CN1280826A - 咯萘啶在制备抗肿瘤药物和逆转肿瘤多药耐药性的药物中的应用 - Google Patents
咯萘啶在制备抗肿瘤药物和逆转肿瘤多药耐药性的药物中的应用 Download PDFInfo
- Publication number
- CN1280826A CN1280826A CN 99109849 CN99109849A CN1280826A CN 1280826 A CN1280826 A CN 1280826A CN 99109849 CN99109849 CN 99109849 CN 99109849 A CN99109849 A CN 99109849A CN 1280826 A CN1280826 A CN 1280826A
- Authority
- CN
- China
- Prior art keywords
- pnd
- cell
- adr
- tumor
- medicine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本发明提供了咯萘啶(PND)在制备抗肿瘤药物和逆转肿瘤多药耐药性的药物中的应用。
Description
本发明涉及咯萘啶的新用途,特别是涉及咯萘啶在制备抗肿瘤药物和逆转肿瘤多药耐药性的药物中的应用。
肿瘤患者死亡率居高不下,其中不容忽视的一个重要因素就是产生肿瘤耐药,使患者对化疗药物不敏感,导致化疗失败。本申请的发明人多年来一直致力于逆转肿瘤多药耐药性(multidrug resistent,MDR)的研究,已发现具有不同程度逆转活性的药物有十多种,如塞庚定、奎宁、三哌喹、干扰素(INF-a)、补骨脂素、异补骨脂素、苦参碱、氧化苦参碱、和粉防已碱等等,但逆转活性均不及已被用于临床逆转MDR的环孢环孢菌素A(CsA)和异搏啶(VPL),而严重的心血管系统毒性和的严重免疫抑制、肾毒性及中枢神经系统毒性又妨碍了它们的临床应用。因而,寻找更为安全有效的MDR逆转剂,并使其尽早应用于临床仍然是我们面临的重要课题。
肿瘤耐药是当今肿瘤治疗中的一大难题,也是国内外学者研究的热点。在过去二十多年里,已发现肿瘤对化疗耐药的机制有很多,其中mdrl基因及其编码糖蛋白Pgp的过度表达是与MDR密切相关的一种机制,具有能量依赖性“药泵”功能,与抗肿瘤药物结合,同时其核苷酸位点连上ATP,ATP水解后释放的能量使药物排出细胞外,致使细胞内药物浓度减少,产生耐药。由于产生耐药的药物,如:蒽环类、生物碱类(长春新碱,高三尖山等)都是白血病、淋巴瘤及肺癌、乳腺癌等实体瘤的最为有效的药物,因而,逆转剂的应用,是克服肿瘤耐药,提高化疗疗效的一种重要手段。目前,体外证实很多药物能够逆转MDR,而且其中的CsA和VPL已经应用于临床。但严重的毒副作用限制了它们的使用。因此,寻找高效低毒的MDR逆转剂成为我们迫切需要攻克的难题。
本发明的目的就是要寻找一种抗肿瘤药物。
本发明的另一个目的是寻找一种能够逆转肿瘤多药耐药性的药物。
咯萘啶(pyronaridine,PND),其化学名为2-甲氧基-7-氯-10-[3,5-双(吡咯烷基-1-甲基)-4-羟基苯基-氨基]苯并[b]-1,5-二氮杂萘。其较早发表于药学学报1979 Dec;14(12):736-7。
本发明提供咯萘啶及其盐在制备抗肿瘤药物中的应用。
本发明进一步提供咯萘啶及其盐在制备逆转肿瘤多药耐药性的药物中的应用。
研究结果是PND对人白血病细胞K562、H160及人实体瘤细胞MCF-7、KB、A549细胞均具有抑制作用,表明PND具有广泛的体外抑瘤活性,可制成抗肿瘤药物。有关PND对肿瘤细胞多药耐药性的研究表明:PND对耐药细胞仍显示出与敏感细胞相似的细胞毒作用;在低于IC50剂量下,PND能显著提高阿霉素(Doxorubicine,ADR)对耐药细胞的毒性作用,恢复耐药细胞对ADR的敏感性;PND明显增加ADR在耐药细胞中的蓄积;可提高耐药细胞对Rh123的摄取,减少Rh123的外排;与ADR合用可提高单用ADR诱导细胞凋亡的百分率。研究表明,PND具有广泛的体外抑瘤活性及高效的肿瘤细胞多药耐药性的逆转活性,可以作为MDR逆转剂用于临床。研究表明,咯萘啶可以与其他抗癌药物/放疗或其他生物制剂组合起来作为抗肿瘤药物使用;或者,与其他抗癌药物/放疗或其他生物制剂组合起来作为逆转肿瘤多药耐药性的药物使用。
