CN1269387C - 一种约束等离子体的设备和方法 - Google Patents

一种约束等离子体的设备和方法 Download PDF

Info

Publication number
CN1269387C
CN1269387C CNB028077911A CN02807791A CN1269387C CN 1269387 C CN1269387 C CN 1269387C CN B028077911 A CNB028077911 A CN B028077911A CN 02807791 A CN02807791 A CN 02807791A CN 1269387 C CN1269387 C CN 1269387C
Authority
CN
China
Prior art keywords
magnetic field
ion
plasma
field
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028077911A
Other languages
English (en)
Other versions
CN1500371A (zh
Inventor
N·罗斯托克
M·宾德鲍尔
A·克鲁施
H·塔西里
E·加拉特
V·拜斯特里特斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Publication of CN1500371A publication Critical patent/CN1500371A/zh
Application granted granted Critical
Publication of CN1269387C publication Critical patent/CN1269387C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/05Thermonuclear fusion reactors with magnetic or electric plasma confinement
    • G21B1/052Thermonuclear fusion reactors with magnetic or electric plasma confinement reversed field configuration
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/05Thermonuclear fusion reactors with magnetic or electric plasma confinement
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D7/00Arrangements for direct production of electric energy from fusion or fission reactions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/03Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using electrostatic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/10Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied magnetic fields only, e.g. Q-machines, Yin-Yang, base-ball
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/10Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied magnetic fields only, e.g. Q-machines, Yin-Yang, base-ball
    • H05H1/12Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied magnetic fields only, e.g. Q-machines, Yin-Yang, base-ball wherein the containment vessel forms a closed or nearly closed loop
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/10Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied magnetic fields only, e.g. Q-machines, Yin-Yang, base-ball
    • H05H1/14Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied magnetic fields only, e.g. Q-machines, Yin-Yang, base-ball wherein the containment vessel is straight and has magnetic mirrors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/16Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied electric and magnetic fields
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

描述了一种用于容纳等离子体和形成场反向配置(FRC)磁拓扑的系统和方法,其中,把等离子体的离子磁力地容纳在FRC内的稳定、非绝热的轨道中。进一步,把电子静电地容纳在通过调整外加磁场而产生的深能阱中。同时对电子进行静电约束和对离子进行磁约束避免了反常传输,因而促进了电子和离子的经典约束。在该配置中,离子和电子可具有足够的密度和温度,从而一旦发生碰撞,它们就会在核力的作用下聚变到一起,从而释放聚变能量。而且,可与本约束系统和方法一起使用的聚变燃料等离子体并不仅局限于中性燃料本身,而且有利地包括高级燃料。

