物组分的熔点(或软化温度)低至少10℃。
优选含聚酯-基翼和芯的纤维(例如共聚醚酯弹性体芯和聚酯翼)用于要求纤维有染色性或较高使用温度如服装的最终用途中。预期含聚烯烃-基翼与芯的纤维适用于不要求染色和使用温度较低的最终用途,如尿布衬底之类。因此最好采用带染色位置的聚合物。一个例子是Hytrel聚醚酯,在其中某些聚酯段含磺基间苯二甲酸酯的钠盐。含染色位置的聚合物可用在翼、芯或在两者中。
用来形成包括梳理成网、气流成网、湿法成网的非织造纤网在内的短纤维非织造纤网的短纤维,可以用本领域内已知的纺丝法形成。一般而言,要熔化可熔纺聚合物,然后将熔融聚合物从设计到能提供所要求纤维截面的喷丝板毛细孔中挤出。预并或后并喷丝板组件都能用。然后骤冷或用适当的介质,如空气,凝固挤出纤维,以便从离开毛细孔的纤维中除去热量。任何合适的骤冷法都能用,例如横流或径向骤冷。
图12是一种能用来制造适用于切成短纤维以用来制备本发明的短纤维非织造纤网与织物的设备的示意图。也能采用其它设备。一种热塑性硬聚合物原料(未示出)可以在40处引进纺丝组装件42,而一种热塑性弹性体聚合物原料(未示出)能在41处引进纺丝组装件42。这两种聚合物可从喷丝板43中挤出成型为纤维44,喷丝板43有毛细孔,毛细孔已设计成给出所要求的多翼横截面,然后以任何已知的方法,例如用冷空气45骤冷纤维44,并用任何已知的技术在涂布器46处任选地用一种整理剂如任选地含一种硬脂酸镁的硅油进行处理。然后在至少一个拉伸步骤中拉伸纤维,例如在喂料辊47(它能以150-1000m/min运转)与拉伸辊48之间进行。拉伸步骤可以与纺丝步骤结合,以制成充分拉伸的纱线,或者也可以在其中纺丝与拉伸之间有一定推迟的分步工艺进行拉伸。对于纤维可进行任何所要求的拉伸(缺省这一步会因断纤而干扰工艺),例如,通过拉伸约3.0-4.5倍可产生完全取向的纱线。拉伸可以在约15-100℃进行,一般在约15-40℃。最终纤维在经过如下所述的部分松弛之后会具有至少约35%的煮炼后伸长。
拉伸纤维49能任选地被部分松弛,例如,用图12中50处的蒸气。在纺丝期间可进行任意程度的热松弛。松弛越多,则纤维的弹性越好,且在下游操作中出现的收缩越少。优选在拉伸纤维收丝前让刚纺成的纤维热松弛约1-35%拉伸纤维长度,这样就能象处理典型的硬纱线一样处理之。
然后可将经过骤冷、拉伸和任选地松弛的纤维51收集起来,方法是例如,以最大约4000m/min的速度收丝在卷绕机52上。如果多股纤维已纺出且经骤冷,则可汇聚并任选地交织纤维,然后以约4000m/min的速度收丝在卷绕机52上。或者,绕丝速度也可在约200-约3500m/min范围内。
如前所述,多翼多组分纤维能以一种在纺丝与拉伸之间有一定推迟的分步工艺制造,以及拉伸纤维在切成短纤维之前并不收丝成包。一种热塑性硬聚合物原料与一种热塑性弹性体原料能如前所述被引进纺丝组装件。这两种聚合物能从已设计到能产生所要求多翼截面积的、最多有1500或更多毛细孔的喷丝板上挤出成型为纤维,并以任何已知方法,例如用冷空气,骤冷,并任选地用任何已知的技术用整理剂如硅油或用硬脂酸镁处理。纱线可以是由多纤组合成总旦数约50,000-750,000的丝束,任选地用一种第二整理剂处理,以约200-1000m/min的速度从骤冷区拉出,引进一个在其中对丝束施压以提高堆砌密度的容器内,并储存到拉伸与切断。来自数个容器的未拉伸丝束可组合成总旦数约1,000,000-2,000,000的丝束并以约100-200m/min的速度引进一台拉伸机,在此处,丝束在至少一个拉伸步骤中被拉伸3-4.5倍。将总旦数约300,000-500,000的丝束再储存在容器内直到准备切割。来自数个容器的拉伸丝束可以组合成总旦数约750,000-2,000,000的丝束,以约50-250m/min的速度将其引进一个旋转式切割机,切成短纤维长度并包装成箱或成包。
用来制造梳理纤网的短纤维优选在梳理之前先卷曲。未卷曲纤维会产生纤维卡在梳理线齿间不易脱开之类的问题。卷曲可以在热处理步骤中形成或纤维可以用机械法卷曲,例如在填塞箱内。一般地说,气流成网法所用纤维的卷曲程度要比为梳理设计的低。用来制造气流成网法纤网的纤维一般比梳理法中所用的纤维短,因为如果纤维太长,它们就会彼此缠结而且在气流成网法中一般不能良好地分散。在湿法成网中所用的纤维优选具有低卷曲程度而且要切成短长度,以便获得良好的分散并避免纤维缠结在一起。适用于各种短纤维纤网加工方法的纤维长度和卷曲程度是本领域内周知的。例如,对于气流成网法纤网,优选未卷曲纤维长度在约0.5-1英寸(1.27-2.54cm)之间。对于梳理纤网,纤维的未卷曲长度一般约为1.5英寸(3.8cm),但是常常用不同长度的混合体系,其中较长的纤维(如约3.8cm)用来携带一些较短的纤维(如短于2.54cm)。
在拉伸后的任何时刻,多翼多组分纤维要经过干-或湿-热处理,同时基本上完全松弛,以获得所要求的拉伸与回复性能。这种热处理可在纤维生产期间或纤维已加进多组分非织造织物之后,如在煮炼、染色等期间完成。以纤维或纱线形式进行的热处理能用热辊或热箱或在喷-筛膨松步骤中进行。优选这类松弛热处理在纤维已在非织造织物中后进行,那时就能象非弹性体纤维一样加工;但是如果需要,纤维也可以在形成非织造织物之前进行热处理并完全松弛,以形成螺旋形捻度。为了在最终织物中有更好的均匀性,纤维可作均匀热处理和松弛。热处理/松弛温度可选择如下:当加热介质是干燥空气时,约80℃-约120℃;当加热介质是热水时,约75℃-100℃;当加热介质是高压蒸气时(例如在热压釜内),约101-约115℃。较低温度会导致很少或不发生松弛/不形成螺旋形捻度,较高的温度又会熔化较低熔点的聚合物组分。热处理/松弛步骤一般能在几秒钟内完成。多组分多翼纤维的煮炼后伸长能达到至少约35%,优选至少约55%。
为产生本发明所需的截面,要成形熔体聚合物从中挤出的毛细孔和孔如上所述。毛细孔或喷丝板钻孔可以用任何适用的方法切削,如包括于此供参考的U.S.专利号5,168,143中所述的激光切削、钻孔、放电加工(EDM)、冲孔等,如本领域内周知。为很好控制本发明纤维的截面对称性,可用激光束加工毛细孔。喷丝板的毛细孔能具有任何合适的尺寸并被加工成连续(预并)或非连续(后并)的。非连续毛细孔可以通过镗成图形小孔获得,这些图形孔能允许聚合物在喷丝板表面以下并丝并形成本发明的多翼截面。
例如,截面如图2所示的6-翼纤维可以用图13、13A、13B和13C所示组件构型的预并喷丝板组件制造。聚合物按图13中箭头F方向流动。熔池板D搁在计量板C上,C又搁在分配板B上,B又搁在喷丝板A上,A由喷丝板支撑板E支撑。优选熔池板D和喷丝板支撑板E足够厚且刚,这样它们就能彼此紧压在一起,以防聚合物从各板之间泄漏出来。板A、B和C优选足够薄以便激光打孔。为制造具有不同翼数的纤维,要在每块板上形成适当数目的对称分布孔。如图13A所示,喷丝板A可包含6个对称分布翼的喷丝板孔60,60与喷丝板上一个中心圆孔61相连。每个翼孔60沿其长度方向可具有宽度不同的段,如翼段62与63。如图13B所示,分配板B能含有翼分配孔60′,60′渐渐变细成任选的狭缝65,65能连接分配孔与中心圆孔61′。图13C中所示的计量板C可含有翼聚合物计量孔60″和芯聚合物计量孔61″。熔池板D可具有传统设计。喷丝板支撑板E可带孔,孔要足够大并沿新纺出纤维的路径喇叭形张开(例如以45-60°),这样纤维就不会接触孔壁。这些板的布置要使芯聚合物从熔池板D流经计量板C的计量孔61″,流经分配板B的中心圆孔61′,流经喷丝板A的中心圆孔61,从喷丝板支撑板E的喇叭孔出来。同时,翼聚合物从熔体池板D流经计量板C的翼计量孔60″,流经分配板B的分配孔60′(在其中,如存在任选的狭缝65,则两种聚合物首先彼此接触),流经喷丝板A的翼孔60,最后从喷丝板支撑板E的孔中流出。