在现有技术中,K562/A02、MCF-7/ADR和KB/VCR200细胞都是具有MDR表型的多药耐药细胞系,HL60/ADR和A549DDP细胞是具有MRP表型的MDR细胞系。根据本发明的研究结果,提示,即使临床病人因化疗已产生抗药性,仍可用PND来杀灭肿瘤细胞。另外,PND在4.40、3.30、2.20和1.10μM下,逆转K562/A02和MCF-7/ADR倍数达240.5、79.75、17.72、2.26倍和29.68、4.30、2.70、2.84倍。研究还发现,PND能增加ADR在K562/A02和MCF-7/ADR内的蓄积,2.20μM时,使K562/A02细胞内ADR浓度增加13.24倍;进一步研究发现,PND增强耐药细胞对Rh123的摄取,抑制其外排。Rh123是Pgp泵功能指示剂,从我们的结果推测,PND可能是作用于Pgp糖蛋白,使细胞内药物外排减少,从而发挥逆转MDR的作用;同时研究表明PND与ADR联合使用,能增强肿瘤细胞的凋亡,在1.10、2.20和3.3μM剂量下,使K562/A02细胞凋亡百分率由单独使用ADR的2.64%增加到11.69%、19.14%和46.18%,因此,增加耐药细胞凋亡也是PND逆转MDR的机制之一。综上所述,PND体外抑瘤及逆转MDR作用较强,作为MDR逆转剂作用可靠,其作用机制,一方面可能与抑制Pgp表达,或与化疗药物竞争Pgp的结合而抑制Pgp药物外排泵的功能有关;另一方面,可能与增加肿瘤细胞凋亡有关。
作为治疗疟疾药物的PND,其临床常用量iv.3~6mg/kg,甚至可以达到10mg/kg,每天二次计算,最高血药浓度可达50~00μg/ml,远远高于本发明用途的体外最大逆转剂量4.40μM,保证了PND作为MDR逆转剂在临床上的可行性;更为可贵的是,临床资料显示,该药不良反应轻微,只有少数病人出现头痛、恶心、皮疹和神经兴奋等副作用,停药即恢复,从而保证了PND临床使用的安全性;本发明的我们的研究还发现,PND逆转MDR作用强于VPL,显示了PND的高效性。因此,我们认为,PND可能会在临床肿瘤病人的化疗中发挥高效、安全的逆转MDR作用,是一种很有开发前途的MDR逆转剂。
给药途径有口服(磷酸咯萘啶片)和静脉注射(磷酸咯萘啶注射液)两种。
以下是本发明人对咯萘啶抗人体肿瘤细胞及其相应的肿瘤耐药细胞,特别是逆转肿瘤耐药活性及其机制的实验验证。
附图的简要说明如下:
图1显示PND对K562/A02内ADR浓度的影响;
图2显示PND对MCF-7/ADR内ADR浓度的影响;
图3显示PND对MCF-7/ADR细胞摄取Rh123的影响;
图4显示PND对MCF-7/ADR细胞摄取Rh123的影响;
图5A和5B显示加入PND前后细胞内Rh123浓度的变化
实验例
一.材料和方法
1.材料
1.1细胞株:K562和K562/A02、H160和H160/Adr、KB和KB/VCR200、A549和A549/DDP。本室常规培养。
1.2药物及试剂:咯萘啶(PND)(上海寄研所),阿霉素(ADR)(深圳万乐药业有限公司),MTT(Sigma)。
1.3主要仪器:Hitachi 650-60紫外分光光度计,UV-3000荧光分光光度计,Titertek Multiscan酶标仪,流式细胞仪。
2.方法
2.1细胞毒试验:ADR、PND、VPL及MTT均以无菌生理盐水配成相应浓度备用。取对数生长期细胞,接种于96孔微培养板,细胞数为2×104/孔,180μl/孔),在37℃、5%CO2,全湿条件下孵箱中培养12小时后,分组加药,每个浓度设三个平行孔,阴性对照加生理盐水,使终体积为200μl/孔,68小时后,每孔加MTT 20μl(5mg/ml),又于孵箱培养4小时,离心(2000转/分,10分钟),弃上清,每孔加入DMSO150μl,振荡至沉淀完全溶解,在546nm下测每孔光密度(OD)值。抑制率按以下公式计算:抑制率=[对照组OD值-加药组OD值]/对照组OD值×100%。IC50指使细胞存活率减少50%时的药物剂量,根据线性回归方程得出。
2.2肿瘤耐药逆转试验:方法同上。加约组分别为(1)ADR;(2)ADR+PND(4.40μM);(3)ADR+PND(3.30μM);(4)ADR+PND(2.20μM);(5)ADR+PND(1.10μM);(6)ADR+VPL(10μM),阴性对照加生理盐水补齐体积200μl。
2.3荧光分光光度法测定细胞内ADR浓度:利用ADR可产生荧光的特点,通过测定细胞内荧光强弱来反应细胞内ADR浓度的高低。取K562/A02和MCF-7/ADR细胞,用无血清1640洗2次后,使其悬浮于无血清1640液中(5x105/ml),分组加药:(1)ADR(2μM);(2)ADR(2μM)+PND(2.20μM);(3)ADR+VPL(10μM),以不含的细胞悬液作空白。在37C水浴中振荡孵育,于30min、60min、90min取样,用冷生理盐水洗2次后,每份样品加1ml生理盐水,冻存于-20℃冰箱中过夜,取出,待融化后,用细胞破膜仪粉碎细胞,测荧光强度及相应的蛋白浓度,每个样本作平行三份,取其均值,与标准曲线比较,计算每mg蛋白的ADR浓度。