Description

一种约束等离子体的设备和方法
本发明在政府的支持下、根据海军研究办公室授予的合同No.N00014-99-1-0857而完成。在1992-1993年期间,一些背景研究得到美国能源部的支持。政府拥有本发明的一定权利。
发明领域
本发明总体上涉及等离子体物理领域,具体地说,涉及约束等离子体的方法和装置。为了实现核聚变反应的目的,尤其对等离子体约束感兴趣。
发明背景
聚变是两个轻核结合成一个重核的过程。核聚变过程以快速移动的粒子形式释放出巨大的能量。由于其中包含的质子的原因,原子核是带正电的,因而原子核间存在相互排斥的静电力,或者库仑力。对于要发生聚变的两个核来说,这种排斥势垒必须得到克服,这在两个原子核相互间足够靠近以致于短程核力强到足以克服库仑力并使核聚合时才能发生。原子核的热能提供它们克服库仑势垒所必须的能量,该热能必须非常高。例如,聚变速率在温度至少达到104eV数量级(大致相当于100,000,000开)时可以是可以感知的。聚变反应的速率是温度的函数,它以被称为反应速率的量为特征。例如,D-T反应的反应速率在30KeV和100KeV之间有一个宽峰。
典型的聚变反应包括:
,和
其中,D表示氘,T表示氚,α表示氦核,n表示中子,p表示质子,He表示氦,B11表示硼11。每一方程中括号中的数字表示聚变产物的动能。
上面列出的前两个反应——D-D和D-T反应——是中子的,这意味着它们聚变产物的大部分能量由快速的中子携带。中子反应的缺点在于:(1)快速中子的通量产生大量问题,包括反应堆壁的结构破坏和对大部分结构材料的高量级放射能;和(2)通过把快速中子的热能转变为电能来收集它们的能量,这样的效率非常低(小于30%)。中子反应的优点是:(1)它们的反应速率峰值出相对较低的温度;(2)辐射产生的损失相对较低,因为氘和氚的原子序数为1。
在另外两个方程中的反应物——D-He3和p-B11——被称为高级燃料。不像在中子反应中那样产生快速中子,它们的聚变产物是带电粒子。高级燃料的一个优点是:它们产生的中子少得多,因而受到与它们相关的缺点的影响也较小。在D-He3的情况下,一些快速中子通过二次反应产生,但是这些中子仅占约10%的聚变产物能量。p-B11反应不产生快速中子,尽管的确由二次反应产生慢速中子,但是造成的问题少得多。高级燃料另外的优点是:它们的聚变产物的能量能够被高效地收集,效率最大到90%。在直接的能量转化过程中,它们带电的聚变产物能够慢下来,它们的动能直接转化为电能。
高级燃料也有缺点。例如,高级燃料的原子序数较高(He3为2,B11为5)。因此它们的辐射损失比中子反应中高。另外,使高级燃料发生聚变要困难得多。它们的反应速率峰值出现在高得多的温度下,并且达不到D-T的高反应速率。因而,促使与高级燃料发生聚变反应需要使它们达到一个更高的能态,在该能态下它们的反应速率是很大的。因此,高级燃料必须被保留更长的时间,在这段时间中它们能够达到合适的聚变条件。
等离子体的保留时间为Δt=r2/D,其中r是最小的等离子体尺寸,D是扩散系数。扩散系数的经典值为Dc=αi 2ie,其中αi为离子回旋半径,τie是离子-电子碰撞时间。根据经典扩散系数的扩散被称为经典传输(classical transport)。由于短波长的不稳定性,Bohm扩散系数为DB=(1/16)αi 2Ωi,其中Ωi是离子旋转频率。根据该关系式的扩散称为反常传输(anomalous transport)。对聚变条件来说,DB/Dc=(1/16)Ωiτie≌108,反常传输导致比经典传输短得多的保留时间。该关系通过一个必要条件来确定聚变反应堆中必须有多大的等离子体,该必要条件是:对于一个给定量的等离子体,其保留时间必须比要发生核聚变反应的等离子体的时间长。因此,在聚变反应堆中,经典传输条件是更理想的,它允许更小的初始等离子体。
在早期的等离子体环形约束实验中,观察到了保留时间Δt≌r2/DB。经过最近40年的发展,保留时间增加到Δt≌1000r2/DB。现存的一个聚变反应堆原理是托卡马克(Tokamak)。图5中示出了托卡马克磁场68和典型的粒子轨道66。最近30年来,聚变的工作集中在采用D-T燃料的托卡马克反应堆上。这些工作在国际热核实验反应堆(ITER)(图7)中达到颠峰。采用托卡马克的近期实验建议:经典传输的Δt≌r2/Dc是可能的,在这种情形下,最小等离子体尺寸能够从米级降到厘米级。这些实验包括注入高能射束(50-100KeV),以便把等离子体加热到10-30KeV的温度。参见34 Nuclear Fusion 535(1994),W.Heidbrink和G.J.Sadler。在这些实验中,观察到高能离子束降速并且经典地进行扩散,与此同时,热等离子体继续快速反常扩散。出现这种现象的原因在于:高能离子束具有大回旋半径,因而对小于离子回旋半径的波长(λ<αi)的波动是不敏感的。短波长的波动趋于在一个周期上进行均分,并且因此而抵消。然而,电子具有小得多的回旋半径,因此它们对波动作出响应并且发生反常传输。
由于反常传输,等离子体的最小尺寸必须至少为2.8米。由于该尺寸的原因,ITER被建成高30米、直径30米。这是可行的最小的D-T托卡马克型反应堆。对于高级燃料,例如D-He3和p-B11,托卡马克型反应堆将不得不大得多,因为离子燃料发生核聚变的时间长得多。采用D-T燃料的托卡马克反应堆还有其它的问题:聚变产物能量的大部分能量由14MeV中子携带,由于中子通量的原因,这在几乎所有的建筑材料中造成辐射破坏并且引入反应速率。另外,它们的能量向电能的转换必须是一个热过程,其效率不超过30%。
人们建议的另一个反应堆配置是碰撞束反应堆。在碰撞束反应堆中,离子束轰击背景等离子体。离子束包括比热等离子体能量高得多的离子。在这种类型的反应堆中产生有用的聚变反应是不可行的,因为背景等离子体使离子束减速。现已提出了各种减轻该问题并且最大化核反应数量的建议。
例如,在Jassby等人的专利US4065351中公开了在环形约束系统中产生反向流氘氚碰撞束的方法。在Jassby等人的专利US4057462中,通过注入电磁能来抑制大量均衡等离子体对其中一种离子的阻力作用。环行约束系统被标识为托卡马克。在Rostoker的专利US4894199中,用同样的平均速度在托卡马克、镜或场反向配置(field reversedconfiguration)中注入和捕获氘氚束。存在低密度的冷背景等离子体,单用于捕获这些束。氘氚束发生反应,因为它们具有高温,并且减速主要是通过与注入离子相伴的电子进行的。电子通过离子来加热,在这种情况下减速是最小的。
然而,在这些装置中都没有采用均衡电场。而且,也没有试图去减少反常传输,甚至连考虑都没有。
其它专利考虑了离子的静电约束,并且在某些情况下,也考虑了电子的磁约束。这些专利包括Farnsworth的专利US3258402和US3386883,它们公开了离子的静电约束和电子的惯性约束;Hirsch等人的专利US3530036和Hirsch等人的US3530497,它们与Farnsworth的类似;Limpaecher的专利US4233537,其公开了离子的静电约束和利用多极尖端反射壁的电子的磁约束;Bussard的专利US4826646,其与Limpaecher的专利类似,涉及点尖端。这些专利没有一个考虑电子的静电约束和离子的磁约束。尽管有许多关于离子静电约束的研究方案,但是当离子具备聚变反应堆所需的密度时,这些方案在建立所需的静电场时都没有取得成功。最后,上述的专利都没有讨论场反向配置磁拓扑。
场反向配置(FRC)由海军研究实验办公室于1960年前后在θ收缩实验期间偶然发现。典型的FRC拓扑在附图8和10中示出,在该拓扑中内部磁场反向;FRC内的粒子轨道参见附图11和14。关于FRC,美国和日本已支持过大量研究项目。有这样一篇有关1960-1988年期间FRC研究的原理和实验的综合评论文,参见M.Tuszewski,28 NuclearFusion 2033,(1988)。关于FRC进展的白皮书描述了在1996年的研究以及对未来研究的建议,参见L.C.Steinhauer等人的30 FusionTechnology 116(1996)。到目前为止,在FRC实验中,FRC是通过θ收缩方法形成的。该形成方法的后果是离子和电子分别携带一半的电流,这导致在等离子体中产生可忽略的静电场并且没有静电约束。在这些FRC中的离子和电子被磁力地容纳。在几乎所有的FRC实验中,都假设存在反常传输。参见,例如Tuszewski,1.5.2节的开头,第2072页。
发明概要
为了解决先前的等离子体容纳系统所面临的问题,容纳等离子体的系统和装置在此文得到描述,其中等离子体的离子被磁力地容纳在稳定的大轨道中,并且电子被静电地容纳在能阱中。与先前利用FRC的工作相比,本发明的主要革新在于同时对电子进行静电约束和对离子进行磁约束,这有利于避免反常传输,并且简化电子和离子的经典容纳。在这种配置中,离子可以具有足够的密度和温度,从而当碰撞时在核力的作用下聚变到一起,从而释放聚变能量。
在优选实施例中,等离子体约束系统包括一个室、一个用于在基本上沿原理轴方向上施加磁场的磁场发生器、以及一个包含循环(circulating)离子束的环形等离子体层。环形等离子体束层的离子基本上磁力地容纳在所述室内的轨道中,电子基本上包含在静电能阱内。在一个优选实施例的一个方面,磁场发生器包括一个电流线圈。优选地,该系统进一步包括位于所述室端部附近的镜线圈(mirrorcoil),其用于增强在所述室端部的外加磁场的大小。该系统也可以包括束注入器,用于把中性的离子束注射到外加磁场内,其中该束由于外加磁场产生的力的作用而进入到轨道。在优选实施例的另一方面,该系统形成了一个具有场反向配置拓扑的磁场。
本发明还公开了一种约束等离子体的方法,包括以下步骤:把离子磁力地约束在磁场中的轨道中,以及把电子静电地约束在能阱中。可以对外加磁场进行调整,以产生和控制静电场。在本发明方法的一个方面,对所述磁场进行调整,从而使电子的平均速度接近于0。在另一方面,对所述磁场进行调整,以便在相同方向上电子的平均速度与离子的平均速度相等。在本发明方法的另一个方面,该方法形成场反向配置磁场,在该场反向配置磁场中约束了等离子体。
在优选实施例的另一方面,环形等离子体层被容纳在场反向配置磁场内。等离子体层包括正电离子,其中基本上所有的离子都是非绝热的,并且电子被容纳在静电能阱内。促使等离子体层旋转并且形成具有足够大小的自身磁场,从而使场反向。
在优选实施例的另一方面,等离子体可以包括至少两个不同的离子种类,其中之一或者两者可以包括高级燃料。
具有高能的非绝热等离子体的大轨道离子倾向于避免离子的反常传输。这可以在FRC内实现,因为磁场在等离子体内的一个表面上消失(例如为0)。具有大轨道的离子倾向于对导致反常传输的短波长波动不敏感。
磁约束对电子来说不是高效的,因为它们具有小回旋半径(归因于它们的小质量),因此对导致反常传输的短波长波动敏感。因而,电子通过静电场有效地约束在深势阱中,这有利于防止由电子产生的能量的反常传输。逃逸约束的电子必须从零表面附近的高密度区域移动到等离子体表面。在移动中,它们的大部分能量消耗在在能阱中的上升上。当电子到达等离子体表面并随聚变产物离子离开时,它们几乎就没有供传输的剩余能量了。强静电场也有利于使所有的离子漂移轨道在反磁性方向旋转,从而容纳它们。静电场进一步提供了电子的冷却机制,以减少它们的辐射损失。
增加的容纳能力允许使用高级燃料,例如D-He3和p-B11,以及中子反应物,例如D-D和D-T。在D-He3反应中,快速中子由二次反应产生,但是是对于D-T反应的一个进步。优选p-B11反应以及类似反应,因为它完全地避免了快速中子的问题。
高级燃料的另一个优点是对来自聚变反应的能量的直接转换,因为聚变的产物是移动的正电粒子,该正电离子产生电流。这是在托卡马克的基础上的一次显著进步,例如,利用热转换过程来把快速中子的动能转化为电能。热转换过程的效率低于30%,而直接能量转换的效率可高达90%。
结合下面的描述和附图,本发明的其它方面和特点将变得显而易见。
附图简述
通过附图中的例子来解释优选实施例,但不是作为限制,其中相同的附图标记代表相同的组件。
图1A和1B分别表示作用在正电荷和负电荷上的洛伦兹力。
图2A和2B表示在恒磁场中的带电粒子的拉莫尔轨道。
图3表示
Figure C0280779100121
漂移。
图4表示梯度漂移。
图5表示托卡马克内的绝热粒子轨道。
图6表示在电子感应加速器(betatron)内的非绝热粒子轨道。
图7表示国际热核实验反应堆(ITER)。
图8表示FRC磁场。
图9A和9B分别表示FRC内的反磁方向和顺磁方向。
图10表示碰撞束系统。
图11表示电子感应加速器轨道。
图12A和12B分别表示FRC内的磁场和梯度漂移方向。
图13A和13B分别表示FRC内的电场和
Figure C0280779100131
漂移方向。
图14A、14B和14C表示离子漂移轨道。
图15A和15B表示FRC端部的洛伦兹力。
图16A和16B表示电场的调整和碰撞束系统内的电势。
图17表示麦克斯韦分布。
图18A和18B表示由于大角度、离子-离子碰撞产生的从电子感应加速器轨道向漂移轨道的转移。
图19表示当考虑小角度、电子-离子碰撞时的A、B、C、D电子感应加速器轨道。
图20A、20B、20C表示FRC内的磁场反向。
图21A、21B、21C和21D表示由于对FRC内的外加磁场B0进行调整产生的作用。
图22A、22B、22C和22D表示D-T等离子体的迭代结果。
图23A、23B、23C和23D表示D-He3等离子体的迭代结果。
图24表示p-B11等离子体的迭代结果。
图25表示示例性的约束室。
图26表示在其进入约束室之前被电极化的中性离子束。
图27表示在约束室内接触等离子体时的中性离子束的正面视图。
图28表示根据启动程序的优选实施例的约束室的侧视示意图。
图29表示根据启动程序的另一优选实施例的约束室的侧视示意图。
图30表示B-点探针的轨迹,以表示FRC的形成。
优选实施例的详细描述
理想的聚变反应堆解决了离子和电子的反常传输问题。离子的反常传输通过场反向配置(FRC)内的磁约束以一方式而得以避免,该方式使大多数离子具有大的、非绝热的轨道,以便使它们对造成绝热离子反常传输的短波长波动不敏感。对电子来说,能量的反常传输是这样避免的:通过调整外加磁场以产生强电场,该强电场把它们静电地约束在深势阱中。而且,本约束过程和装置能采用的聚变燃料等离子体并不仅局限于中子燃料,而且还有利地包括高级燃料。(关于高级燃料的讨论,参见Nuclear Instruments and Methods in PhysicsResearch(物理研究中的核仪器和方法),A271(1988)JJ-64(北荷兰阿姆斯特丹),R.Feldbacher和M.Heindler)。
目前发现的反常传输问题的解决方案利用了特定的磁场配置,即FRC。具体地说,在FRC中存在一个磁场消失的区域,从而使包含大多数非绝热离子的等离子体的存在成为可能。
背景原理
在详细描述本发明的系统和装置之前,首先回顾几个对理解本文中的概念所需的关键性概念将是有帮助的。
磁场中的洛伦兹力和粒子轨道
带电荷q的粒子在磁场
Figure C0280779100141
中以速度
Figure C0280779100142
移动,受到的力
Figure C0280779100143
为:
F → L = q v → × B → c - - - ( 1 )
称为洛伦兹力。该力和本讨论中所采用的所有公式都采用高斯单位制。洛伦兹力的方向取决于电荷q的符号。该力与速度和磁场垂直。图1A表示作用在正电荷上的洛伦兹力30。粒子的速度用矢量32表示。磁场为34。类似的,图1B表示作用在负电荷上的洛伦兹力30。
如上所述,洛伦兹力垂直于粒子速度;因此,磁场不能在粒子速度的方向施加力。它遵循牛顿第二定律, F ‾ = m a ‾ , 即磁场不能在其速度方向内加速粒子。磁场仅能弯曲粒子的轨道,但是磁场不能影响其速度的大小。
图2A表示正电粒子在恒磁场34中的轨道。在这种情况下,洛伦兹力30的大小恒定,粒子的轨道36形成了一个圆。圆形轨道36称为拉莫尔轨道。圆形轨道36的半径称为回旋半径38。
通常,粒子的速度有一个平行于磁场的分量和一个垂直于该场的分量。在这种情况下,粒子同时进行两种运动:绕磁场线的旋转和沿磁场线平移。这两种运动的结合就产生了随磁场线40的螺旋线。如图2B所示。
粒子在它的拉莫尔轨道内绕磁场线旋转。每单位时间经过的弧度数就是粒子的旋转频率,其用Ω表示,公式如下:
Ω = qB mc - - - ( 2 )
其中m表示粒子的质量,c表示光速。带电粒子的回旋半径αL的公式如下:
a L = v ⊥ Ω - - - ( 3 )
其中v是粒子垂直于磁场的速度分量。 漂移和梯度漂移
如图3所示,电场影响带电粒子的轨道。在图3中,磁场44指向读者。仅归因于磁场44的正电离子的轨道为圆36;对电子42来说也是一样的。然而,在电场46存在的情况下,当离子在电场46的方向运动时,其速度增加。可以理解,离子通过力
Figure C0280779100154
加速。进一步能看到,根据方程式3,离子的回旋半径随着速度的增加而增大。
当电场46对离子进行加速时,磁场44会使离子的轨道弯曲。在某一点,离子反向,并开始在与电场46相反的方向上移动。当发生这种情况时,离子被减速,因而其回旋半径减少。因此离子的回旋半径交替地增大和减小,如图3所示,这将使离子轨道48在方向50上产生侧向漂移。该运动称为 漂移。类似的,电子轨道52在相同的方向50上发生漂移。
如图4所示,磁场44的梯度也能造成类似的漂移。在图4中,磁场44指向读者。磁场的梯度在方向56上。磁场强度的增加由图中更密集的点来描述。
根据方程式2和3,可以得出:回旋半径与磁场强度成反比。当离子在磁场增加的方向上运动时,其回旋半径将减小,因为洛伦兹力增加,反之亦然。因此,离子的回旋半径交替地减小和增大,从而导致了离子轨道58在方向60上侧向漂移。这种运动称为梯度漂移。电子轨道62在反方向64上漂移。
绝热和非绝热粒子
大部分等离子体包括绝热粒子。绝热粒子严格遵循磁场线并且具有小回旋半径。图5表示一个严格遵循磁场线68的绝热粒子的粒子轨道66。所描述的磁场线68是托卡马克磁场线。
非绝热粒子具有大回旋半径。它并不遵循磁场线,并且通常是高能的。包括非绝热粒子的其它等离子体是存在的。图6表示用于电子感应加速器情况下的非绝热等离子体。极片70产生磁场72。如图6所示,粒子轨道74并不遵循磁场线72。
等离子体内辐射
移动的带电粒子辐射电磁波。粒子辐射的功率正比于电荷的平方。离子的电荷为Ze,其中e是电子电荷,Z是原子序数。因此,对每一个离子将会有Z个产生辐射的自由电子。这Z个电子产生的总的辐射总功率正比与原子序数的三次方(Z3)。