在一个实施方案中,喷丝板组件要设计到使喷丝板没有明显的埋头孔,这是指存在的任何埋头孔长度(包括与许多喷丝毛细孔入口相连的任何凹进处)应小于喷丝板毛细孔长度的约60%,例如小于约40%。这样就允许高聚物能直接被喂入喷丝毛细孔。多股聚合物流直接计量进喷丝板上成纤孔背面入口处的特定点消除了通常多股聚合物流要早在喷丝板孔之前就组合进喂料道时出现的聚合物迁移问题。该实施方案能用来熔纺适用于制造本发明非织造织物中要用的多翼短纤维的长丝。
喷丝板组件能加以改进以实现不同的多翼纤维,方法是,例如,为所要求的不同翼数改变毛细腿的数目、为生产不同单丝旦数的需要改变狭缝尺寸以改变几何参数,或按需要采用各种不同的合成聚合物。
用图13D中的计量板C′代替图13C中的计量板C,能使形成的截面类似于上述图13、13A、13B和13C的截面,但部分芯弹性体伸进翼,使纤维具有类似于图8中所示的截面。计量板C′类似于计量板C,但计量板C′包括一套附加孔66,每翼一孔并位于每翼的中心线上。弹性体聚合物要喂至中心孔61″和孔66,使芯聚合物伸进翼。孔66要沿每个翼的中心线布置,其位置要使伸进翼并与芯弹性体组合的弹性体组分,即伸进的弹性体组分,不会被翼组合物包封,而能与芯喂料组合。
图14A、14B和14C示意了一种预并纺丝板组件的纺丝板组件中孔的布置,它适合于制造翼伸进芯的双组分3-翼纤维。参考图14A,喷丝板A包含带有3个直翼孔70的孔,各翼孔有宽度不同的两段,以120°间隔的方式对称分布在喷丝板中心圆孔71的周围。参考图14B,分配板B包含6-翼孔70′,且与以上喷丝板A同轴对准,使每个翼孔70′与喷丝板A上的一个翼孔对准。参考图14C,计量板C包含翼孔70″和中心芯孔71″。计量板C还包含与分配板B的翼孔对准的芯聚合物孔72,分配板B的翼孔与喷丝板A的翼孔并不对准。计量板C与分配板B和喷丝板A对准,使计量翼孔70″与喷丝板翼孔70对准。由板构型如图14A、14B和14C所示的纺丝组件纺成的纤维具有图15所示的翼伸进芯的截面。
                      试验方法
在以上的叙述和以下的实施例中,采用下列试验方法确定报告的各种特性与性能。ASTM是指美国试验与材料协会。
在实施例2-5中所制纤维的拉伸性能(煮炼后伸长、煮炼后收缩率和煮炼后拉伸回复)测定如下。将长丝卷绕在一个54英寸(137cm)卷轴上制成5000旦(5550分特)绞纱。环状绞纱的两侧包括在总旦数中。测量2g重(长度CB)和1000g重(0.2g/旦)(长度LB)起始绞纱的长度。将绞纱放在95℃水中处理30分钟(“煮炼”),测量2g重(长度CA起始)和1000g重(长度LA起始)的起始(煮炼后)长度。对1000g重的测量后,再在30秒后和2小时后测量2g重的附加长度CA30秒与CA2小时。煮炼后的绝对百分收缩率按100×(LB-LA)/LB计算。煮炼后的百分伸长率按100×(LA-CA30秒)/CA30秒计算。煮炼后的百分回复率按100×(LA-CA2小时)/(LA-CA起始)计算。
基础重量是单位面积织物或片材的质量的量度,按ASTM D-3776测定并以g/m2为单位报告,该标准包括于此供参考。
Frazier空气渗透率是在片材两面所述压差作用下通过片材的空气流的量度,按ASTM D 737测量并以m3/min/m2为单位报告,该标准包括于此供参考。
弯曲模量按ASTM D 790方法1步骤B在23℃测定。
可回复伸长率对以下实施例6-8中制造的非织造织物在让织物经过数个编程的伸长率循环后进行测定。将一个非织造样品(1英寸宽×3英寸标距长(2.54×7.62cm))夹持在Instron设备上,以3英寸/分钟(7.62cm/min)的速度拉伸,直到达到目标应变。在达到目标应变时,让十字头反向并以相同速度移到一起以松弛样品上的应力。每个样品以这种方式循环3次,然后停留30秒钟。停留这段时间后,让十字头再次以3英寸/分钟的速度分开,直到能检测到一定的载荷。样品在这一点的长度定义为永久变形,按以下方程计算:
永久变形(%)=100×{(最终长度)-(起始长度)}/(起始长度)
永久变形值为零表示100%可回复伸长率。可回复伸长率定义为(100%-永久变形%)。
为测定样品在永久变形前能承受的伸长率,每个样品都要如上所述进行试验,但要夹持在仪器上并以递增伸长率循环通过该试验。例如,试验样品要在15%伸长率下循环3次,在25%伸长率下循环3次,然后在50%伸长率下循环3次,不要取下样品。在每次循环结束时停留30秒钟后测量永久变形,并以起始未受应力时的长度为基准进行计算。对下列实施例报告累计永久变形。例如,为获得25%伸长率时的永久变形,样品要在15%伸长率下循环3次(停留30秒),再在25%伸长率下循环3次(停留30秒)。报告值是在25%伸长率循环结束时测得的值。
在上述伸长率试验中,记录样品拉伸过程中(加载)和应力松弛过程中(卸载)样品被拉到不同点时所需要的力。记录这两个测量值,作为织物“弹性能力”(回复能力)的指示。在该部分,把25%伸长率第3次循环所测定的值进行比较。对于每个样品要比较在拉伸到25%伸长率的过程中在15%伸长率的力(15%时的加载荷)与在伸长率降为0%过程中在15%伸长率的力(15%时的卸载荷)。
                          实施例
                          实施例1
用图16中所示的预并喷丝板孔形纺成有一个基本圆形的弹性体芯和5个围绕芯对称分布的硬聚合物翼的双组分多翼长丝。图中所示的毛细孔尺寸列于下表1(E和Eφ代表形成翼端的半圆的直径)。
表1喷丝板毛细孔尺寸
            尺寸
  A   0.015英寸(0.038cm)
  A’   0.020英寸(0.051cm)
  B   0.0035英寸(0.0089cm)
  C   0.012英寸(0.30cm)
  D   72°
  E,Eφ   0.0045英寸(0.0114cm)
弹性体芯聚合物是产自杜邦公司的Hytrel3078共聚醚酯树脂(弯曲模量28MPa)。“硬”聚合物是产自Equistar Inc.(Cincinnati,OH)的高密度聚乙烯(HDPE),商品名H-5618 HDPE。Hytrel3078聚合物要在105℃真空烘箱内烘到湿含量低于50ppm。
将这两种聚合物分别挤出并计量到一个含34个纺丝毛细孔分布在两个同心圆上、加热到235℃的纺丝组装件。一叠分配板将这两种聚合物组合成芯-翼构型并喂进喷丝板毛细孔。每孔的产率为1.07g/min。Hytrel3078聚合物占总量的60重量%,而HDPE占40重量%。
用约2m长的横流骤冷区内的冷空气骤冷冷却出自喷丝板的丝束。然后将长丝喂入一组2个直径8英寸(20.3cm)的驱动喂料辊。长丝包在喂料辊上。该辊以698m/min的速度运转并保持30℃的温度。然后将长丝喂至一组两个直径8英寸(20.3cm)的驱动拉伸辊。在拉伸辊上包10圈,该辊以3000m/min的速度运转,温度为30℃。出自拉伸辊的长丝收集在卷轴的硬纸板芯上。34根长丝束的总旦数为110(120分特)。