2.3流式细胞仪测定细胞内Rh123:取对数生长期K562/A02和MCF-7/ADR细胞,用冷生理盐水洗2次,以无血清1640调成5×105/ml,加入Rh123(10μM)及PND(2μM),37C水浴60min后,冷生理盐水洗去Rh123,再将样品分为加PND 4.40μM、2.20μM、1.10μM;加VPL 10μM和不加逆转剂,继续孵育60min,冷生理盐水洗2次,流式细胞仪检测细胞内Rh123浓度。
2.4荧光显微镜法观察细胞内Rh123:取对数生长期细胞,冷生理盐水洗2次,分别加入Rh123(10μM)和Rh123(10μM)+PND(2.20μM),37C,30min后,荧光显微镜下观察细胞内Rh123并拍照。
2.5流式细胞仪测定细胞凋亡:取对数生长期K562及K562/A02细胞,调成5×105/ml,加入ADR、PND及ADR+PND,于孵箱中继续培养,分别于24hr和72hr取出,用生理盐水洗2次,加入4C,70%乙醇固定24hr,1000rpm/min离心洗去乙醇,加PI(50μg/ml)染色20min,于流式细胞仪测定细胞凋亡。
2.6统计学处理:组间显著性检验用医学统计软件POMS-03处理。
二.结果
1.PND对人肿瘤细胞抑制作用:
PND对人肿瘤细胞抑制作用见表1。结果显示PND对多种人肿瘤细胞具有抑制作用,其中,对人白血病细胞K562/A02、HL60、和HL60/ADR显示出较实体瘤细胞更强的抑制活性;另外,PND对肿瘤耐药细胞仍具有相同的敏感性,如多药耐药细胞K562/A02、MCF-7/ADR、HL60/ADR、KB/V200对ADR的耐药倍数分别为84.36、47.73、64.63和43.02倍,而对PND耐药倍数几乎等于1(P>0.05)。
表1.PND对人肿瘤细胞的抑制作用(IC50μM)
细胞系 | PND | ADR | CDDP |
SKOV3 | 9.73±0.08 | 0.62±0.09 | |
K562 | 9.14±1.92 | 3.07+0.34 | |
K562/A02 | 5.10+0.70 | 231.25±59.83 | |
MCF-7 | 9.94±1.99 | 77.27±4.65 | |
MCF-7/ADR | 10.98±2.51 | 1.61±1.01 | |
HL60 | 2.22±1.21 | 0.041+0.01 | |
HL60/ADR | 3.96 | 2.65±0.31 | |
KB | 18.66 | 4.51 | |
KB/V200 | 11.64 | 193.91 | |
A549 | 9.93±3.84 | 10.93±1.20 | |
A549DDP | 9.28±1.70 | 81.15±14.80 |
2.PND对肿瘤细胞的逆转MDR作用:
PND对肿瘤细胞的逆转MDR作用见表2。研究发现,PND显著提高ADR对耐药细胞K562/A02和MCF-7/ADR的敏感性,PND在4.40μM时,其响应的逆转倍数分别为240.5和29.68倍,其中对K562/A02细胞逆转后ADR的IC50甚至低于敏感细胞,表明PND不但有逆转作用,还有协同作用;而VPL10μM时,逆转倍数仅为49.05倍和8.84倍,可见PND与现有阳性逆转剂VPL相比,逆转MDR作用更为显著,(P<0.05)。在相同剂量下,PND几乎不影响ADR对敏感细胞的毒性作用,说明PND对多药耐药细胞具有特异性的逆转MDR作用。
表2.PND对多药耐药细胞的逆转效应
细胞系 | VPL 10μM | PND μM | ||||||
4.40 | 3.30 | 2.20 | 1.10 | |||||
K562 | 3.07±0.34 | 1.82±0.08 | 1.86±0.09 | 2.56±0.04 | 2.41±0.39 | 2.69±O.11 | ||
(1.52±0.06) | (1.47±0.07) | (1.16±0.02) | (1.16±0.20) | (1.02±O.04) | ||||
K562/A02 | 231.25±59.83 | 5.10±1.99 | O.96 | 3.24±1.29 | 14.94±6.05 | 89.54±7.08 | ||
(49.05±19.12) | (240.50) | (79.75±3148) | (17.72±7.79) | (2.60±0.22) | ||||
MCF-7 | 1.61±1.01 | 1.23±0.03 | 0.86±0.46 | 1.21±0.07 | 1.36±0.35 | 1.47±2.58 | ||
(1.31±0.03) | (2.16±1.14) | (1.38±0.08) | (1.23±0.34) | (1.12±0.21) | ||||
MCF-7/R | 77.27±2.53 | 8.92±1.80 | 2.6l±0.15 | 22.61±13.2l | 35.58±21.45 | 27.87±6.11 | ||
(8.84±1.78) | (29.68±1.65) | (4.30±2.38) | (2.70±1.40) | (2.84±O.62) |