FRC内的带电粒子
图8表示FRC磁场。该系统相对于它的轴78圆柱对称。在FRC内有两个磁场线区域:开放的80和闭合的82。分开这两个区域的表面称为分界线84。FRC形成一个磁场在其内部消失的圆柱零表面86。在FRC的中心部分88,磁场并不在轴向明显地改变。在端部90,磁场一定在轴向明显地改变。磁场在FRC内沿中心轴78反向,使得在场反向配置(FRC)中出现了术语“反向”。
在图9A中,零表面94之外的磁场在方向96上。零表面之内的磁场在方向98上。如果离子在方向100上移动,则作用在其上的洛伦兹力30指向零表面94。这通过右手法则很容易理解。对于在方向102上移动的粒子(称为反磁体)来说,洛伦兹力总是指向零表面94。这种现象产生被称为电子感应加速器轨道的粒子轨道,这将在下面描述。
图9B表示在方向104上运动的离子,称为顺磁体。在这种情况下,洛伦兹力指向离开零表面94的方向。这种现象产生被称为漂移轨道的轨道类型,这将在下面描述。离子的反磁方向对电子来说是顺磁的,反之亦然。
图10表示在离子的反磁方向102上旋转的环或等离子体环形层106。环106围绕零表面86。与外加磁场110相结合,环形等离子体层106产生的磁场108形成了具有FRC拓扑的磁场(所述拓扑参见图8)。
形成等离子层106的离子束具有温度;因此,离子的速度在以离子束的平均角速度旋转的框架内形成麦克斯韦分布。不同速度的离子间的碰撞导致聚变反应。由于该原因,等离子体束层106被称为碰撞束系统。
图11表示在碰撞束系统内主要类型的离子轨道,称为电子感应加速器轨道112。电子感应加速器轨道112能够表达成以零圆(nullcircle)114为中心的正弦波。如上所述,零圆114上的磁场消失。所述轨道112的平面垂直于FRC的轴78。在该轨道112内的离子从起点116开始在它们的反磁方向102上移动。在电子感应加速器轨道内的离子有两种运动:径向方向上的振动(垂直于零圆114)和沿零圆114平移。
图12A是FRC内的磁场118的曲线图。磁场118是采用一元均衡模型导出的,将在下面结合本发明的原理进行讨论。该图的水平轴代表离开FRC轴78的以厘米为单位的距离。磁场以千高斯表示。正如曲线图所述,磁场118在零圆半径120处消失。
如图12B所示,在零圆附近移动的粒子将看到磁场梯度126,该磁场梯度126指向离开零表面86的方向。零圆外边的磁场为122,而零圆里边的磁场是124。梯度漂移的方向由矢量积 给出,其中B是磁场梯度;因此,利用右手法则能理解:梯度漂移的方向是在顺磁方向,不管离子是在零圆的外边还是里边128。
图13A是FRC内电场130的曲线图,电场130是通过一元均衡模型导出的,将在下面结合本发明的原理进行讨论。该图的水平轴代表离开FRC轴78的以厘米为单位的距离。电场的单位为V/cm。正如该图所示的,电场130在靠近零圆半径120处消失。
如图13B所示,对于离子的电场被解除约束;它指向离开零表面的方向132、134。如前,磁场在方向122、124上。利用右手法则能理解:
Figure C0280779100172
漂移的方向在反磁方向上,不管离子是在零表面外边还是里边136。
图14A和14B表示FRC内另一类型的普通轨道,称为漂移轨道138。漂移轨道138可以位于零表面的外边,如图14A所示;或者位于零表面的里边,如图14B所示。如果 漂移占优势,则漂移轨道138在反磁方向旋转;或者,如果梯度漂移占优势,则在顺磁方向旋转。图14A和14B所示的漂移轨道138从起点116开始在反磁方向102上旋转。
如图14C所示,漂移轨道被认为是在相对较大的圆上滚动的小圆。小圆142绕其轴在指向(sense)144上转动。它也在方向102上在大圆146上滚动。点140将在空间上描绘出类似于138的路径。
图15A和15B表示FRC端部的洛伦兹力方向。在图15A中,所示离子在磁场150内以速度148在反磁方向102上运动。利用右手法则能理解:洛伦兹力152倾向于把离子推入闭合磁场线的区域内。因而,在这种情况下,洛伦兹力152对离子进行约束。在图15B中,所示离子在磁场150内以速度148在顺磁方向上运动。利用右手法则能理解:洛伦兹力152倾向于把离子推入开放磁场线区域内。因而,在这种情况下,洛伦兹力152解除对离子的约束。
FRC内的磁和静电约束
通过注入高能离子束,可以在FRC内围绕离子的反磁方向102上的零表面86形成等离子体层106(参见图10)。(形成FRC和等离子体环的不同方法的详细讨论见下文。)在循环的等离子体层106内,大部分离子具有电子感应加速器轨道112(参见图11),并且这些离子是高能的和非绝热的;因而,它们对造成反常传输的短波长波动不敏感。
如上所述,在均衡条件下研究等离子体层106时,人们发现:动量的保存在离子的角速度ωi和电子的角速度ωe之间强加了一个关系。(结合本发明的原理,该关系式的推导如下。)关系式为
ω e = ω i [ 1 - ω i Ω 0 ] , Ω 0 = Ze B 0 m i c - - - ( 4 )
在方程式4,Z是原子序数,mi是离子质量,e是电子电荷,B0是外加磁场的大小,c是光速。在该关系式中有三个自由参数:外加磁场B0、电子的角速度ωe、和离子的角速度ωi。如果其中两个已知,可以根据方程式4确定第三个。
因为等离子体层106是通过把离子束注入FRC内而形成的,所以离子的角速度ωi通过束Wi的注入动能而确定,Wi表示如下:
W i = 1 2 m i V i 2 = 1 2 m i ( ω i r 0 ) 2
这里,Vi=ωir0,其中Vi为离子的注入速度,ωi为离子的回旋频率,r0是零表面86的半径。在该束中电子的动能可以忽略,因为电子质量me比离子质量mi小得多。
对该束的一个固定注入速度(固定的ωi),能够对外加磁场B0进行调整,从而可获得不同的ωe值。调整外部磁场B0也可以产生等离子体层内的不同静电场值,这将要得到说明。本发明的特征在图16A和16B中加以解释。图16A表示在相同的注入速度ωi=1.35×107s-1下获得的三个电场曲线(单位:V/cm),但是对应于三个不同的外加磁场B0值:
  曲线   外加磁场(B0)   电子的角速度(ωe)
  154   B0=2.77kG   ωe=0
  156   B0=5.15kG   ωe=0.625×107s-1
  158   B0=15.5kG   ωe=1.11×107s-1
上表中ωe值根据方程式4来确定。可以理解:在方程式4中,ωe>0意味着Ω0>ωi,从而电子在它们的顺磁方向旋转。图16B表示对于相同的一组B0和ωe的电势(单位:伏)。在图16A和16B中的水平轴代表到FRC轴78的距离,图中以厘米表示。结合本发明的原理,电场和电势的解析式在下面给出。这些表达式与ωe紧密相关。
上述结果可以在简单的物理基础上得到解释。当离子在反磁方向旋转时,该离子受到洛伦兹力的磁约束。如图9A所示。对于电子,在与离子相同的方向内旋转,洛伦兹力作用在相反的方向,从而电子不会受到约束。电子离开等离子体,结果,产生了多余的正电荷。这会产生阻止其它电子离开等离子体的电场。这个电场的方向和大小均衡地通过动量的保存来确定。结合本发明的原理,相关的详细数学式会在下面给出。
静电场对电子和离子的传输起着至关重要的作用。因此,本发明重要的一个方面在于:在等离子体层106内产生强静电场,该静电场的大小通过易于调节的外加磁场的B0值来控制。
已解释过,如果ωe>0,则静电场对电子进行约束。如图16B所示,势阱的深度可通过调整外加磁场B0而增加。除了在零圆附近的一个非常窄的区域外,电子总是具有小回旋半径。因此,电子通过反常的快扩散速度来响应短波长波动。事实上,一旦聚变反应发生时,该扩散有利于维持势阱。具有高得多的能量的聚变产物离子离开等离子体。为了维持电荷准中性,聚变产物必须把电子随它们一起拖离等离子体,主要是使电子离开等离子体层的表面。在该等离子体表面上的电子密度非常低,随聚变产物一起离开等离子体的电子必须得到替代,否则,势阱将消失。
图17表示电子的麦克斯韦分布162。仅出自麦克斯韦分布的尾部16O的非常高能的电子能够到达等离子体表面并随聚变离子离开。因而,该分布162的尾部160通过零表面附近高密度区域的电子-电子碰撞而连续地产生。高能电子仍然具有小回旋半径,从而反常扩散允许它们足够快地到达所述表面,以适应正离开的聚变产物离子。高能电子在势阱中上升时损失其能量,并且在离开时具有非常少的能量。尽管电子在反常传输的作用下能快速地穿过磁场,但是反常能量损失趋于避免,因为几乎没有能量转移。
势阱的另一个后果是对电子的强冷却机制,该强冷却机制与蒸汽冷却类似。例如,对于要蒸发的水,必须提供蒸发潜热。该热是通过剩余的液态水和周围的介质提供的,剩余液态水和周围介质在之后以比热传递过程能够置换能量更快的速度快速地热能化到一个较低温度。类似的,对于电子,势阱的深度等价于水的蒸发潜热。电子通过热能化过程提供从该势阱上升所必须的能量,所述热能化过程重新提供麦克斯韦尾部的能量,从而使电子能逃逸。因而热能化过程导致了较低的电子温度,因为它比任何热过程都快得多。由于电子和质子之间的质量差,从质子的能量转移时间比电子热能化时间小1800倍。该冷却机制还降低了电子的辐射损失。这对高级燃料来说是非常重要的,其中原子序数Z>1的燃料离子会增加辐射损失。
静电场也影响离子传输。在等离子体层106内的大部分粒子轨道是电子感应加速器轨道112。大角度碰撞,即散射角在90与180°之间的碰撞,能够把电子感应加速器轨道改变到漂移轨道。如上所述,漂移轨道的旋转方向通过
Figure C0280779100201
漂移和梯度漂移之间的竞争来确定。如果 漂移占优势,则漂移轨道在反磁方向上旋转。如果梯度漂移占优势,则漂移轨道在顺磁方向上旋转。如图18A和18B所示。图18A表示由于在点172上发生180°碰撞而从电子感应加速器轨道向漂移轨道转移。由于 漂移占优势,所以漂移轨道继续在反磁方向上旋转。图18B表示另一个180°碰撞,但是在这种情况下,静电场弱,梯度漂移占优势。因而漂移轨道在顺磁方向旋转。
漂移轨道的旋转方向确定它是否受到约束。在漂移轨道上移动的粒子也将有平行于FRC轴的速度。粒子从FRC的一端运动到另一端(作为其平行运动的结果)所花费的时间称为通过时间(transit time);因而,漂移轨道在通过时间数量级的时间内到达FRC的另一端。结合图15A所示,端部的洛伦兹力仅约束在反磁方向上旋转的漂移轨道。因此,在一个通过时间后,在顺磁方向上旋转的漂移轨道内的离子就会损失。
该现象说明了本期望会在所有FRC实验中存在的离子的损失机制。事实上,在这些实验中,离子携带一半的电流,而电子携带了另一半的电流。在这些条件下,等离子体内的电场是可以忽略的,梯度漂移总是比 漂移占优势。因而,在一个通过时间后,大角度碰撞产生的所有漂移轨道都被损失掉。这些实验报导的离子扩散率比经典扩散估算所预测得要快。
如果存在强静电场,则 漂移比梯度漂移占优势,并且漂移轨道在反磁方向旋转。这在上文中已经结合附图18A进行了说明。当这些轨道到达FRC的端部,它们被洛伦兹力反射回到闭合磁场线区域;因而,它们保持在该系统中被约束。
在碰撞束系统中的静电场可能足够强,而使
Figure C0280779100213
漂移比梯度漂移占优势。因而,该系统的静电场将通过消除该离子损失机制而避免离子传输,这与镜装置中的漏逸锥面类似。
通过考虑小角度的、在电子感应加速器轨道上的电子-离子碰撞效应,可以理解离子扩散的另一方面。图19A表示电子感应加速器轨道112;图19B表示相同轨道112在考虑到小角度电子-离子碰撞时的形态174;图19C表示图19B的轨道经过10倍长的时间后的轨道176;以及图19D表示图19B的轨道经过20倍长的时间后的轨道178。可以看出,电子感应加速器轨道的拓扑结构并不因小角度电子-离子碰撞而改变;然而,它们的径向振幅随时间增加。事实上,图19A至19D示出的轨道随时间而变胖,这表明了经典扩散。
本发明的原理
为了使本发明模型化,如图10所示,采用了一种用于碰撞束系统的一元均衡模型。上述的结果从该模型画出。该模型示出了如何推导粒子密度、磁场、电场和电势的均衡表达式。这里出现的均衡模型对等离子体燃料是有效的,所述等离子体带有一种类型的离子(例如,在D-D反应中),或者多种类型离子(例如,D-T,D-He3以及p-B11)。
Vlasov-麦克斯韦方程式
FRC内粒子密度和电磁场的均衡解通过独立求解Vlasov-麦克斯韦方程式而得到:
∂ f j ∂ t + ( v → · ▿ ) f j + e j m j [ E → + v → c × B → ] · ▿ v f j = 0 - - - ( 5 )
▿ × E → = - 1 c ∂ B → ∂ t - - - ( 6 )
▿ × B → = 4 π c Σ j e j ∫ v → f j d v → + 1 c ∂ E → ∂ t - - - ( 7 )
▿ · E ‾ = 4 π Σ j e j ∫ f j d v ‾ - - - ( 8 )
▿ · B → = 0 , - - - ( 9 )
其中对于电子和每种离子,j=e,i,以及i=1,2,...。在均衡中,所有的物理量与时间无关(即/t=0)。为了解Vlasov-麦克斯韦方程式,采用下面的假定和近似法:
(a)所有的均衡性质与轴向位置z无关(即/z=0)。这相当于认为等离子体在轴向无限延伸;因而,该模型仅对FRC的中心部分88是有效的。
(b)该系统为圆柱对称。因而,所有均衡性质与θ无关(即/θ=0)。
(c)高斯定律(方程式8)用准中性条件代替:∑jnjej=0。
通过假定FRC无限轴向延伸和圆柱对称,所有的均衡性质将仅取决于径向坐标r。由于该原因,这里讨论的均衡模型被称为是一元的。在这些假定和近似法下,Vlasov-麦克斯韦方程式简化为:
( v → · ▿ ) f j + e j m j E → · ▿ v f j + e j m j c [ v → × B → ] · ▿ v f j = 0 - - - ( 10 )
▿ × B → = 4 π c Σ j e j ∫ v → f j d v → - - - ( 11 )
Σ a n j e j = 0 - - - ( 12 )
刚性转子分布
为了解方程10至12,必须选择分布函数,其充分地描述了FRC内旋转的电子和离子束。为了该目的,一个合理的选择是所谓的刚性转子分布,其是在均匀旋转的基准框架内的麦克斯韦分布。刚性转子分布是运动常量的函数:
f j ( r , v → ) = ( m j 2 πT j ) 3 2 n j ( 0 ) exp [ - ϵ j - ω j P j T j ] , - - - ( 13 )
其中是mj粒子质量,
Figure C0280779100235
是速度,Tj是温度,nj(0)是r=0时的密度,ωj是常数。运动常量是 ϵ j = m j 2 v 2 + e j Φ (用于能量)以及 P j = m j ( x v y - y v x ) + e j c Ψ (用于标准角动量)
其中Φ是静电势,Ψ是通量函数。电磁场是 E r ′ = - ∂ Φ ∂ rt ′ (电场)以及 B z = 1 r ∂ Ψ ∂ r (磁场)。
把用于能量和标准角动量的表达式代入方程式13,得到
f j ( r , v → ) = ( m j 2 π T j ) 3 2 n j ( r ) exp { - m j 2 T j | v → - ω → j × r → | 2 } - - - ( 14 )
其中
| v → - ω → j × r → | 2 = ( v x + yω j ) 2 + ( v y - xω j ) 2 + v z 2
以及
n j ( r ) = n j ( 0 ) exp { - 1 T j [ e j ( Φ - ω j c Ψ ) - m j 2 ω j 2 r 2 ] } - - - ( 15 )
方程式14中的平均速度是均匀旋转的矢量,这使刚性转子的名字产生。本领域的普通技术人员能理解:用于描述FRC内电子和离子的刚性转子分布的选择被证明是正确的,因为满足Vlasov方程式(方程式10)的唯一解是刚性转子分布(例如方程式14)。该结论的论据如下:
论据
我们需要Vlasov方程式(方程式10)的解以漂移的麦克斯韦方程式形式存在:
f j ( r → , v → ) = ( m j 2 π T j ( r ) ) 3 2 n j ( r ) exp [ - m a 2 T j ( r ) ( v → - u → j ( r ) ) 2 ] , - - - ( 16 )
即具有作为位置的随机函数的粒子密度nj(r)、温度Tj(r)和平均速度uj(r)的麦克斯韦。把方程式16代入Vlasov方程式(方程式10)中可表明:(a)温度Tj(r)必须是常量;(b)平均速度
Figure C0280779100242
必须是均匀旋转的矢量;以及(c)粒子密度nj(r)必须以方程式15的形式存在。把方程式16代入方程式10产生以 表示的三次多项式方程:
v → · ▿ ( ln n j ) + m j ( v → - u → j ) T j · ( v → · ▿ ) u → j + m j ( v → - u → j ) 2 2 T j 2 ( v → · ▿ ) T j · ·
- - - + e j T j E → · ( v → - u → j ) - e j T j c [ v → × B → ] · ( v → - u → j ) = 0
的相同幂次的项进行分组,得到
m j 2 T j 2 | v → | 2 ( v → · ▿ T j ) · · ·
· · · m j T j ( v → · ▿ u → j · v → ) - m j T j 2 ( v → · u → j ) ( v → · ▿ T j ) · · ·
- - - + v → · ▿ ( ln n j ) + m j 2 T j 2 | u → j | 2 ( v → · ▿ T j ) - m j T j ( v → · ▿ u → j · u → j ) - e j T j v → · E → + e j cT j ( v → × B → ) · u → j - - -
· · · + e j T j E → · u → j = 0 .
为了使该多项式方程适用于所有 ,必须使 的每一个幂的系数消失。
三次方程得到Tj(r)=常数。
二次方程给出