将每个绕有110旦(120分特)34根长丝的纱线的6个筒子一起解卷,以形成660旦(720分特)丝束。由于HDPE翼聚合物较低的玻璃化转变温度,当它们从芯上解卷下来时,长丝形成一维螺旋形捻度构型而基本上无三维卷曲。将该丝束喂进一台Lummus Fiber Cutter(MarkIII型),把纱线切成1英寸(2.54cm)长。以标准方法调节切线机,以尽量减少切割操作中的丝束断线数。这种纤维在切割操作中不会卷曲。纤维上不涂整理剂,对切割纤维不进行开松工艺步骤。将切好的纤维收集在袋内。
将切好的纤维输送到Rando Webber实验室气流成网机上(40B型)。喂流风扇转速为1700rpm,压力风扇转速为2000rpm,以及真空风扇转速为2000rpm。喂料辊以1.3英尺/min(0.4m/min)运转,将纤维喂入转速为1700rpm的粘皮辊。纤网收集在以5码/min(4.6m/min)运动的凝棉网上。室内湿度控制在55%,以尽量减少成网操作期间的静电作用。在这些工艺条件下所形成纤网的基础重量为约2盎司/码2(68g/m2)。
取一块未凝固纤网送至实验室液压缠结单元,在此处用水喷头凝固该纤网以形成非织造织物。用100目金属筛在两面都缠结该纤网。在第一面上用7个水喷头和200-2000磅/英寸2(1378-13,780kPa)的阶梯式压力谱加工该纤网。在第二面上用7个水喷头以200-1800磅/英寸2(1378-12,400kPa)的阶梯式压力谱加工该纤网。每个水喷条由0.005英寸(0.127mm)的孔以线阵列组成,线孔密度为40孔/英寸(15.7孔/cm)。样品经空气干燥,基础重量为75g/m2,Frazier空气渗透率为425英尺3/min/英尺2(129.5m3/min/m2)。用手将织物拉伸到30%伸长率后,织物表现出90%的瞬时回复率,在30秒钟内基本上达到100%回复率。在织物的所有方向上观察到相同的回复程度。该样品具有类似织物的柔软手感,这是聚乙烯基非织造织物的特性,即没有弹性体基非织造织物典型的似弹性体橡胶手感。
                       实施例2-5
用图13、13A、13B和13D中所示的5-翼型喷丝板和图12中所示的工艺但不用蒸气松弛的方法纺成单丝双组分纱线,它含有一个弹性体芯和5个对称分布在芯周围的翼,芯伸入翼(见图6)。R1/R2(见图2)在约1.35-1.4之间。
翼聚合物是产自杜邦Polimeros LTDA(Camacari,Brazil)的Camacari尼龙6,商品名VISCOSIDADE 3.14 IV,报告的相对粘度为55,以及芯聚合物是Atofina Chemicals(Philadelphia,Pa)提供的Pebax3533SN聚醚嵌段聚酰胺弹性体。翼聚合物含5重量%尼龙12,以促进与芯聚合物的内聚粘结。以420m/min的纺丝速度和3.5倍的拉伸比生产每根单丝25旦(28分特)的长丝并卷绕成线包。长丝在拉伸后涂上一种水分散硅整理剂。芯部占单丝总截面的60体积%。观察到该长丝的煮炼后伸长为101%,煮炼后的绝对收缩率为27.6%,以及煮炼后的回复率为95%。
用标准切割法将长丝切成3.0英寸(7.6cm)或1.5英寸(3.8cm)长。在切割过程中不加热。让短切纤维在热压釜内经受热处理以收缩纤维并激活螺旋形捻度。将双组分3-英寸(7.6cm)长和1.5英寸(3.8cm)长的短切纤维各3磅分别放在布袋内,然后将该袋装纤维放进热压釜在240(116℃)加压蒸气中处理20分钟。然后将袋装纤维放进一个翻滚式干燥机在100℃处理30分钟。加工后,观察到该纤维已收缩到其原长的约一半,即从3英寸(7.6cm)缩到1.3英寸(3.3cm),或从1.5英寸(3.8cm)缩到0.65英寸(1.7cm)长。经热压釜处理过的纤维因热处理而形成螺旋形捻度,观察到纤维翼围绕纤维轴随介入的反转结在交替方向上螺旋扭转。这种纤维没有明显的三维卷曲,即只要低于6%的伸长就能拉直纤维轴。
用手工将经热压釜处理过的纤维基本均匀地喷洒在适合于放进Carver平板压机的图形粘结板表面,形成点粘非织造片材。用Kapton聚酰亚胺薄膜复盖该板,以防纤维熔体粘结在板上。在实施例5中,用50/50重量比的7.6cm和3.8cm热压处理过的短切纤维的共混物。该短切纤维共混物的制备方法是用手工将纤维分散在一起并在一个袋内摇幌该纤维混合物。图形点粘板有9%粘结面积,高0.015英寸(0.4mm)的粘结点0.05英寸×0.05英寸(1.3mm×1.3mm)见方,总共1296个粘结点,粘结点间距为0.11英寸(2.8mm)。用一块也复盖了Kapton聚酰亚胺薄膜的光滑板盖在已铺有短切纤维的图形粘结板上,放进Carver平板压机,用概括在下表2中的条件进行粘结。
                           表2点粘条件
  实施例   粘结温度(℃)   压力磅力   时间(秒)   基础重量(盎司/码2)   热压短纤维长度(cm)
  2   125   500(2.23kN)   120   6(203g/m2)   7.6
  3   175   500(2.23kN)   30   6(203g/m2)   3.8
  4   150   500(2.23kN)   30   8.2(278g/m2)   3.8
  5   150   500(2.23kN)   15   4.8(163g/m2)   7.6/3.8(50/50)
业已观察到,从松弛构型的双组分预收缩短切纤维形成纤网的热点粘法是获得高伸长率、具有干燥手感织物的手段。已发现该5-翼双组分纤维是通过其能熔化流动形成点粘的可熔芯自粘结的,而在粘结点之间的纤维保持其预粘结弹性特点。纤维-纤维间的粘结足以保持织物的整体性,即使将样品织物从热粘后粘得非常结实的Kapton片上撕下来。压制后样品表现出干燥织物状手感和良好的弹性伸长/回复性。已经观察到过度粘结或粘结面积太大都会降低可下垂性,更具薄膜状手感。观察到样品是薄而非膨松的,且因此而具有优化的dpf、切割长度和铺排结构,有可能宜作薄的外套织物。
                         实施例6-7
这两个实施例描述从双组分纤维制造手工样品的方法,所述纤维包含一个弹性体共聚醚酯芯和多个硬共聚醚酯翼。
用图12所示的设备从含有10个毛细孔的预并喷丝板纺成含有一个基本上如图2所示的对称6-翼截面的双组分连续长丝,以形成每根含10根长丝的纱线。预并喷丝板组件包含图13A-E所示的一叠板,其中喷丝板、分配板和计量板基本上如图13A-13C所示。喷丝板有10个孔,每孔有6个翼,围绕对称中心按60°对称分布,用U.S.专利号5,168,143所述的方法形成。如图13A所示,每个翼孔是直的,其长轴中心线通过对称中心,从翼端到喷丝板中心圆孔2(直径0.008英寸)的圆周的长度为0.0233英寸,圆孔半径的原点与对称中心相同。在喷丝板毛细孔入口处无埋头孔。从端点到0.010英寸翼长处宽为0.0035英寸;其余0.0133英寸长的宽为0.0024英寸。每个翼端是以端宽一半为半径的半圆。
弹性体芯聚合物是产自杜邦公司的Hytrel3078共聚醚酯(弯曲模量28MPa),硬翼聚合物也是产自杜邦公司的Hytrel7246共聚醚酯(弯曲模量570MPa)。纤维包含50重量%芯聚合物和50重量%翼聚合物。聚合物在255℃用下表3内所列的纺丝条件挤出。空气骤冷后,涂布纺丝整理剂(DY-19(K3053),产自Gouston Technologies ofMonroe,NC,用10%的浓度,涂布速度1cm3/min)。长丝经拉伸后不做蒸气处理。