*以上数据均为加或不加逆转剂ADR的IC50(μM);括号内数据为逆转倍数。
3.PND对细胞内药物浓度的影响:
PND对细胞内药物浓度的影响见图1、2,荧光分光光度法检测细胞内ADR浓度发现,PND能增加耐药细胞内ADR浓度。不加PND组,K562/A02和MCF-7/ADR细胞内ADR浓度为65.03和388.68ng/毫克蛋白,加入PND后,细胞内ADR增高至860.77和595.59 ng/毫克蛋白,特别是对K562/A02细胞达到或超过敏感细胞水平。
4.PND对肿瘤细胞摄取Rh123的作用:
从荧光显微镜观察到,用Rh123(10μM)处理细胞30min后,敏感细胞内荧光很强,而耐药细胞内几乎不显荧光,表明耐药细胞内Rh123几乎为零;在加入PND后,耐药细胞内出现了很强的荧光,恢复到敏感细胞水平,结果见照片。可见PND明显增加耐药肿瘤细胞内Rh123的浓度。流式细胞仪法检测细胞内Rh123也支持上述结果,见图3、4。
5.PND对ADR诱导肿瘤细胞凋亡的影响:
PND对ADR诱导肿瘤细胞凋亡的影响见表3。PND与ADR联合应用,使K562/A02细胞凋亡百分率明显增加。
表3.PND与ADR联合应用诱导细胞凋亡
ADR(10μg/ml) | ADR(10μg/ml)+ | ||||
PND(μM) | 0 | 1.1 | 2.2 | 3.3 | |
细胞凋亡% | 2.64 | 11.69 | 19.14 | 46.18 |
实施例1
取咯萘啶0.1g克,加入淀粉1g,糊精0.5g,10%糊精0.5g及硬脂酸0.005g等,制备成片剂。
实施例2
取咯萘啶80mg,生理盐水加至2ml,灌封于安瓿中,用流通蒸汽100℃30分钟灭菌。制成80mg/2ml的注射液。
Claims (2)
1、咯萘啶及其盐在制备抗肿瘤药物中的应用。
2、咯萘啶及其盐在制备逆转肿瘤多药耐药性的药物中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB991098498A CN1135977C (zh) | 1999-07-19 | 1999-07-19 | 咯萘啶在制备抗肿瘤药物和逆转肿瘤多药耐药性的药物中的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB991098498A CN1135977C (zh) | 1999-07-19 | 1999-07-19 | 咯萘啶在制备抗肿瘤药物和逆转肿瘤多药耐药性的药物中的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1280826A true CN1280826A (zh) | 2001-01-24 |
CN1135977C CN1135977C (zh) | 2004-01-28 |
Family
ID=5274195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB991098498A Expired - Fee Related CN1135977C (zh) | 1999-07-19 | 1999-07-19 | 咯萘啶在制备抗肿瘤药物和逆转肿瘤多药耐药性的药物中的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1135977C (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019244050A1 (en) | 2018-06-19 | 2019-12-26 | Armaceutica, Inc | Bifunctional compositions for the treatment of cancer |
-
1999
- 1999-07-19 CN CNB991098498A patent/CN1135977C/zh not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019244050A1 (en) | 2018-06-19 | 2019-12-26 | Armaceutica, Inc | Bifunctional compositions for the treatment of cancer |
GB2587172A (en) * | 2018-06-19 | 2021-03-17 | Armaceutica Inc | Bifunctional compositions for the treatment of cancer |
CN112672741A (zh) * | 2018-06-19 | 2021-04-16 | 阿玛切蒂卡有限公司 | 用于治疗癌症的双功能组合物 |