v → · ▿ u → j · v → = ( v x v y v z ) ∂ u x ∂ x ∂ u y ∂ x ∂ u z ∂ x ∂ u x ∂ y ∂ u y ∂ y ∂ u z ∂ y ∂ u x ∂ z ∂ u y ∂ z ∂ u z ∂ z v x v y v z
= v x 2 ∂ u x ∂ x + v y 2 ∂ u y ∂ y + v z 2 ∂ u z ∂ z + v x v y ( ∂ u y ∂ x + ∂ u x ∂ y ) · · ·
· · · + v x v z ( ∂ u z ∂ x + ∂ u x ∂ z ) + v y v z ( ∂ u z ∂ y + ∂ u y ∂ z ) = 0 .
为了使该方程适用于所有的 ,我们必须满足
∂ u x ∂ x = ∂ u y ∂ y = ∂ u z ∂ z = 0 以及 ( ∂ u y ∂ x + ∂ u x ∂ y ) = ( ∂ u z ∂ x + ∂ u x ∂ z ) = ( ∂ u z ∂ y + ∂ u y ∂ z ) = 0 ,
其通解为
u → j ( r ‾ ) = ( ω → j × r → ) + u → 0 j - - - ( 17 )
在圆柱形坐标中,取 u → 0 j = 0 以及 ω → j = ω j z ^ , 这与垂直于
Figure C02807791002510
方向的磁场的注入相一致。于是, u → j ( r → ) = ω j r θ ^ .
零次方程表示电场必须在径向,即 E → = E r r ^ .
第一次方程式由下式给出:
v → · ▿ ( ln n j ) - m j T j ( v → · ▿ u → j · u → j ) - e j T j v → · E → + e j cT j ( v → × B → ) · u → j = 0 - - - ( 18 )
方程式18中的第二项可以改写为
▿ u → j · u → j = ∂ u r ∂ r ∂ u θ ∂ r ∂ u z ∂ r 1 r ∂ u r ∂ θ 1 r ∂ u θ ∂ θ 1 r ∂ u z ∂ θ ∂ u r ∂ z ∂ u θ ∂ z ∂ u z ∂ z u r u θ u z = 0 ω j 0 0 0 0 0 0 0 0 ω j r 0 = ω j 2 r r ^ - - - ( 19 )
方程式18中的第四项可以改写为
( v → × B → ) · u → j = v → · ( B → × u → j ) = v → · ( ( ▿ × A → ) × u → j ) = v → · [ ( 1 r ∂ ∂ r ( rA θ ) z ^ ) × ( - ω j r θ ^ ) ]
= v → · ω j ∂ ∂ r ( r A θ ) r ^ - - - ( 20 )
利用方程式19和20,第一次方程式18变为
∂ ∂ r ( ln n j ) - m j T j ω j 2 r - e j T j E r + e j ω j cT j ∂ ∂ r ( rA θ ( r ) ) = 0 .
该方程式的解为
n j ( r ) = n j ( 0 ) exp [ m j ω j 2 r 2 2 T j - e j Φ ( r ) T j - e j ω j r A θ ( r ) cT j ] , - - - ( 21 )
其中Er=-dΦ/dr以及nj(0)的表达式为
n j ( 0 ) = n j 0 exp [ - m j ω j 2 r 0 2 2 T j + e j Φ ( r 0 ) T j + e j ω j r 0 A 0 ( r 0 ) cT j ] . - - - ( 22 )
这里,nj0是在r0处的峰值密度。
Vlasov-麦克斯韦方程式的解
既然已经证明了通过刚性转子分布描述离子和电子是合适的,那么Vlasov方程式(方程式10)由第一次动量取代,即
- n j m j r ω j 2 = n j e j [ E r + rω j c B z ] - T j dn j dr , - - - ( 23 )
这是动量守恒方程式。要得到均衡解的方程系统被简化为:
- n j m j r ω j 2 = n j e j [ E r + rω j c B z ] - T j dn j dr j = e , i = 1,2 , - - - ( 24 )
- ∂ ∂ r 1 r ∂ Ψ ∂ r = - ∂ B z ∂ r = 4 π c j θ = 4 π c r Σ j n j e j ω j - - - ( 25 )
Σ j n j e j ≅ 0 .
具有一种离子的等离子体的解
首先考虑一种离子被完全剥离的情形。电荷为ej=-e,Ze。为具有电子方程式的Er解方程式24,得到
E r = m e rω e 2 - r ω e c B z - T e en e dn e dr , - - - ( 27 )
从离子方程式中消除Er,得到
1 r d log n i dr = Z i e c ( ω i - ω e ) T i B z - Z z T e T i 1 r d log n e dr + m i ω i 2 T i + m Z i ω e 2 T i . - - - ( 28 )
方程式28对r求微分并且用方程式25来替代dBz/dr,得到
- dB z dr = 4 π c n e er ( ω i - ω e ) 以及Zini=ne
由Te=Ti=常数,以及ωi,ωe为常数,得到
1 r d dr 1 r log n i dr = - 4 πn e Z i e 2 T i ( ω i - ω e ) 2 c 2 - Z i T e T i 1 r d dr 1 r d log n e dr . - - - ( 29 )
引入新变量ξ:
ξ = r 2 2 r 0 2 ⇒ 1 r d dr 1 r d dr = 1 r 0 4 d 2 d 2 ξ . - - - ( 30 )
依据新变量ξ,方程式29可以表达为:
d 2 log n i d 2 ξ = - 4 πn e Z i e 2 r 0 4 ( ω i - ω e ) 2 c 2 - Z i T e T i d 2 log n e d 2 ξ . - - - ( 31 )
使用准中性条件,
n e = Z i n i ⇒ d 2 log n e d 2 ξ = d 2 log n i d 2 ξ ,
得到
d 2 log n i d 2 ξ = - r 0 4 ( T i + Z i T e ) 4 π Z i 2 e 2 c 2 ( ω i - ω e ) 2 n i = - r 0 4 ( T e + T i Z i ) 4 π n e 0 e 2 c 2 ( ω i - ω e ) 2 n i n i 0 = - 8 ( r 0 Δr ) 2 n i n i 0 . - - - ( 32 )
在这里进行定义
r 0 Δr ≡ 2 2 { T e + T i Z i 4 πn e 0 e 2 } 1 2 c | ω i - ω e | , - - - ( 33 )
其中Δr的意义将很快变得显而易见。如果Ni=ni/ni0,其中ni0是在r=r0时的峰值密度,则方程式32变为
d 2 log N i d 2 ξ = - 8 ( r 0 Δr ) 2 N i . - - - ( 34 )
使用另一个新变量,
x = 2 · r 0 Δr ξ , 得到 d 2 N i d 2 x = - 2 N i ,
该方程的解为
N i ′ = 1 cosh 2 ( x - x 0 ) ,
其中x0=x(r0),因为物理必要条件Ni(r0)=1。
最后,离子密度的公式为
n i = n i 0 cosh 2 2 ( r 0 Δr ) ( ξ - 1 2 ) = n i 0 cosh 2 ( r 2 - r 0 2 r 0 Δr ) . - - - ( 35 )
r0的重要意义在于它是峰值密度的位置。注意, n i ( 0 ) = n i ( 2 r 0 ) .
当离子的密度已知时,可以通过方程式11来计算Bz,可以通过方程式27来计算Er
电势和磁势为
Φ = - ∫ r ′ = 0 r ′ = r E r ( r ′ ) dr ′ 以及
A θ = 1 r ∫ r ′ = 0 r ′ - r r ′ B z ( r ′ ) dr ′ Ψ=rAθ(通量函数)      (36)
在壁处的半径取为 r = 2 r 0 (当推导电势Φ(r)的表达式时,该选择将变为明显的,该选择表明在 r = 2 r 0 处,电势为0,即接地的导电壁),行密度为
N e = Z i N i = ∫ r = 0 r = 2 r 0 n e 0 2 πrdr cosh 2 ( r 2 - r 0 2 r 0 Δr ) = 2 π n e 0 r 0 Δ r tanh r 0 Δr - - -
· · · ≅ 2 π n e 0 r 0 Δr (因为r0>>Δr)         (37)
因而,Δr表示“有效厚度”。换句话说,为了行密度的目的,等离子体可以看成是聚集在厚度为Δr的环内的零圆上,其密度为常数ne0
磁场为
B z ( r ) = B z ( 0 ) - 4 π c ∫ r ′ = 0 r ′ = r dr ′ n e er ′ ( ω i - ω e ) . - - - ( 38 )
由离子和电子束引起的电流为
I θ = ∫ 0 2 r 0 j θ dr = N e e ( ω i - ω e ) 2 π , j θ = n 0 er ( ω i - ω e ) . - - - ( 39 )
使用方程式39,可将磁场写为
B z ( r ) = B z ( 0 ) - 2 π c I θ - 2 π c tanh r 2 - r 0 2 r 0 Δr = - B 0 - 2 π c I θ tanh r 2 - r 0 2 r 0 Δr . - - - ( 40 )
在方程式40中,
. B z ( 0 ) = - B 0 + 2 π c I θ 并且
B z ( 2 r 0 ) = - B 0 - 2 π c I θ .
如果等离子体电流Ie消失,则磁场为常数,正如所期待的。
这些关系式图示在图20A至20C中。图20A表示外部磁场 图20B表示由于电流环引起的磁场182,该磁场的大小为(2π/c)/Iθ。图20C表示由于两磁场180、182的叠加引起的场倒转184。
该磁场为
B z ( r ) = - B 0 [ 1 + 2 π I 0 c B 0 tanh r 2 - r 0 2 r 0 Δr ] = - B 0 [ 1 + β tanh ( r 2 - r 0 2 r 0 Δr ) , - - - ( 41 )
对β采用下面的定义:
2 π c I θ B 0 = N e e ( ω i - ω e ) cB 0 = 2 π c n e 0 r 0 Δre ( ω i - ω e ) B 0 · · ·
· · · = 2 π c 2 2 [ T e + ( T i / Z i ) 4 πn e 0 e 2 ] 1 2 cn e 0 ω i - ω e e ( ω i - ω e ) B 0 · · ·
- - - = [ 8 π ( n e 0 T e + n i 0 T i ) B 0 2 ] 1 2 ≡ β . - - - ( 42 )
利用磁场的表达式,可以计算电势和磁通量。根据方程式27,
E r - = - rω e c B z - T e e d ln n e dr + m e r ω e 2 = - dΦ dr - - - ( 43 )
在方程式28两边对r积分,采用电势和磁通量的定义,
Φ ≡ - ∫ r ′ = 0 r ′ = r E r dr ′ Ψ ≡ ∫ r ′ = 0 r ′ = r B z ( r ′ ) r ′ dr ′ , - - - ( 44 )
从而得出
Φ = ω e e Ψ + T e e ln n e ( r ) n e ( 0 ) - m e r 2 ω e 2 2 - - - ( 45 )
现在,磁通量可以从磁场的表达式(方程式41)直接计算出来:
Ψ = ∫ r ′ = 0 r ′ = r - B 0 [ 1 + β tanh r 2 - r 0 2 r 0 Δr ] r ′ dr ′ · · ·
· · · = - B 0 r 2 2 - B 0 β 2 r 0 Δr [ log ( cosh r 2 - r 0 2 r 0 Δr ) - log ( cosh r 0 Δr ) ] · · ·
· · · = - B 0 r 2 2 + B 0 β r 0 Δr 4 log n e ( r ) n e ( 0 ) . - - - ( 46 )
把方程式46代入方程式45中,得到
Φ = ω e c B 0 β r 0 Δr 4 log n e ( r ) n e ( 0 ) + T e e ln n e ( r ) n e ( 0 ) - ω e c B 0 r 2 2 - m e r 2 ω e 2 2 . - - - ( 47 )
采用β的定义,
ω e c B 0 β r 0 Δr = ω e c 8 π ( n e 0 T e + n i 0 T i ) 2 ( T e + T i / 2 ) 1 2 4 π n e 0 e 2 ( ω i - ω e ) · · ·
· · · = 4 ω e ω i - ω e ( n e 0 T e + n i 0 T i ) n e 0 e . - - - ( 48 )
最后,利用方程式48,电势和磁通量的表达式变为
Ψ ( r ) = - B 0 r 2 2 + c ω i - ω e ( n e 0 T e + n i 0 T i n e 0 e ) ln n e ( r ) n e ( 0 ) 和(49)
Φ ( r ) = [ ω e ω i - ω e ( n e 0 T e + n i 0 T i ) n e 0 e + T e e ] ln n e ( r ) n e ( 0 ) - ω e c B 0 r 2 2 - m e r 2 ω e 2 c . - - - ( 50 )
ω i 和ωe之间的关系
电子角速度ωe的表达式也可以从方程式24至26推导出来。假定离子的平均能量为1/2mi(rωi)2,其可以由FRC的形成方法来确定。因此,ωi由FRC的形成方法来确定,以及通过结合电子和离子的方程式以消除电场,从而ωe可以由方程式24来确定:
- [ n e mr ω e 2 + n i m i r ω i 2 ] = n e er c ( ω i - ω e ) B z - T e dn e dr - T i dn i dr . - - - ( 51 )
于是,可以用方程式25来消除(ωie)而得到
[ n e mr ω e 2 + n i m i r ω i 2 ] = d dr ( B z 2 8 π + Σ j n j T j ) . - - - ( 52 )
方程式52可以从r=0到 r B = 2 r 0 进行积分。假定r0/Δr>>1,则在两边界处的密度非常小,并且 B z = - B 0 ( 1 ± β ) . 通过进行积分表明
[ n e 0 m ω e 2 + n i 0 m i ω i 2 ] r 0 Δr = B 0 2 π [ 8 π ( n e 0 T e + n i 0 T i ) ] 1 2 . - - - ( 53 )
利用关于Δr的方程式33得到关于ωe的方程:
ω i 2 + Zm m i ω e 2 = Ω 0 ( ω i - ω e ) , - - - ( 54 )
其中 Ω 0 = ZeB 0 m i c .
从方程式54导出的一些限制情况是:
1.ωi=0以及 ω e = - eB 0 mc ;
2.ωe=0和ωi=Ω0;以及
3. Zm m i &omega; e 2 < < &omega; i 2 以及 &omega; e &cong; &omega; i ( 1 - &omega; i &Omega; 0 ) .
在第一种情况中,电流全部由在其反磁方向移动(ωe<0)的电子携带。电子被磁力地约束,并且离子被静电地约束,用式子表达为
E r = T i Zen i dn i dr 对r≥r0,≤0;对r≤r0,≥0(55)
在第二种情况中,电流全部由在其反磁方向移动(ωi>0)的离子携带。如果ωi是从离子能量1/2mi(rωi)2指定的,在形成过程中确定,则ωe=0和Ω0=ωi可识别外加磁场的B0值。离子被磁力地约束,电子被静电地约束,用式子表达为
E r = - T e en e dn e dr 对r≥r0,≥0;对r≤r0,≤0(56)
在第三种情况中,ωe>0以及Ω0>ωi。电子在它们的顺磁方向移动并且电流密度降低。根据方程式33,所述分布ni(r)的宽度增加;然而,总的电流/单位长度为
,其中             (57)
N e = &Integral; r = 0 r B 2 &pi;rdr n e = 2 &pi; r 0 &Delta;r n e 0 . - - - ( 58 )
这里,根据方程式33, r B = 2 r 0 并且r0Δr∝(ωie)-1。电子角速度ωe可以通过调整外加磁场B0而增加。这既不改变Iθ也不改变由等离子体电流产生的最大磁场,即 B 0 &beta; = ( 2 &pi; / c ) I &theta; . 然而,它改变Δr,并且明显地改变势能Φ。最大Φ值增加,如同约束电子的电场一样。
磁场的调整
在图21A-D中,在不同的B0值下绘制了量ne/ne0 186、 B z / ( B 0 &beta; ) 188、Φ/Φ0 190以及Ψ/Ψ0 192相对r/r0 194的曲线。势能和通量值被标准化到Φ0=20(Te+Ti)/e以及Ψ0=(c/ωi0。假定氘等离子体具有下列数据:ne0=ni0=1015cm-3;r0=40cm;1/2mi(r0ωi)2=300keV;Te=Ti=100keV。对图21表示的每一种情况,ωi=1.35×107s-1,并且在不同的B0值下的ωe根据方程式54来确定:
  曲线   外加磁场(B0)   电子角速度(ωe)
  154   B0=2.77kG   ωe=0
  156   B0=5.15kG   ωe=0.625×107s-1
  158   B0=15.5kG   ωe=1.11×107s-1
ωe=-ωi和B0=1.385kG的情况涉及到电子和离子的磁约束。势能降低到Φ/Φ0=mi(rωi)2/[80(Te+Ti)],与ωe=0的情况相比,这是可以忽略的。密度分布的宽度Δr减少为一半,而最大磁场 与在ωe=0时是相同的。