                              表3
  实施例   拉伸比   每根单丝的旦数   流率(g/min/孔)   喂料辊速度(m/min)   拉伸辊速度(m/min)
  6   4.2   5.4   0.54   380   1600
  7   3.6   2.9   0.90   444   1600
从筒子上顺长度方向分开纤维,用手工以约90°正交铺层形成纤网。从每一种纱线样品形成2张纤网。由实施例6的纤维形成的纤网的平均基础重量约5.9盎司/码2,而由实施例7的纤维形成的纤网的基础重量为约4.1盎司/码2。纤网在粘结前先在100℃处理10分钟,以激活螺旋形捻度。纤网用加热压延辊以5.2m/min的线速度进行热点粘结。下辊是一个光滑金属辊,上辊有一种产生约34%粘结面积的方块图形。粘结条件概括在下表4中。粘结好的织物可下垂并具有柔软的非橡胶状手感以及良好的可回复伸长率,即使拉伸到50%。
可回复伸长率的测量方法是让织物通过数个编程的伸长率循环,如以上试验方法所述。累积永久变形报告在下表4中。例如,为了获得表4中报告的25%的值,样品要在15%经受3次循环(停留30秒),再在25%经受3次循环(再停留30秒)。所报告的值是在25%循环结束时的测量值。用分别在实施例6和7中制备的两个样品测量两个不同方向一沿纤维轴向(实施例6a和7a)和与两个纤维轴成45°的方向上(实施例6b和7b)的累积永久变形。
              表4非织造织物的永久变形
  实施例   粘结温度(℃)   粘结压力(磅/线英寸)   3次循环后的累积永久变形(%)
  15%   25%   50%
  6a   155   400   2.1   2.4   6.3
  6b   155   400   4.6   4.6   7.0
  7a   175   1900   1.4   3.4   10.6
  7b   175   1900   1.3   2.6   8.4
回复能力按前述方法测量并报告在下表5内。
                   表5回复能力
  实施例   第3次循环中在15%的加载力(磅)   第3次循环中在15%的卸载力(磅)
  6a   0.29   0.22
  6b   0.07   0.05
  7a   0.90   0.59
  7b   0.23   0.16
                     实施例8
用图16所示的喷丝板孔型纺成双组分多翼纺粘长丝,该长丝有一个弹性体圆芯和5个对称分布在芯周围的翼。毛细孔尺寸示于表1。喷丝板毛细孔的长度为0.025英寸(0.064cm),埋头孔直径为0.125英寸(0.318cm)。所用喷丝板呈矩形,总共有1020个毛细孔(20排,每排51根长丝)。毛细孔分布在504mm×113mm范围内。20排毛细孔分布在喷丝板表面504mm×113mm矩形面积内。
弹性体芯聚合物是产自杜邦公司的Hytrel3078共聚醚酯树脂(弯曲模量28MPa)。“硬”翼聚合物是Hytrel7246共聚醚酯树脂(弯曲模量570MPa),也产自杜邦公司。Hytrel3078和Hytrel7246聚合物在105℃立式料斗干燥器内烘干。纺丝时两种聚合物的湿含量都低于50ppm。
将这两种聚合物分别挤出并计量到上述有1020毛细孔的纺丝组装件。该纺丝组装件的温度保持在265℃。一叠分配板将两种聚合物组合成芯-翼构型并喂进喷丝毛细孔。每孔的聚合物总产率为1.00g/min。Hytrel3078芯聚合物占该产率中的60重量%,而Hytrel7246聚合物占该总产率的40重量%。
出自喷丝板的长丝要在一个约18.5英寸(47cm)长的同向骤冷区内用冷却空气骤冷(12℃)冷却。然后将长丝帘拉过一套如图17所示的6个拉伸辊。2个换向辊17a和17b用来便于拉伸。所有辊(6个拉伸辊和2个换向辊)都保持在室温(约26℃)。2个换向辊的表面直径为6.50英寸。6个拉伸辊的表面直径为9.25英寸(23.5cm)。8个辊的表面速度如下:
换向辊17a:450m/min
拉伸辊17c:550m/min
拉伸辊17d:700m/min
拉伸辊17e:800m/min
拉伸辊17f:1600m/min
拉伸辊17g:1750m/min
拉伸辊17h:1900m/min
换向辊17b:2050m/min
出自第二个换向辊17b的纤维要喂至一个展宽喷丝板整个宽度的狭缝吸纤器喷咀18。将压力为40psig的压缩空气输进该喷咀。出自狭缝喷头的长丝帘被收集在一个移动的金属线带上。在移动带下方施以真空以便固定带上的长丝。将长丝收集在聚酯导布片上并卷绕在非粘结辊的绕线筒上。带速要调节到使形成织物的基础重量为105g/m2
该样品具有良好的织物状柔软手感,这是“硬”或半结晶聚合物的特性;也就是说,该样品没有橡胶状弹性体手感。
将该手工样品从纺粘纤网中心切开并离线粘结。显微镜观察揭示4个翼是硬Hytrel聚合物,而第5个翼是用来形成芯的弹性体Hytrel聚合物。用下表6所示的条件在一个点粘压延辊上将这些样品以26m/min的线速度粘结。压延辊有一个光滑金属下辊和一个十字棒图形复盖29%面积的上辊。
热处理激活这些纤维中的螺旋形捻度。由于在点粘过程中非织造样品要暴露在热中,该实施例的实施方式要比较该工艺中不同点的加热作用。在粘结前将纤网加热到100℃、不另外加热或粘结后再加热到100℃,如下表6所示。
                  表6粘结条件
  处理   基础重量(盎司/码2)   粘结温度(℃)   粘结压力(pli)
  实施例8A   热/粘结   7.6   165   400
  实施例8B   仅粘结   5.9   165   400
  实施例8C   粘结/热   6.8   165   400
业已发现所有样品织物在拉伸到它们原长1.5倍后都有较低的永久变形,如表7所示。虽然加热顺序对永久变形几乎没有影响,但测得弹性与回复能力有差别。这一点能从下表8看到,该表比较了拉伸样品(加载)所需的力和伸长率减小时样品所施的回复力。在该表中,我们比较了在25%伸长率试验中的第3次循环期间测得的值。报告了在拉伸到25%伸长率的过程中伸长率达到15%时的力(在15%时的加载荷)和在伸长率降到0%的过程中伸长率达到15%时的力(在15%时的卸载荷)。
               表7纺粘织物的永久变形
  处理   在下列伸长率下3次循环后的累积永久变形
  15%伸长率   25%伸长率   50%伸长率
  实施例8A   热/粘结   2.1   4.6   14.5
  实施例8B   粘结   2.2   5.6   16.9
  实施例8C   粘结/热   1.8   4.3   14.4
               表8回复能力
  处理  第3次循环中加载到15%的力(磅)  第3次循环中卸载到15%的力(磅)
  实施例8A   热/粘结  0.41  0.16
  实施例8B   粘结  0.87  0.26
  实施例8C   粘结/热  0.76  0.30
很显然,来自热点粘结的热量能足以产生弹性织物。粘结前/后所施的热以及粘结条件本身(温度、速度、压力)都能进行优化,以达到不同应用所需的弹性性能范围。