EP3793544A4 (en) * | 2018-06-19 | 2021-08-18 | Armaceutica, Inc | BIFUNCTIONAL COMPOSITIONS FOR THE TREATMENT OF CANCER |
GB2587172B (en) * | 2018-06-19 | 2021-09-22 | Armaceutica Inc | Pyronaridine or pharmaceutically acceptable salts thereof for the treatment of cancer |
JP2021528496A (ja) * | 2018-06-19 | 2021-10-21 | アルマスーティカ,インコーポレイテッド | 癌療法のための二機能性組成物 |
JP7510411B2 (ja) | 2018-06-19 | 2024-07-03 | アルマスーティカ,インコーポレイテッド | 癌療法のための二機能性組成物 |
Also Published As
Publication number | Publication date |
---|---|
CN1135977C (zh) | 2004-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1310642C (zh) | 环状聚胺的制药用途 | |
US20180071339A1 (en) | Combination of pharmaceutical preparations for tumor chemotherapy | |
CN106267213A (zh) | 环二核苷酸cGAMP在治疗肿瘤联合用药中的应用 | |
Li et al. | Ultralong circulating choline phosphate liposomal nanomedicines for cascaded chemo-radiotherapy | |
CN1833644A (zh) | 青蒿素及其衍生物二氢青蒿素、蒿甲醚、蒿乙醚、青蒿琥酯在制药中的应用 | |
CN1135977C (zh) | 咯萘啶在制备抗肿瘤药物和逆转肿瘤多药耐药性的药物中的应用 | |
CN117257782A (zh) | 美利曲辛在逆转奥希替尼耐药中的应用 | |
Li et al. | Dual loading of nanoparticles with doxorubicin and icotinib for the synergistic suppression of non-small cell lung cancer | |
CN109419803A (zh) | 细胞自噬抑制剂与阿法替尼药物组合物及其在制备肿瘤增效制剂中的用途 | |
CN109568313B (zh) | 一种抗肿瘤联合用药物及其在制备抗癌药物中的应用 | |
CN102204924A (zh) | 化合物6-O-angeloylplenolin在制药中的应用 | |
CN101032478A (zh) | 雷公藤内酯醇在制备抗消化道肿瘤的药物中的应用 | |
CN104622864A (zh) | 绿原酸在制备预防和治疗原发性皮肤t细胞淋巴癌的药物中的用途 | |
CN114652755A (zh) | 一种灵芝孢子油在制备减轻紫杉醇nk细胞毒性的药物中的应用 | |
CN116139253A (zh) | 一种具有提高免疫力和抗肿瘤以及延长寿命的多肽及其应用 | |
CN112972389A (zh) | 甘草酸纳米颗粒的合成及其在新型冠状病毒肺炎中的联合治疗应用 | |
CN111249298B (zh) | 一种含有马杜霉素和顺铂的抗癌药物组合物 | |
CN110403924A (zh) | 一种治疗皮肤黑色素瘤的药物组合物及其制备方法 | |
CN110063988A (zh) | 一种治疗神经母细胞瘤的药物组合物及其制备方法 | |
CN111084767A (zh) | 阿伐麦布在制备预防或治疗胶质母细胞瘤药物中的应用 | |
CN110693903B (zh) | 一种治疗急性单核细胞白血病的药物及三氧化二砷和双氢青蒿素的应用 | |
CN108721310B (zh) | 一种阿霉素和普萘洛尔复方药物组合物及其用途 | |
CN100346797C (zh) | 一种由冰片和银杏叶提取物组成的复方注射制剂及其制备方法 | |
CN110123825B (zh) | 一种包含去甲氧柔红霉素的药物组合物 | |
CN1823760A (zh) | 青蒿素类药物治疗神经胶质瘤的用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20040128 Termination date: 20100719 |