多种类型离子的等离子体的解
可以执行这样的分析,以便包括含有多种离子的等离子体。感兴趣的聚变燃料涉及两种不同的离子,例如D-T,D-He3和H-B11。均衡方程(方程式24-26)是适用的,不过j=e,1,2代表电子和两种离子,其中在每一种情况下Z1=1,并且对上述燃料有Z2=Z=1,2,5。不能用初等函数准确地求解电子和两种离子的方程式。因此,开发出了一种从近似解开始的迭代法。
假定离子具有相同的温度值和平均速度Vi=rωi。离子-离子碰撞促使分布朝向该状态,离子-离子碰撞的动量转移时间比离子-电子碰撞的时间短1000倍数量级。通过使用近似法,两种离子的问题可以简化为单一离子问题。离子的动量守衡方程为
- n 1 m 1 r &omega; 1 2 = n 1 e [ E r + r&omega; 1 c B z ] - T 1 dn 1 dr 和            (59)
- n 2 m 2 r &omega; 2 2 = n 2 Ze [ E r + r&omega; 2 c B z ] - T 2 dn 2 dr . - - - ( 60 )
在该情况下,T1=T2,ω1=ω2。把这两个方程相加得到
- n i &lang; m i &rang; &omega; i 2 = n i &lang; Z &rang; e [ E r + r&omega; i c B z ] - T i dn i dr , - - - ( 61 )
其中ni=n1+n2;ωi=ω1=ω2;Ti=T1=T2;ni<mi>=n1m1+n2m2;并且ni<Z>=n1+n2Z。
该近似法将假定:<mi>和<Z>为通过各函数的最大值n10和n20取代n1(r)和n2(r)而获得的常数。现在该问题的解与先前单类离子的解相同,不过用<Z>替代了Z,并用<mi>替代了mi。n1和n2的值可以从n1+n2=ni和n1+Zn2=ne=<z>ni得到。可以理解,n1和n2具有相同的函数形式。
通过迭代多个方程式可以得到正确的解:
d log N 1 d&xi; = m 1 r 0 2 &Omega; 1 ( &omega; i - &omega; e ) T i B z ( &xi; ) B 0 - T e T i d log N e d&xi; + m 1 ( &omega; i r 0 ) 2 T i 和  (62)
diog N 2 d&xi; = m 2 r 0 2 &Omega; 2 ( &omega; i - &omega; e ) T i B z ( &xi; ) B 0 - ZT e T i d log N e d&xi; + m 2 ( &omega; i r 0 ) 2 T i , - - - ( 63 )
其中
N 1 = n 1 ( r ) n 10 , N 2 = n 2 ( r ) n 20 , &xi; = r 2 2 r 0 2 , &Omega; 1 = e B 0 m 1 c , 并且 &Omega; 2 = Ze B 0 m z c .
通过替换方程式62和63右边的近似值Bz(ξ)和Ne(ξ),并且进行积分以获得n1(r)、n2(r)和Bz(r)的正确值,从而可以得到第一次迭代。
通过计算可以得到下面表1中的数据。聚变燃料的数值结果显示在图22A-D至24A-D中,其中绘制了量n1/n10 206,Φ/Φ0 208以及Ψ/Ψ0210对r/r0 204的曲线。图22A-D表示对D-T的迭代的第一近似值(实线)和最终结果(虚线),分别表示D的标准化密度196,T的标准化密度198,标准化电势200和标准化通量202。图23A-D表示对D-He3的相同迭代,分别表示D的标准化密度212,He3的标准化密度214,标准化电势216和标准化通量218。图24A-D表示对p-B11的相同迭代,分别表示p的标准化密度220,B11的标准化密度222,标准化电势224和标准化通量226。D-T的迭代收敛最快。在所有情形中,第一近似值接近最终结果。
表1:不同聚变燃料均衡计算的数字数据
Figure C0280779100351
其中“none”为“无”。
约束系统的结构
图25表示根据本发明的约束系统300的优选实施例。约束系统300包括一个室壁305,在该室壁内限定了一个约束室310。优选地,该约束室310的形状为圆柱形,沿该室310的中心有原理轴315。为了在聚变反应堆中应用该约束系统300,必须在该室310内产生真空或接近真空。与原理轴315同心的是电子感应加速器通量线圈320,其位于该室310内。电子感应加速器通量线圈320包括一个适用于使电流的方向为环绕该长线圈的电流传载介质,如图所示,其优选包括平行绕组的多个单独线圈,更优选地,平行绕组约为4个单独的线圈,以形成一个长线圈。本领域的普通技术人员将会理解,流过电子感应加速器线圈320的电流将导致在电子感应加速器线圈320内产生磁场,其基本上位于原理轴315的方向上。
围绕在室壁305外边的是一个外部线圈325。外部线圈325产生相对恒定的磁场,该磁场具有基本上与原理轴315平行的通量。该磁场方位角对称。这样一种近似:由外加磁场325引起的磁场是恒定的并且与轴315平行的,这种近似对远离室310的端部的地方是最有效的。在室310的每一端是镜线圈330。该镜线圈330适用于在室310内的每一端产生增加的磁场,因而使磁场线在每一端向内弯曲(参见图8和10)。已解释过,通过把等离子体335推离能够逃逸出约束系统300的端部,磁场线的这种向内弯曲有利于把等离子体335容纳在室310中的容纳区域内,通常位于镜线圈330之间。通过本领域内各种公知的方法,可以使镜线圈330适用于在端部产生增加的磁场,所述方法包括增加镜线圈330的匝数,增加通过镜线圈330的电流,或者把镜线圈330与外部线圈325重叠。
如图25所示,外部线圈325和镜线圈330设置在室壁305之外;然而,它们可以位于室310之内。在室壁305是由导电材料(例如金属)建造的情况下,把线圈325、330放到室壁305内会是有利的,因为磁场扩散通过壁305的时间可能较长,因而导致系统300的反应不敏感。类似的,室310的形状可以是一种中空的圆柱体,其室壁305为较长的环孔。在该情况下,电子感应加速器通量线圈320能够设置在环孔中心内的室壁305的外表上。优选地,形成环孔中心的内壁可以包括非导电材料,例如玻璃。这将变得显而易见,室310必须具有足够的大小和形状,以允许循环等离子体束或层335绕原理轴315以一个特定半径旋转。
室壁305可以由具有高导磁率的材料(例如钢)制成。在该情况下,由于在材料中感生的反向电流的作用,室壁305有利于防止磁通量逃逸出室310,对其进行“压缩”。如果室壁是由具有低导磁率的材料(例如有机玻璃)制成的,则用于容纳磁通量的另一种设备将是必须的。在该情况下,将会提供一系列闭环的扁平金属环。将在外部线圈325之内并且在循环等离子体束335外部提供这些环(本领域公知的通量限定器)。而且,这些通量限定器可以是无源的也可以是有源的,其中有源通量限定器可以由预定电流来驱动,以便大大地促进室310内磁通量的保持。可以替代的,外部线圈325本身可用作通量限定器。
如上所述,循环等离子体束335,包括带电粒子,可以通过外部线圈325引起的磁场产生的洛伦兹力容纳在室310内。因而,等离子体束335内的离子被磁力地容纳在来自外部线圈325的通量线(fluxline)周围的大电子感应加速器轨道内,所述通量线与原理轴315平行。还设置一个或多个束注入端口340,以把等离子体的离子加入到室310内的循环等离子体束335中。在优选实施例中,注入器端口340适用于在与原理轴315相离的相同半径位置注入离子束,所述位置处容纳有循环等离子体束335(例如,在零表面周围)。进一步,注入器端口340适用于注入离子束350(参见图28),该离子束350与容纳的等离子体束335的电子感应加速器轨道相切并且在该轨道方向上。
本发明还提供了一个或多个背景等离子体源345,用于把非高能的等离子体云注入到室310内。在优选实施例中,背景等离子体源345适用于把等离子体335导向室310的轴向中心。已发现通过该方式对等离子体进行导向有利于更好地容纳等离子体335,从而导致在室310内的容纳区域产生密度更高的等离子体335。
FRC的形成
用于形成FRC的传统程序主要采用θ收缩场反向程序。在该传统方法中,通过围绕中性气体反填充室的外部线圈施加一个偏置磁场。一旦出现这种情况,气体就会离子化并且等离子体内的偏置磁场就会冷冻。下一步,外部线圈内的电流快速反向,反向的磁场线与先前冷冻的磁场线连接,以形成闭合的FRC拓扑(见图8)。该形成过程在很大程度上依赖于经验,因而几乎不存在控制FRC形成的手段。该方法的再现性差,从而不具有调整能力。
相反,本发明的FRC形成方法允许进行充分的控制,并且提供更透明的、可再现的过程。事实上,能够对本发明的方法形成的FRC进行调整,并且能够通过操控由外场线圈325施加的磁场而直接影响其形状和其它特性。通过本发明方法形成FRC也会导致电场和势阱以上文详述的方式形成。而且,能够容易地拓展本发明方法,以使FRC加速到反应堆级的参数和高能燃料电流,并且有利地实施离子的经典约束。而且,该技术能够在小型设备上应用,并且非常实用和容易实施——所有这些对反应堆系统来说都是非常需要的特征。
在当前的方法中,FRC的形成涉及到循环等离子体束335。可以理解,由于循环等离子体束335是电流,因而它产生了极向磁场。正如在圆形电线中的电流那样。在循环等离子体束335内部,其感应的自身磁场与外部线圈325产生的外加磁场相反。在等离子体束335外部,自身磁场与外加磁场方向相同。当等离子体的离子电流足够大时,自身磁场克服外加磁场,并且循环等离子体束335内的磁场反向,从而形成如图8和10所示的FRC拓扑。
场反向的必要条件可以用简单模型估计。考虑环(大径r0,小径α<<r0)携带的电流Ip。在该环中心处与该环垂直的磁场Bp=2πIp/(cr0)。假定该环电流Ip=Npe(Ω0/2π)由具有角速度Ω0的Np离子携带。对以半径r0=V0/Ω0循环的单个离子来说,Ω0=eB0/mic为在外加磁场B0下的旋转频率。假定V0是离子束的平均速度,场反向定义为
B P = N P e &Omega; 0 r 0 c &GreaterEqual; 2 B 0 ,
其隐含Np>2 r0i,以及
I P &GreaterEqual; eV 0 &pi; &alpha; i ,
其中αi=e2/mic2=1.57×10-16cm,并且离子束能量为1/2miV0 2。在一元模型中,由等离子体电流产生的磁场Bp=(2π/c)ip,其中ip为每单位长度的电流。场反向的必要条件是ip>eV0/πr0αi=0.225kA/cm,其中B0=69.3G,1/2 miV0 2=100eV。对于周期环模型,Bz在轴向坐标上被平均化,<Bz>=(2π/c)(Ip/s)(s为环间距),如果s=r0,该模型将具有与ip=Ip/s的一元模型相同的平均磁场。
结合的束/电子感应加速器形成技术
这里,在上述约束系统300内形成FRC的优选方法称为结合束/电子感应加速器技术。该方法通过电子感应加速器通量线圈320把低能量的等离子体的离子束和电子感应加速器的加速度(betatronacceleration)相结合。
该方法的第一步是采用背景等离子体源345在室310内注入基本上为环状云层的背景等离子体。外部线圈325在室310内产生磁场,该磁场磁化背景等离子体。在短间隔内,低能离子束通过注入器端口340注入到室310内,所述注入器端口340基本上横穿室310内的外加磁场。如上所述,在室310内,该磁场把离子束捕获在大电子感应加速器轨道内。离子束可以通过离子加速器产生,例如这样一种加速器,其包括离子二极管和马克斯发生器。(参见R.B.Miller,AnIntroduction to the physics of Intense Charged Particle Beams(向物理学引入强带电粒子束),(1982))。本领域的普通技术人员能理解,在注入的离子束进入室310时,外加磁场将在其上施加洛伦兹力;然而,所需要的是该离子束不发生偏转,从而它不进入电子感应加速器轨道内,一直到该离子束到达循环等离子体束335。为了解决该问题,离子束与电子中性化,并且在进入室310之前,对该离子束进行导向,使其通过基本上恒定的单向磁场。如图26所示,当引导离子束350通过合适的磁场时,带正电的离子和带负电的电子分开。离子束350因而获得由于该磁场作用引起的电自极化。该磁场可以由例如沿离子束路径的永磁体或电磁体产生。当之后上引入约束室310时,产生的电场平衡该粒子束上的磁力,同时允许离子束非偏转地漂移。图27表示当离子束350接触等离子体335时离子束350的迎面图。如图所示,来自等离子体335的电子沿磁场线运动进/出该束350,这使得该束的电极化耗竭。如图25所示,当该束不再电极化时,该束加入到原理轴315周围的电子感应加速器轨道内的循环等离子体束335中。
当等离子束335在其电子感应加速器轨道内传播时,该移动离子包含电流,电流接下来产生极向自身磁场。为了在室310内产生FRC拓扑,有必要增加等离子体束335的速度,从而增加由等离子体束335引起的自身磁场的大小。当自身磁场足够大时,在等离子体束335内与轴315相离的径向距离处的磁场方向反向,同时产生FRC(参见图8和10)。可以理解,为了维持电子感应加速器轨道内的循环等离子体束335的径向距离,必须随等离子体束335速度的增加而增加由外部线圈325产生的外加磁场。因而设置了一个控制系统,以维持合适的外加磁场,该磁场由流过外部线圈325的电流指示。可以替代地是,第二外部线圈可以用来提供额外的外加磁场,当等离子体束加速时,该磁场需要用来维持该等离子体束轨道的半径。
为了增加其轨道内循环等离子体束335的速度,提供了电子感应加速器通量线圈320。参考图28,可以理解,根据安培定律,通过电子感应加速器通量线圈320的电流增加将在所述室310内部感生一个方位角电场E。等离子体束335内的正电离子通过该感生电场加速,从而导致上述的场反向。如上所述,当把离子束加入到循环等离子体束335中时,等离子体束335使该离子束去极化。
对于场反向而言,循环等离子体束335优选加速到约100eV的转动能,优选的范围为约75至125eV。为了达到聚变的相关条件,循环等离子体束335优选加速到约200keV,优选的范围为约100keV至3.3MeV。
在电子感应加速器加速度的必要表达式导出过程中,首先考虑单个粒子的加速度。离子的回旋半径r=V/Ωi将变化,因为V增加了,并且外加磁场必须改变,以维持等离子体束轨道的半径r0=V/Ωc
&PartialD; r &PartialD; t = 1 &Omega; [ &PartialD; V &PartialD; t - V &Omega; i &PartialD; &Omega; i &PartialD; t ] = 0 , - - - ( 66 )
其中
&PartialD; V &PartialD; t = r 0 e m i c &PartialD; B c &PartialD; t = e E &theta; m i = - e m i c 1 2 &pi; r 0 &PartialD; &Psi; &PartialD; t , - - - ( 67 )
以及Ψ是磁通量:
&Psi; = &Integral; 0 r 0 B z 2 &pi;rdr = &pi;r 0 2 &lang; B z &rang; , - - - ( 68 )
其中
&lang; B z &rang; = - B F ( r a r 0 ) 2 - B c [ 1 - ( r a r 0 ) 2 ] - - - ( 69 )
根据方程式67,可以得出:
&PartialD; &lang; B z &rang; &PartialD; t = - 2 &PartialD; B c &PartialD; t , - - - ( 70 )
以及<Bz>=-2Bc+B0,假定BF和Bc的初始值都是B0。方程式67可以表达为
&PartialD; V &PartialD; t = - e 2 m i c r 0 &PartialD; &lang; B r &rang; &PartialD; t . - - - ( 71 )
在从初始状态到最终状态进行积分后,其中1/2mV0 2=W0,1/2mV2=W,磁场的最终值为:
B c = B 0 W W 0 = 2.19 kG - - - ( 72 )
以及
B F = B 0 [ W W 0 + ( r 0 r a ) 2 ( W W 0 - 1 ) ] = 10.7 kG , - - - ( 73 )
假定B0=69.3G,W/W0=1000,以及r0/rα=2。该计算用于离子的收集,其前提是假设所有离子均位于同样的半径r0附近,并且离子的数目不足以改变磁场。
为了适应现在的问题,基本电子感应加速器方程式的修改将建立在一元均衡的基础上,以便描述多环等离子体束,假定这些环沿场线展开并且z-相关性可以忽略。该均衡是Vlasov-麦克斯韦方程式的独立解,其可以概括为如下:
(a)密度分布为
n = n m cosh 2 ( r 2 - r 0 2 r 0 &Delta;r ) , - - - ( 74 )
其适用于电子和质子(假定为准中性);r0是最大密度的位置;
Δr是该分布的宽度;以及
(b)磁场为
B z = - B e - 2 &pi; I P c tanh ( r 2 - r 0 2 r 0 &Delta;r ) , - - - ( 75 )
其中Bc为外部线圈325产生的外加磁场。最初,Bc=B0。这个解满足r=rα和r=rb为导体(B垂直=0)和等电势(电势Φ=0)的边界条件。如果r0 2=(r2 α+r2 b)/2,rα=10cm,r0=20cm并因此得出rb=26.5cm时,则边界条件得到满足。Ip是每单位长度的等离子体电流。
该束粒子的平均速度为Vi=r0ωi以及Ve=r0ωe,其通过均衡条件相关:
&omega; e = &omega; i ( 1 - &omega; i &Omega; i ) , - - - ( 76 )
其中Ωi=eBc/(mic)。最初,假定Bc=B0,ωi=Ωi并且ωe=0。(在初始均衡中,存在一个电场,从而
Figure C0280779100423
Figure C0280779100424
漂移抵消。根据Bc的选择,其它均衡是可能的。)如果(ωi和Bc为缓慢变化的时间函数,则该均衡方程假定是有效的,但是r0=Vii保持恒定。该方程式的条件与方程式66是相同的。方程式67也是相似的,但是通量函数Ψ具有另外的项,即Ψ=πr0 2<Bz>,其中