Claims (61)

1.一种包含合成多组分纤维的非织造纤网,所述纤维有一根聚合物轴芯和多个附着在该芯上的聚合物翼,所述翼以基本螺旋形捻度构型沿芯的长度方向延伸,其中所述轴芯包含一种热塑性弹性体聚合物且至少一个翼包含一种其弹性小于所述热塑性弹性体芯聚合物弹性的热塑性聚合物。
2.一种包含合成多组分纤维的非织造纤网,该多组分纤维包含一个轴芯和多个附着在芯上并沿芯长度方向延伸的翼,所述芯包含至少一种热塑性弹性体聚合物以及所述翼包含至少一种可永久拉伸的热塑性非弹性体聚合物。
3.按照权利要求2的非织造纤网,其中所述纤网是一种弹性纤网以及所述翼围绕弹性体芯以螺旋形捻度构型分布。
4.按照权利要求1或3的非织造纤网,其中多组分纤维包含3-8个翼以及翼聚合物与芯聚合物的重量比在约10/90-约70/30范围内。
5.按照权利要求4的非织造纤网,其中多组分纤维有一个对称截面。
6.按照权利要求5的非织造纤网,其中所述纤维基本上具有一维螺旋形捻度。
7.按照权利要求4的非织造纤网,其中多组分纤维有一个不对称截面。
8.按照权利要求7的非织造纤网,其中多组分纤维具有三维卷曲。
9.按照权利要求2或3的非织造纤网,其中非弹性体聚合物选自下列一组:聚酰胺、非弹性体聚烯烃和聚酯,以及弹性体聚合物选自下列一组:聚氨酯、弹性体聚烯烃、聚酯、苯乙烯热塑性弹性体和聚醚酰胺。
10.按照权利要求2或3的非织造纤网,其中弹性体聚合物选自下列一组:乙烯-α-烯烃共聚物、乙烯-醋酸乙烯酯共聚物、乙烯-丙烯酸甲酯共聚物、乙烯-丙烯酸甲酯-丙烯酸三元共聚物、乙烯-丙烯酸共聚物、乙烯-甲基丙烯酸共聚物、苯乙烯/乙烯-丁烯嵌段共聚物、苯乙烯-聚(乙烯-丙烯)-苯乙烯嵌段共聚物、苯乙烯-聚(乙烯-丁烯)-苯乙烯嵌段共聚物、聚(苯乙烯/乙烯-丁烯/苯乙烯)嵌段共聚物和苯乙烯-聚(乙烯-丙烯)-苯乙烯-聚(乙烯-丙烯)嵌段共聚物。
11.按照权利要求9的非织造纤网,其中非弹性体聚合物选自下列一组:a)聚(己二酰六亚甲基二胺)及其与2-甲基五亚甲基二胺的共聚物和b)聚己内酰胺,而弹性体聚合物是聚醚酰胺。
12.按照权利要求9的非织造纤网,其中非弹性体聚合物是一种非弹性体聚酯,而弹性体聚合物是一种弹性体聚酯。
13.按照权利要求12的非织造纤网,其中非弹性体聚酯是一种非弹性体聚醚酯,而弹性体聚酯是一种弹性体聚醚酯。
14.按照权利要求12的非织造纤网,其中非弹性体聚酯选自下列一组:聚对苯二甲酸乙二醇酯、聚对苯二甲酸1,3-丙二醇酯和聚对苯二甲酸1,4-丁二醇酯及它们的共聚物,以及弹性体聚合物是一种弹性体聚醚酯。
15.按照权利要求9的非织造纤网,其中非弹性体聚合物是一种非弹性体聚烯烃,而弹性体聚合物是一种弹性体聚烯烃。
16.按照权利要求9的非织造纤网,其中非弹性体聚合物是一种非弹性体聚烯烃,而弹性体聚合物是一种聚氨酯。
17.按照权利要求1的非织造纤网,其中翼被不等角度分开。
18.按照权利要求7的非织造纤网,其中至少一个翼包含一种不同于至少一个其它翼的聚合物。
19.按照权利要求7的非织造纤网,其中至少一个翼包含一种弹性体聚合物。
20.按照权利要求5的非织造纤网,其中至少两个翼包含一种弹性体聚合物。
21.按照权利要求19的非织造纤网,其中至少一个翼中的弹性体聚合物包含该翼的至少一部分表面。
22.按照权利要求20的非织造纤网,其中至少两个翼中的弹性体聚合物包含至少两个翼的至少一部分表面。
23.按照权利要求19的非织造纤网,其中至少一个翼基本由与芯相同的弹性体聚合物组成。
24.按照权利要求7的非织造纤网,其中至少一个翼具有与至少一个其它翼不同的形状。
25.按照权利要求1或3的非织造纤网,其中芯在其表面上包括一个在翼与芯接触点之间的非弹性体聚合物鞘。
26.按照权利要求1或3的非织造纤网,其中至少一种翼聚合物或芯聚合物伸进另一种聚合物。
27.按照权利要求26的非织造纤网,其中芯的外半径为R1,内半径为R2,以及R1/R2大于约1.2。
28.按照权利要求26的非织造纤网,其中至少一个翼机械锁扣在芯上,使得至少一种聚合物具有至少一个突出部分,该突出部分包括一个较粗的远端段和一个缩颈段,连接至少一种聚合物的远端与其余部分,在其中形成至少一个颈缩部分。
29.按照权利要求27的非织造纤网,其中每个翼都机械锁扣在芯上。
30.按照权利要求1-3中任何一项的非织造纤网,它还包含第二纤维。
31.按照权利要求30的非织造纤网,其中第二纤维是单组分纤维。
32.按照权利要求31的非织造纤网,其中第二纤维选自聚酯纤维与聚烯烃纤维。
33.按照权利要求1或3的非织造纤网,其中多组分纤维是连续长丝。
34.按照权利要求33的非织造纤网,其中多组分纤维是纺粘长丝。
35.按照权利要求1或3的非织造纤网,其中多组分纤维是短纤维。
36.按照权利要求1或3的非织造纤网,其中弹性体芯聚合物的弯曲模量小于约96,500kPa。
37.按照权利要求36的非织造纤网,其中弹性体芯聚合物的弯曲模量小于约58,600kPa。
38.按照权利要求1的非织造纤网,其中弹性体芯聚合物的弯曲模量小于约58,600kPa,且至少一个翼包含一种弯曲模量至少58,600kPa的弹性体聚合物。
39.按照权利要求38的非织造纤网,其中至少一个翼包含一种弯曲模量在58,600kPa与约96,500kPa之间的弹性体聚合物。
40.按照权利要求39的非织造纤网,其中至少一个翼包含一种弯曲模量约82,700kPa-96,500kPa的弹性体聚合物。
41.按照权利要求31的非织造纤网,其中单组分纤维基本上由非弹性体聚合物组成。
42.按照权利要求1-3中任何一项的非织造纤网,其中该非织造纤网是一种粘结纤网。
43.按照权利要求42的粘结非织造纤网,其中所述纤网用选自下列一组的方法粘结:热点粘结、超声粘结、气流粘结、树脂粘结、液压针刺和机械针刺。
44.按照权利要求1或3的非织造纤网,其中螺旋形捻度基本上是周向的。
45.按照权利要求1或3的非织造纤网,其中螺旋形捻度基本上是非周向的。
46.一种形成弹性非织造纤网的方法,该方法包含将权利要求2的纤网进行加热的这一步骤。
47.按照权利要求46的方法,其中非织造纤网包含多组分纤维与第二纤维的共混物。
48.按照权利要求47的方法,其中第二纤维包含单组分纤维。
49.按照权利要求48的方法,其中单组分纤维基本上由一种非弹性体聚合物组成。
50.按照权利要求1-3中任何一项的非织造纤网,其中轴芯的截面形状选自下列一组:基本圆形、椭圆形和多边形。
51.按照权利要求50的非织造纤网,其中轴芯基本上是圆形。
52.按照权利要求50的非织造纤网,其中轴芯基本上是多边形。
53.一种形成非织造纤网的方法,包含下列步骤:
熔纺许多连续多组分长丝,长丝包含一个弹性体芯组分和多个附着在芯上并沿芯长度方向基本连续延伸的非弹性体可永久拉伸翼组分;
在一个骤冷区用一种气体使长丝骤冷;
让长丝通过一个气体喷咀,喷射气体提供拉伸长丝的拉伸张力;以及
让长丝沉积在位于气体喷咀以下的移动收集器表面,以形成多组分长丝的非织造纤网。
54.按照权利要求53的方法,其中喷射气体要加热到在长丝沉积在收集器表面上之前足以使多组分长丝形成基本螺旋形捻度构型的温度。
55.一种形成非织造纤网的方法,包含下列步骤:
熔纺许多连续多组分长丝,长丝包含一个弹性体芯组分和多个附着在芯上并沿芯长度方向基本连续延伸的非弹性体可永久拉伸的翼组分;
在一个骤冷区用一种气体使该长丝骤冷;
让长丝以单圈上下交替地通过至少两个S形喂料辊;
让长丝以单圈上下交替地通过至少两个S形拉伸辊,拉伸辊旋转的表面速度大于喂料辊的表面速度,使得长丝在喂料辊与拉伸辊之间被拉伸;
让拉伸后的长丝通过一个气体喷咀;以及
让拉伸后的长丝沉积在位于气体喷咀下面的移动收集器表面,以形成多组分长丝的非织造纤网。
56.按照权利要求55的方法,其中喂料辊的温度维持在约25℃-约110℃之间。
57.按照权利要求55的方法,其中拉伸辊要加热到约60℃-约120℃之间的温度。
58.按照权利要求55的方法,其中喷射气体要加热到在长丝沉积到收集器表面之前足以使多组分长丝形成基本螺旋形捻度构型的温度。
59.按照权利要求53或55的方法,还包含以下一个步骤:将非织造纤网加热到足以使长丝形成基本螺旋形捻度构型的温度。
60.按照权利要求59的方法,还包含以下一个步骤:在纤网已被加热到使长丝形成基本螺旋形捻度构型之后将该非织造纤网粘结。
61.按照权利要求59的方法,还包含在加热纤网之前将非织造纤网粘结的步骤。
CNB028190610A 2001-09-28 2002-09-27 可拉伸非织造纤网及其制造方法 Expired - Fee Related CN1285779C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US32562401P 2001-09-28 2001-09-28
US60/325,624 2001-09-28
US10/256,626 2002-09-27
US10/256,626 US8093161B2 (en) 2001-09-28 2002-09-27 Stretchable nonwoven web and method therefor