&lang; B z &rang; = B &OverBar; z + 2 &pi; c I P ( r b 2 - r a 2 r b 2 + r a 2 ) - - - ( 77 )
以及
B &OverBar; z = - B F ( r a r 0 ) 2 - B c [ 1 - ( r a r 0 ) 2 ] . - - - ( 78 )
由该束电流引起的每单位长度的磁能为
&Integral; r a r b 2 &pi;rdr ( B z - B c 8 &pi; ) 2 = 1 2 L P I P 2 , - - - ( 79 )
根据该方程
L p = r b 2 - r a 2 r b 2 + r a 2 2 &pi; 2 r 0 2 c 2 以及
&lang; B z &rang; = B &OverBar; z + c &pi;r 0 2 L p I p . - - - ( 80 )
因而对方程式70的电子感应加速器条件进行修改,从而
&PartialD; B &OverBar; z &PartialD; t = - 2 &PartialD; B c &PartialD; t - L p c &pi;r 0 2 &PartialD; I p &PartialD; t , - - - ( 81 )
以及方程式67变为:
&PartialD; V i &PartialD; t = e m i r 0 c &PartialD; B c &PartialD; t = - e 2 m i c r 0 &PartialD; B &OverBar; z &PartialD; t - e m i L p 2 &pi; r 0 &PartialD; I p &PartialD; t . - - - ( 82 )
积分后
&Delta; B &OverBar; z = - 2 B 0 [ 1 + r b 2 - r a 2 r 0 2 ] [ W W 0 - 1 ] . - - - ( 83 )
对于W0=100eV和W=100keV,则 &Delta; B &OverBar; z = - 7.49 kG . 方程式81和82的积分确定场线圈产生的磁场值:
B c = B 0 W W 0 = 2.19 kG - - - ( 84 )
以及
B F = B F 0 - ( r 0 r a ) 2 &Delta; B &OverBar; z - ( r 0 2 - r a 2 r a 2 ) &Delta; B c = 25 kG . - - - ( 85 )
如果最终的能量是200keV,则Bc=3.13kG以及BF=34.5kG。通量线圈中的磁能将是 B F 2 8 &pi; &pi; r F 2 l = 172 kJ . 与140G的磁场相对应,等离子体电流最初为0.225kA/cm,该等离子体电流增加到10kA/cm,磁场增加到6.26kG。在上述的计算中,忽略了由库仑碰撞引起的阻力。在注入/捕获阶段,它相当于0.38V/cm。它随电子温度在加速期间的增加而降低。假如在100μs内加速到200keV,则所包含的感应阻力为4.7V/cm。
电子感应加速器通量线圈320也平衡由碰撞和感应产生的阻力。摩擦和感应阻力可以由方程式描述为:
&PartialD; V b &PartialD; t = - V b [ 1 t be + 1 t bi ] - e m b L 2 &pi;r 0 &PartialD; I b &PartialD; t , - - - ( 86 )
其中(Ti/mi)<Vb<(Te/m)。这里,Vb为束速度,Te和Ti为电子和离子温度,Ib为束离子电流,以及
L = 0.0127 r 0 [ ln ( 8 r 0 a ) - 7 4 ] = 0.71 &mu;H
是环的电感。同样,r0=20cm,α=4cm。
库仑阻力通过下式确定
t be = 3 4 2 &pi; ( m i m ) T e 3 / 2 ne 4 ln &Lambda; = 195 &mu; sec
t bi = 2 2 m i W b 3 / 2 4 &pi;ne 4 ln &Lambda; = 54.8 &mu; sec - - - ( 87 )
为了补偿该阻力,电子感应加速器通量线圈320必须提供1.9V/cm的电场(0.38V/cm用于库仑阻力,1.56V/cm用于感应阻力)。电子感应加速器通量线圈320内的磁场必须增加78G/μs,以便达到该目的,在此例中Vb将为常量。电流达到4.5kA的上升时间为18μs,从而磁场BF将增加1.4kG。电子感应加速器通量线圈320内所需的磁场能量为
B F 2 8 &pi; &times; &pi; r F 2 l = 394 Joules ( l = 115 cm ) . - - - ( 88 )
电子感应加速器的形成技术
在约束系统300内形成FRC的另一优选方法在这里称为电子感应加速器形成技术。该技术以采用电子感应加速器通量线圈320直接驱动电子感应加速器的感应电流来加速循环等离子体束335为基础。该技术的优选实施例采用了附图25描述的约束系统300,除了不需要低能离子束的注入之外。
如图所示,电子感应加速器形成技术中的主要组成部分是电子感应加速器通量线圈320,它沿室310的轴安装在室310的中心。由于其分开的平行绕组结构,所述线圈320表现出非常低的电感,以及,当与合适的电源耦合时,该线圈320具有低LC时间常数,这能使通量线圈320中的电流快速斜线上升。
优选地,通过给外场线圈325、330通电开始形成FRC。这就提供了轴向引导场以及端部附近的径向磁场分量,从而轴向地约束注入到室310内的等离子体。一旦建立足够的磁场,则从背景等离子源345自己的电源向背景等离子源345供电。从枪中发射出去的等离子体沿轴向引导场流动并且在温度的作用下轻微散开。当等离子体到达室310的中平面时,就建立了一个连续的、轴向延伸的、缓慢运动的冷的等离子体环形层。
在这一点上,电子感应加速器通量线圈320通电。该线圈320内快速上升的电流导致该线圈内部快速变化的轴向通量。由于感应作用,轴向通量的这种快速增加导致了方位角电场E的产生(参见图29),该电场透过所述通量线圈周围的空间。根据麦克斯韦方程式,该电场直接正比于所述线圈内磁通量强度的变化,即更快的电子感应加速器的线圈电流的斜线上升将导致更强的电场。
感生电场与等离子体内的带电粒子耦合,从而导致有质动力,该有质动力对环形等离子体层内的粒子进行加速。由于具有较小的质量,电子是首先受到加速的种类。因而,通过该过程形成的初始电流主要归因于电子。然而,足够的加速时间(约好几百微秒)也将最终导致离子电流。参考图29,电场对电子和离子反向加速。一旦两个种类都达到了它们的末速,电流几乎由离子和电子同等地携带。
如上所述,由旋转等离子体携带的电流产生自身磁场。当由等离子体层内的电流产生的自身磁场变得与外场线圈325、330产生的磁场可以相比时,实际的FRC拓扑结构就发生了。在这一点上,出现磁的重新连接,最初由磁场在外部产生的开放场线开始闭合并且形成FRC通量表面(参见图8和10)。
通过该方法建立的基FRC表现出适度的磁场和粒子能量,它们典型地不在反应堆相关的操作参数上。然而,只要电子感应加速器通量线圈320内的电流继续快速上升,则感应的电子加速场就将会持续。该过程的作用在于:FRC的能量和总磁场强度继续增加。因而,该过程的程度首先受到通量线圈供电的限制,因为电流的连续供给需要大规模的能量存储库。然而,原则上,直接把系统加速到反应堆的相关条件。
对于场反向,循环等离子体束335优选加速到约100eV的转动能,优选的范围为约75eV至125eV。为了达到聚变相关的条件,循环等离子体束335优选加速到约200keV,优选的范围为约100keV至3.3MeV。如上所述,当把离子束加入到循环等离子体束335中时,等离子体束335使离子束去极化。
实验一束捕获和FRC形成
实验1:在磁约束容器中传播和捕获中性束以产生FRC。
束传播和捕获以下列参数水平成功演示:
●真空室尺寸:直径约1m,长度约1.5m。
●电子感应加速器线圈半径为10cm。
●等离子体束轨道半径为20cm。
●测得的流动束等离子体的平均动能约为100eV,密度约为1013cm-3,运动温度的数量级为10eV,脉冲长度约为20μs。
●捕获容积内产生的平均磁场约为100G,斜线上升期为150μs。源:外部线圈和电子感应加速器线圈。
●中性背景等离子体(基本上为氢气)的特征在于:平均密度约为1013cm-3,运动温度小于10eV。
该束在爆燃型等离子体枪中产生。等离子体束源为中性氢气,该氢气经一个特定喷气阀通过该枪的后部射入。在总体上为圆柱形的装置内使用不同几何设计的二极管组件。充电电压一般调整在5和7.5kV之间。该枪内的峰值击穿电流超过250,000A。在部分实验进行期间,附加的预离子化的等离子体通过在中性气体注入前或后或者期间供给到中央的枪二极管组件内的小外周电缆枪阵列的方式提供。这提供大于25μs的延长脉冲长度。
射出的低能中性束通过在进入主真空室之前流过由非导电材料制成的漂移管而冷却。当流过这个管时,等离子体束也借助永磁体而预磁化。
在所述束传播通过漂移管并进入所述室时,该束自极化,并且导致束内电场产生,所述束内电场使作用在该束上的磁场力发生偏转。由于该机制,可以把具有上述特征的束传播通过磁场区域而不发生偏转。
当进一步渗透进所述室时,所述束到达希望的轨道位置并且遇到一个背景等离子体层,所述背景等离子体层由电缆枪和其它表面飞弧(flashover)源的阵列提供。接近足够的电子密度会导致所述束释放其自极化场,并跟随单一粒子类的轨道,同时基本上地捕获该束。法拉第杯和B-点探针测量证实该束的轨道和该束的捕获。人们观察到该束在捕获时已经实现了理想的环形轨道。该束等离子体沿其轨道运行约3/4圈。该测量表明:连续的摩擦和感应损失导致该束粒子释放足够的能量,从而从理想的轨道向内弯曲,并且在3/4圈标记附近处撞击电子感应加速器的线圈表面。为防止这种现象,该损失可以由电子感应加速器线圈感应地驱动粒子而对轨道的束供给额外的能量来加以补偿。
实验2:采用结合的束/电子感应加速器形成技术的FRC形成。
采用结合的束/电子感应加速器形成技术成功地演示了FRC的形成。在直径为1m、长度为1.5m的室中实验性地实施结合束/电子感应加速器形成技术,所采用的外加磁场最大到500G,来自电子感应加速器通量线圈320的磁场最大到5kG,真空度为1.2×10-5托。在实验中,背景等离子体的密度为1013cm-3,离子束为中性氢气束,该氢气束的密度为1.2×1013cm-3,速度为2×107cm/s,脉冲长度(在一半高度处)约为20μs。实验中观察到了场反向。
实验3:采用电子感应加速器形成技术的FRC形成。
采用电子感应加速器形成技术以下面的参数水平成功地演示了FRC的形成:
●真空室尺寸:直径约1m,长度约1.5m。
●电子感应加速器线圈半径为10cm。
●等离子体轨道半径为20cm。
●真空室内产生的平均外部磁场最大到100G,斜线上升期为150μs,反射系数为2比1。(源:外部线圈和电子感应加速器线圈)。
●背景等离子体(基本上为氢气)的特征在于:平均密度约为1013cm-3,运动温度小于10eV。
●该配置的寿命受到实验中存储的总能量的限制,通常约为30μs。
首先由两组同轴电缆枪注入背景等离子体层,从而实验得以继续,所述电缆枪以环状形式安装在所述室内。每8只枪的集合安装在两个镜线圈组件之一上。该枪在方位角上等距离隔开并且相对于另一组偏移。该装置允许枪同时发射,从而产生环形的等离子体层。
当建立这个层时,给电子感应加速器通量线圈通电。电子感应加速器通量线圈绕组中的上升电流导致该线圈内通量的增加,从而产生了在电子感应加速器线圈周围弯曲的方位角电场。快速的斜线上升和电子感应加速器通量线圈内的高电流产生了强电场,该强电场对环形等离子体层进行加速,从而感应出相当大的电流。足够强的等离子体电流产生自身磁场,从而改变外加磁场,导致场反向配置的产生。采用B-点环的详细测量标识了FRC的范围、强度和持续时间。
图30中通过B-点探针信号的轨迹示出了典型数据的一个例子。数据曲线A代表实验的室轴向中平面(距每一端板75cm)和径向15cm位置处的轴向磁场分量的绝对强度。数据曲线B代表所述室轴向中平面和径向30cm位置处的轴向磁场分量的绝对强度。因此,曲线A数据组表示燃料等离子体层(位于电子感应加速器线圈和等离子体之间)内部的磁场强度,曲线B数据组表明燃料等离子体层外部的磁场强度。该数据清楚地表明内部磁场在约23至47μs之间反向(方向为负),而外部场仍然为正,即并不反向。反向的时间受到电子感应加速器线圈内电流的斜线上升的限制。一旦在电子感应加速器线圈内达到峰值电流,燃料等离子体层内的感生电流开始降低并且FRC快速衰退。到现在为止,FRC的寿命受到实验中可存储的能量的限制。至于注入和捕获实验,该系统能够进行升级,以便给反应堆相关参数提供更长的FRC寿命和加速度。
总之,该技术不仅产生小型FRC,而且不易受影响和可以直接进行实施。最重要的,通过该方法产生的基FRC能够容易地加速到任何转动能和磁场强度的理想水平。这对聚变应用和高能燃料束的经典约束来说是至关重要的。
实验4:采用电子感应加速器形成技术的FRC形成。
采用电子感应加速器形成技术来形成FRC的尝试已经在直径为1m、长度为1.5m的室中实验性地实施,其中所采用的外加磁场最大到500G,来自电子感应加速器通量线圈320的磁场最大到5kG,真空度为5×10-6托。在实验中,背景等离子体基本上包含密度为1013cm-3、寿命约为40μs的氢。实验中观察到了场反向。
聚变
很明显的,如上所述在约束系统300内形成FRC的这两种技术或类似技术能产生具有适合于在其中引发核聚变的特性的等离子体。更具体地说,通过这些方法形成的FRC可以加速到转动能和磁场强度的任何理想水平。这对聚变应用和高能燃料束的经典约束来说是至关重要的。因而,在约束系统300内,在足够的时间期限内捕获和约束高能等离子体束以引起聚变反应成为了可能。
为适应聚变,通过这些方法形成的FRC优选地通过电子感应加速器加速而加速到转动能和磁场强度的适当水平。然而,聚变倾向于需要一组特殊的物理条件以满足要发生的任何反应。另外,为了达到有效的燃料燃耗率和获得正能量平衡,所述燃料必须保持这种状态,在延长的时间段内基本上不发生变化。这是很重要的,因为高的运动温度和/或能量是聚变相关状态的特征。因此,该状态的产生需要相当大的输入能量,只有大部分燃料发生聚变,才能够恢复这些输入的能量。结果,燃料的约束时间不得不比其燃烧时间更长。这就导致了正能量平衡和随后的净能量输出。
本发明显著的优点在于:这里描述的约束系统和等离子体能够接受较长的约束时间,即超过燃料燃烧时间的约束时间。因而聚变的典型状态的特征在于以下物理条件(其倾向于基于燃料和操作模式变化):
平均离子温度:范围约为30-230keV,优选的范围约为80-230keV
平均电子温度:范围约为30-100keV,优选的范围约为80-100keV
燃料束的相干能量(注入的离子束和循环等离子体束):范围约为100keV-3.3MeV,优选的范围约为300keV-3.3MeV。
总磁场:范围约为47.5-120kG,优选的范围约为95-120kG(外加磁场范围约为2.5-15kG,优选的范围约为5-15G)。
经典约束时间:大于燃料燃烧时间,优选的范围约为10-100秒。
燃料离子密度:范围为约1014至小于1016cm-3,优选的范围约为1014-1015cm-3
总聚变功率:优选的范围约为50-450kW/cm(每厘米室长的功率)
为了适应上述的聚变状态,FRC优选加速到一个相干旋转能量水平,该相干旋转能量水平的优选范围约为100keV-3.3MeV,更优选的范围约为300keV-3.3MeV,磁场强度水平的范围优选地约为45-120kG,更优选的范围约90-115kG。在这些水平下,高能离子束能够注入FRC中,并且被捕获以形成等离子体束层,其中等离子体束离子被磁约束,等离子体束电子被电约束。
优选地,将电子温度保持在实际可能的最低温度,以减少轫致辐射的量,否则,该轫致辐射可以导致辐射能量的损失。本发明的静电能阱提供了达到该目标的有效方式。
离子温度优选地保持在提供有效的燃耗率的水平上,因为聚变的截面是离子温度的函数。如本申请中讨论的,燃料离子束的高直接能量对提供经典传输是必不可少的。它也使燃料等离子体上的不稳定效应最小化。磁场与该束旋转能量一致。它由等离子体束产生(自身场),然后提供支持和力,以使等离子体束保持在理想的轨道上。
聚变产物
聚变产物主要产生于零表面附近,从那里,它们通过扩散朝分界线84(图8)显现。这归因于与电子的碰撞(因为与离子的碰撞不会改变质心,因而不会导致它们改变场线)。因为它们的高动能(产物离子具有比燃料离子高得多的能量),聚变产物能够轻松地穿过分界线84。一旦它们位于分界线84之外,它们能够沿开放的场线80离开,假定它们经历了来自离子-离子碰撞的散射。尽管该碰撞过程并不导致扩散,但是它能改变离子速度矢量的方向,从而其指向与磁场平行的方向。该开放场线80通过在FRC拓扑外提供的均匀外加场与核心部分的FRC拓扑相连。产物离子显现在不同的场线上,它们遵循能量的分布;有利地是处于旋转环形束的形式。在分界线84外部发现的强磁场(一般约100kG)内,产物离子具有相关分布的回旋半径,对大部分高能产物离子来说,该回旋半径从约为1cm的最小值变化到约为3cm的最大值。
最初,产物离子具有纵向的和转动的能量,表征为1/2M(vpar)2和1/2M(vperp)2。vperp是与围绕作为轨道中心的场线旋转有关的方位角速度。因为场线在离开FRC拓扑附近后展开,所以转动能倾向于降低,而总能量保持恒定。这就是产物离子的磁矩的绝热不变量的结果。本领域众所周知,在磁场中的轨道中运行的带电粒子具有与它们的运动相关的磁距。在粒子沿缓慢变化的磁场运行的情况下,也存在一个用1/2M(vperp)2B描述的运动绝热不变量。绕各自的场线在轨道中运行的产物离子具有磁距和与它们的运动相关的这样一种绝热不变量。因为B降低,降低的系数约为10(用场线的展开表示),从而得出:vperp将同样地降低约3.2。因而,当产物离子到达均匀场区域的时候,它们的转动能将小于它们总能量的5%;换句话说,几乎所有的能量都位于纵向分量上。
本发明允许有多种不同的变化和替代形式,附图中已示出了其一个特例,并且在本文中进行了详细描述。然而,应该可以理解,本发明并不局限于所公开的特定形式,而恰恰相反,本发明将包括所有落入所附权利要求精神和范围内的修改、等价和替代形式。