Publications (2)

Publication Number Publication Date
CN1561412A CN1561412A (zh) 2005-01-05
CN1285779C true CN1285779C (zh) 2006-11-22

Family

ID=26945493

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028190610A Expired - Fee Related CN1285779C (zh) 2001-09-28 2002-09-27 可拉伸非织造纤网及其制造方法

Country Status (8)

Country Link
US (1) US8093161B2 (zh)
EP (1) EP1430170B1 (zh)
JP (1) JP4486816B2 (zh)
CN (1) CN1285779C (zh)
CA (1) CA2458746C (zh)
DE (1) DE60227390D1 (zh)
HK (1) HK1072622A1 (zh)
WO (1) WO2003027366A1 (zh)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100351742B1 (en) * 2001-10-10 2002-09-05 Hosung Chemax Co Ltd Molded article comprising thermoplastic polyurethane consisting of ether-containing polyester polyol
US7036197B2 (en) * 2001-12-21 2006-05-02 Invista North America S.A.R.L. Stretchable multiple-component nonwoven fabrics and methods for preparing
CA2503049A1 (en) * 2002-10-24 2004-05-06 Advanced Design Concept Gmbh Elastomeric multicomponent fibers, nonwoven webs and nonwoven fabrics
JP2005029924A (ja) * 2003-07-07 2005-02-03 E I Du Pont De Nemours & Co 気候保護用複合生地から作られた衣服
ATE459738T1 (de) 2003-07-09 2010-03-15 Dow Global Technologies Inc Fasern aus blockcopolymer
BRPI0413214A (pt) * 2003-08-22 2006-10-03 Advanced Design Concept Gmbh composto de filme não tecido, totalmente elástico
US7910208B2 (en) 2004-03-03 2011-03-22 Kraton Polymers U.S. Llc Elastomeric bicomponent fibers comprising block copolymers having high flow
US20060066000A1 (en) * 2004-09-27 2006-03-30 Tyco Healthcare Retail Services, Ag Tow-based wipes
US20060258995A1 (en) * 2004-10-20 2006-11-16 Pendharkar Sanyog M Method for making a reinforced absorbable multilayered fabric for use in medical devices
WO2006044881A2 (en) * 2004-10-20 2006-04-27 Ethicon, Inc. A reinforced absorbable multilayered fabric for use in medical devices and method of manufacture
US9358318B2 (en) 2004-10-20 2016-06-07 Ethicon, Inc. Method of making a reinforced absorbable multilayered hemostatic wound dressing
US20060257457A1 (en) * 2004-10-20 2006-11-16 Gorman Anne J Method for making a reinforced absorbable multilayered hemostatic wound dressing
EP2837393A1 (en) * 2004-10-20 2015-02-18 Ethicon, Inc. Absorbable hemostat
US8052666B2 (en) 2004-12-30 2011-11-08 Kimberly-Clark Worldwide, Inc. Fastening system having elastomeric engaging elements and disposable absorbent article made therewith
TW200639287A (en) * 2005-03-09 2006-11-16 Kao Corp Nonwoven fabric
DE102005016246B4 (de) * 2005-04-08 2009-12-31 Sandler Ag Elastischer Verbundvliesstoff und Verfahren zu dessen Herstellung
US20070055015A1 (en) * 2005-09-02 2007-03-08 Kraton Polymers U.S. Llc Elastomeric fibers comprising controlled distribution block copolymers
DE102006045616B3 (de) * 2006-09-25 2008-02-21 Carl Freudenberg Kg Elastischer Vliesstoff und Verfahren zu dessen Herstellung
JP5037964B2 (ja) * 2007-02-13 2012-10-03 Esファイバービジョンズ株式会社 湿式不織布用繊維
KR101577473B1 (ko) * 2007-12-14 2015-12-14 쓰리엠 이노베이티브 프로퍼티즈 컴파니 다성분 섬유
EP2347043B1 (en) * 2008-10-17 2018-11-21 Invista Technologies S.à.r.l. Bicomponent spandex
DK2338928T3 (da) * 2009-12-17 2012-01-30 Ems Patent Ag Bindefiber til fastgørelse af flade materialer, der indeholder naturfibre
WO2012015908A2 (en) * 2010-07-30 2012-02-02 Millipore Corporation Chromatography media and method
US9394637B2 (en) 2012-12-13 2016-07-19 Jacob Holm & Sons Ag Method for production of a hydroentangled airlaid web and products obtained therefrom
TWI495770B (zh) * 2012-12-19 2015-08-11 Taiwan Textile Res Inst 熱變形聚酯不織布的製造方法
US9284663B2 (en) * 2013-01-22 2016-03-15 Allasso Industries, Inc. Articles containing woven or non-woven ultra-high surface area macro polymeric fibers
US10619268B2 (en) 2013-11-13 2020-04-14 Illinois Tool Works, Inc. Metal detectable fiber and articles formed from the same
CN105980643B (zh) 2014-02-04 2020-03-27 古普里特·辛格·桑德哈 具有防滑性能的合成纤维织物及其制造方法
US10753022B2 (en) 2014-07-25 2020-08-25 Illinois Tool Works, Inc. Particle-filled fiber and articles formed from the same
US11542634B2 (en) 2014-07-25 2023-01-03 Illinois Tool Works Inc. Particle-filled fiber and articles formed from the same
JP6652554B2 (ja) 2014-09-02 2020-02-26 イー・エム・デイー・ミリポア・コーポレイシヨン ナノフィブリル化表面特徴を有する高表面積繊維媒体
KR102162753B1 (ko) 2014-12-08 2020-10-07 이엠디 밀리포어 코포레이션 혼합층 이온 교환 흡착제
CN105063847B (zh) * 2015-08-11 2016-03-30 福建省百凯弹性织造有限公司 一种具有收纳空间的织带
TWI545332B (zh) * 2015-09-10 2016-08-11 旺玖科技股份有限公司 電磁阻抗感測元件及其製作方法
US10180415B2 (en) * 2015-09-15 2019-01-15 Illinois Tool Works Inc. Scrim substrate material with functional detectable additives for use with nonwoven fabric and composite material
CN106498583A (zh) * 2016-12-05 2017-03-15 华南理工大学 一种自卷曲尼龙长丝及其制备方法
US11642249B2 (en) 2016-12-20 2023-05-09 The Procter & Gamble Company Methods and apparatuses for making elastomeric laminates with elastic strands provided with a spin finish
US10682795B2 (en) * 2017-04-20 2020-06-16 Freudenberg Performance Materials Lp High modulus spunbond
US11925537B2 (en) 2017-09-01 2024-03-12 The Procter & Gamble Company Beamed elastomeric laminate structure, fit, and texture
CN114272019B (zh) 2017-09-01 2023-10-10 宝洁公司 制备弹性体层合物的方法和设备
US11147718B2 (en) 2017-09-01 2021-10-19 The Procter & Gamble Company Beamed elastomeric laminate structure, fit, and texture
US11547613B2 (en) 2017-12-05 2023-01-10 The Procter & Gamble Company Stretch laminate with beamed elastics and formed nonwoven layer
US10947664B2 (en) 2018-02-19 2021-03-16 Illinois Tool Works Inc. Metal detectable scouring pad
EP3810057A1 (en) 2018-06-19 2021-04-28 The Procter & Gamble Company Absorbent article with function-formed topsheet, and method for manufacturing
US10663410B2 (en) * 2018-08-31 2020-05-26 Rohde & Schwarz Gmbh & Co. Kg Method and system for determining a permittivity of a substance layer
CN113166988B (zh) 2018-11-30 2023-04-07 宝洁公司 形成柔软且蓬松的非织造纤维网的方法
EP3887584B1 (en) 2018-11-30 2022-08-24 The Procter & Gamble Company Methods for producing through-fluid bonded nonwoven webs
US11819393B2 (en) 2019-06-19 2023-11-21 The Procter & Gamble Company Absorbent article with function-formed topsheet, and method for manufacturing
WO2021178340A1 (en) 2020-03-04 2021-09-10 The Procter & Gamble Company Methods and apparatuses for making elastomeric laminates with elastic strands unwound from individual spools

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017686A (en) * 1957-08-01 1962-01-23 Du Pont Two component convoluted filaments
NL95779C (zh) * 1958-03-29
NL133639C (zh) * 1964-09-26
US3418200A (en) * 1964-11-27 1968-12-24 Du Pont Splittable composite filament
GB1140463A (en) * 1965-07-02 1969-01-22 Ici Ltd Block polyester polyamides
US3488975A (en) 1966-10-26 1970-01-13 Honeywell Inc Refrigeration flow controller employing a vortex amplifier
FR2273021B1 (zh) * 1974-05-31 1977-03-11 Ato Chimie
JPS5623503A (en) * 1979-08-02 1981-03-05 Toshiba Corp Supercharger
JPS57205520A (en) * 1981-06-05 1982-12-16 Teijin Ltd Conjugate fiber
US4385886A (en) 1982-01-21 1983-05-31 E. I. Du Pont De Nemours And Company Spinneret plate
US4663220A (en) * 1985-07-30 1987-05-05 Kimberly-Clark Corporation Polyolefin-containing extrudable compositions and methods for their formation into elastomeric products including microfibers
JPS62170509A (ja) * 1986-01-20 1987-07-27 Teijin Ltd 伸縮性合成繊維糸条およびその製造方法
US4741949A (en) * 1986-10-15 1988-05-03 Kimberly-Clark Corporation Elastic polyetherester nonwoven web
JPH01250412A (ja) * 1988-03-31 1989-10-05 Mitsubishi Rayon Co Ltd 分割マルチ繊維
US4981868A (en) 1989-07-25 1991-01-01 Merrell Dow Pharmaceutical Pharmaceutically active 3-heteroaryl-2-fluoro-1-olefins
JP2842905B2 (ja) * 1989-12-01 1999-01-06 帝人株式会社 多葉断面弾性フィラメント
US5168143A (en) * 1990-01-29 1992-12-01 E. I. Du Pont De Nemours And Company Method for laser cutting metal plates
US5093422A (en) * 1990-04-23 1992-03-03 Shell Oil Company Low stress relaxation extrudable elastomeric composition
US5352518A (en) * 1990-06-22 1994-10-04 Kanebo, Ltd. Composite elastic filament with rough surface, production thereof, and textile structure comprising the same
US5997989A (en) * 1992-02-03 1999-12-07 Bba Nonwovens Simpsonville, Inc. Elastic nonwoven webs and method of making same
TW307801B (zh) * 1992-03-19 1997-06-11 Minnesota Mining & Mfg
US5332613A (en) * 1993-06-09 1994-07-26 Kimberly-Clark Corporation High performance elastomeric nonwoven fibrous webs
US6143842A (en) * 1993-08-05 2000-11-07 Huntsman Polymers Corporation Elastomeric polyolefins production and recovery
US6352948B1 (en) * 1995-06-07 2002-03-05 Kimberly-Clark Worldwide, Inc. Fine fiber composite web laminates
JP3888709B2 (ja) * 1996-04-18 2007-03-07 花王株式会社 弾性複合繊維及び不織布
JPH09300504A (ja) * 1996-05-16 1997-11-25 Kao Corp 透湿性複合シート及びそれを用いた吸収性物品
US5780156A (en) * 1996-10-03 1998-07-14 Basf Corporation Biocomponet fibers having distinct crystaline and amorphous polymer domains and method making same
US6225243B1 (en) * 1998-08-03 2001-05-01 Bba Nonwovens Simpsonville, Inc. Elastic nonwoven fabric prepared from bi-component filaments
US6454989B1 (en) * 1998-11-12 2002-09-24 Kimberly-Clark Worldwide, Inc. Process of making a crimped multicomponent fiber web
US6312824B1 (en) 1999-08-27 2001-11-06 E. I. Du Pont De Nemours And Company Copolyester elastomer compositions and fusion bonded articles
FR2801612B1 (fr) * 1999-11-29 2002-08-30 Aplix Sa Fibre a ame elastique et tissu non tisse elastique
US20030077444A1 (en) * 2001-05-10 2003-04-24 The Procter & Gamble Company Multicomponent fibers comprising starch and polymers

Also Published As

Publication number Publication date
CA2458746C (en) 2010-10-26
CN1561412A (zh) 2005-01-05
EP1430170A1 (en) 2004-06-23
EP1430170B1 (en) 2008-07-02
CA2458746A1 (en) 2003-04-03
WO2003027366A1 (en) 2003-04-03
US20030171052A1 (en) 2003-09-11
HK1072622A1 (en) 2005-09-02
DE60227390D1 (de) 2008-08-14
JP2005504183A (ja) 2005-02-10
US8093161B2 (en) 2012-01-10
JP4486816B2 (ja) 2010-06-23

Similar Documents

Publication Publication Date Title
CN1285779C (zh) 可拉伸非织造纤网及其制造方法
AU613735B2 (en) Melt-bondable fibers for use in nonwoven web
CN100419144C (zh) 具有潜在三维卷曲性能的机器卷曲的合成纤维及其生产方法
TW577945B (en) Hetero-composite-composite yarn, fabrics thereof and methods of making
US20080040906A1 (en) Adhesive core chenille yarns and fabrics and materials formed therefrom
JPH0120249B2 (zh)
JP2003268667A (ja) 多成分スパンボンド・ウエッブおよびその積層品
EP1377698A1 (en) Extensible fibers and nonwovens made from large denier splittable fibers
US20120156461A1 (en) Bicomponent spunbond nonwoven web
CN104619900A (zh) 使用聚丙交酯树脂共混物制造非织造织物的方法
WO2007091665A1 (ja) エアレイド不織布用ポリエステル繊維の製造方法
CN101200814B (zh) 具有潜在三维卷曲性能的机器卷曲的合成纤维及其生产方法
JP2920567B2 (ja) 二成分繊維の製造法
EP1074644A1 (en) Resilient multicomponent fibers and fabrics formed of the same
JPH0434058A (ja) 極細短繊維不織布の製造方法
US20060234588A1 (en) Improved abrasion resistance of nonwovens
JP2013155462A (ja) 熱可塑性エラストマーからなるエアレイド不織布用繊維およびエアレイド不織布
JP5074271B2 (ja) 長繊維不織布
JP4791212B2 (ja) 分割型複合短繊維及び短繊維不織布
JPH10245720A (ja) 分割型複合繊維及びそれを用いた布帛
JP2000129538A (ja) 分割型複合繊維およびこれからなる不織布
JP4704216B2 (ja) 分割型複合短繊維及び短繊維不織布
JP2019203209A (ja) 乾式不織布用極細繊維
JP4783175B2 (ja) 分割型複合短繊維及び短繊維不織布
WO2023112850A1 (ja) ポリプロピレン短繊維

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1072622

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: REINWEST TECHNOLOGY CO.,LTD.

Free format text: FORMER OWNER: E. I. DU PONT DE NEMOURS AND CO.

Effective date: 20080314

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20080314

Address after: Zurich Switzerland

Patentee after: INVISTA TECHNOLOGIES S.A.R.L.

Address before: Wilmington, Delaware, USA

Patentee before: E. I. du Pont de Nemours and Co.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061122

Termination date: 20160927