Claims (48)

1.一种用于容纳等离子体的装置,包括:
具有主轴的圆柱形的室,
与该室相连的磁场发生器,用于沿该室的主轴在室内施加磁场,
与该室相连的电流线圈,该电流线圈与该室的主轴同心,在该室内围绕该电流线圈产生方位角电场,和
等离子体源,用于把包含电子和离子的等离子体注入到该室中。
2.根据权利要求1所述的装置,其中该磁场发生器包括围绕该室延伸的多个场线圈。
3.根据权利要求2所述的装置,其中该磁场发生器包括多个镜线圈。
4.根据权利要求1-3所述的装置,其中该磁场发生器位于该室之外。
5.根据权利要求1-3所述的装置,其中该磁场发生器位于该室之中。
6.根据权利要求1-3所述的装置,其中该磁场发生器是可调的。
7.根据权利要求6所述的装置,进一步包括耦合到该磁场发生器的控制系统。
8.根据权利要求1所述的装置,其中该电流线圈是电子感应加速器通量线圈。
9.根据权利要求1所述的装置,其中该电流线圈包括多个分离线圈的平行绕组。
10.根据权利要求1所述的装置,进一步包括耦合到该室以便把离子束注入该室中的离子束注入器。
11.根据权利要求10所述的装置,其中该离子束注入器适用于把电荷中性离子束注入到该室内。
12.根据权利要求1所述的装置,其中该室具有环形横截面。
13.根据权利要求1所述的装置,其中该等离子体源包括多个背景等离子体枪,对所述的多个背景等离子体枪进行定向,以便沿该室的主轴把背景等离子体射向该室的中平面。
14.根据权利要求1所述的装置,其中该磁场发生器包括围绕该室延伸的多个场线圈,以及位置接近于该电流线圈的相对端的第一和第二镜线圈,其中该第一和第二镜线圈增加了由该电流线圈的第一和第二端部附近的磁场发生器产生的磁场的大小。
15.根据权利要求1所述的装置,进一步包括离子束注入器,该离子束注入器以垂直于可由该磁场发生器产生的磁场的场线的方向把离子束注入该室中。
16.根据权利要求15所述的装置,其中该离子束是自极化的。
17.一种在权利要求1-3和8-16的装置中约束包含电子和离子的等离子体的方法,该方法包括以下步骤:
在该室内产生磁场,该磁场具有场反向配置拓扑,
在该室中产生静电场,该静电场形成静电势能阱,以及
在场反向配置的磁场中通过磁力约束多个等离子体的离子,以及
在势能阱中通过静电约束多个等离子体的电子。
18.根据权利要求17所述的方法,其中通过磁力约束多个离子的步骤包括对多个等离子体的离子进行经典容纳。
19.根据权利要求18所述的方法,其中通过静电约束多个电子的步骤包括对多个等离子体的电子进行经典容纳。
20.根据权利要求18所述的方法,其中多个等离子体的离子的经典容纳包括在大于该等离子体燃烧时间的时间段内把该离子容纳在该室内。
21.根据权利要求17所述的方法,进一步包括使所述多个等离子体的离子在场反向配置磁场中在大半径电子感应加速器轨道内沿轨道运行的步骤,其中该轨道半径超过导致波动的反常传输的波长。
22.根据权利要求17-20所述的方法,其中通过磁力约束多个等离子体的离子的步骤包括:由于作用于所述多个等离子体的离子的洛伦兹力,使所述多个等离子体的离子在场反向配置磁场中沿轨道运行。
23.根据权利要求22所述的方法,进一步包括使多个等离子体的离子在反磁方向上沿轨道运行的步骤。
24.根据权利要求23所述的方法,进一步包括将多个离子的漂移轨道导向反磁方向的步骤。
25.根据权利要求17所述的方法,进一步包括在该室中产生外加磁场的步骤。
26.根据权利要求25所述的方法,进一步包括使等离子体旋转和形成自身磁场的步骤。
27.根据权利要求26所述的方法,进一步包括结合该外加磁场和该自身磁场以形成场反向配置磁场的步骤。
28.根据权利要求18所述的方法,进一步包括冷却多个等离子体的电子的步骤。
29.根据权利要求28所述的方法,进一步包括形成聚变产物离子的步骤。
30.根据权利要求29所述的方法,其中冷却多个等离子体的电子的步骤包括把来自该静电势阱的势能的能量转移到该聚变产物离子的步骤。
31.根据权利要求17所述的方法,其中该等离子体包括高级燃料离子类型。
32.根据权利要求25所述的方法,进一步包括以下步骤:
控制该外加磁场,以产生和控制静电场。
33.一种操作如权利要求1-3和8-16中任一项所述的装置的方法,包括以下步骤:
在室中产生第一磁场,
把离子束注入该室内,
在该室内的第一磁场中注入离子束,
在包含极向自身磁场的室内形成旋转等离子体束,
施加方位角电场,以便将该等离子体束的旋转速度增加到一个速度,在该速度上,该等离子体束内的该自身磁场的大小克服导致场反向的第一磁场的大小,以及
形成具有场反向配置拓扑的结合磁场。
34.一种操作如权利要求1-3和8-16中任一项所述的装置的方法,包括以下步骤:
在室内产生第一磁场,
把等离子体注入该室内的第一磁场中,
在该室内施加一个方位角电场,使该等离子体旋转并形成包括极向自身磁场的第二磁场,以及
增加该等离子体的旋转速度,以便将该等离子体内的第二磁场的大小增加到克服导致场反向的第一磁场的大小的水平,以及
形成具有场反向配置拓扑的结合磁场。
35.根据权利要求33所述的方法,其中产生第一磁场的步骤包括给围绕该室延伸的多个场线圈通电。
36.根据权利要求33所述的方法,其中横穿第一磁场地注入该离子束。
37.根据权利要求33所述的方法,进一步包括增加第一磁场大小,以使该旋转束等离子体维持在预定半径大小的步骤。
38.根据权利要求33所述的方法,其中施加该电场的步骤包括给该室内的电子感应加速器通量线圈通电的步骤。
39.根据权利要求38所述的方法,进一步包括增加通过该通量线圈的电流的改变速率,以便将该旋转等离子体束加速到聚变水平的转动能的步骤。
40.根据权利要求39所述的方法,进一步包括以下步骤:把聚变水平能量的离子束注入场反向配置的磁场中,并且在该场反向配置的磁场中的电子感应加速器轨道中捕获该束。
41.根据权利要求33所述的方法,其中注入该离子束的步骤进一步包括以下步骤:
使该离子束中性化,
消耗来自中性离子束的电极化,以及
将由该外加磁场产生的洛伦兹力施加到该中性离子束上,以便把该离子束弯曲到电子感应加速器轨道中。
42.根据权利要求34所述的方法,其中产生第一磁场的步骤包括给围绕该室延伸的多个场线圈通电。
43.根据权利要求34所述的方法,其中横穿第一磁场地注入该离子束。
44.根据权利要求34所述的方法,进一步包括增加第一磁场大小,以使该旋转束等离子体维持在预定半径大小的步骤。
45.根据权利要求34所述的方法,其中施加该电场的步骤包括给该室内的电子感应加速器通量线圈通电的步骤。
46.根据权利要求45所述的方法,进一步包括增加通过该通量线圈的电流的改变速率,以便将该旋转等离子体束加速到聚变水平的转动能的步骤。
47.根据权利要求46所述的方法,进一步包括以下步骤:把聚变水平能量的离子束注入场反向配置的磁场中,并且在该场反向配置的磁场中的电子感应加速器轨道中捕获该束。
48.根据权利要求34所述的方法,其中注入该离子束的步骤进一步包括以下步骤:
使该离子束中性化,
消耗来自中性离子束的电极化,以及
将由该外加磁场产生的洛伦兹力施加到该中性离子束上,以便把该离子束弯曲到电子感应加速器轨道中。
CNB028077911A 2001-02-01 2002-02-01 一种约束等离子体的设备和方法 Expired - Fee Related CN1269387C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US26607401P 2001-02-01 2001-02-01
US60/266,074 2001-02-01
US29708601P 2001-06-08 2001-06-08
US60/297,086 2001-06-08
US10/066,424 US6664740B2 (en) 2001-02-01 2002-01-31 Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US10/066,424 2002-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2006100936943A Division CN101018444B (zh) 2001-02-01 2002-02-01 场反向配置中的等离子体的磁和静电约束

Publications (2)

Publication Number Publication Date
CN1500371A CN1500371A (zh) 2004-05-26
CN1269387C true CN1269387C (zh) 2006-08-09

Family

ID=27370973

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028077911A Expired - Fee Related CN1269387C (zh) 2001-02-01 2002-02-01 一种约束等离子体的设备和方法

Country Status (23)

Country Link
US (22) US6664740B2 (zh)
EP (3) EP2187713B9 (zh)
JP (5) JP4112983B2 (zh)
KR (2) KR100883621B1 (zh)
CN (1) CN1269387C (zh)
AT (1) ATE464643T1 (zh)
AU (3) AU2002245362C1 (zh)
BR (3) BRPI0206814B1 (zh)
CA (1) CA2437360C (zh)
CY (1) CY1110220T1 (zh)
DE (1) DE60235959D1 (zh)
DK (3) DK2187712T3 (zh)
EA (2) EA011288B1 (zh)
ES (3) ES2550800T3 (zh)
HK (3) HK1065918A1 (zh)
IL (3) IL157159A0 (zh)
MX (1) MXPA03006931A (zh)
NZ (1) NZ527344A (zh)
PL (1) PL206448B1 (zh)
PT (2) PT2187713E (zh)
SG (1) SG149686A1 (zh)
SK (2) SK288027B6 (zh)
WO (1) WO2002062112A2 (zh)

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664740B2 (en) * 2001-02-01 2003-12-16 The Regents Of The University Of California Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US6611106B2 (en) * 2001-03-19 2003-08-26 The Regents Of The University Of California Controlled fusion in a field reversed configuration and direct energy conversion
US20070206716A1 (en) * 2003-03-21 2007-09-06 Edwards W F Plasma containment method
JP2007524957A (ja) * 2003-03-21 2007-08-30 ユタ州立大学 プラズマ閉じ込めのためのシステムおよび方法
US7079370B2 (en) * 2003-04-28 2006-07-18 Air Products And Chemicals, Inc. Apparatus and method for removal of surface oxides via fluxless technique electron attachment and remote ion generation
US8253057B1 (en) 2004-09-03 2012-08-28 Jack Hunt System and method for plasma generation
KR100599094B1 (ko) * 2004-11-29 2006-07-12 삼성전자주식회사 코일의 권선수 조절에 의한 전자기 유도 가속장치
KR100599092B1 (ko) * 2004-11-29 2006-07-12 삼성전자주식회사 구동 주파수 조절에 의한 전자기유도 가속장치
US9788771B2 (en) * 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US20060198483A1 (en) * 2005-03-04 2006-09-07 General Fusion Inc. Magnetized plasma fusion reactor
US20060198486A1 (en) * 2005-03-04 2006-09-07 Laberge Michel G Pressure wave generator and controller for generating a pressure wave in a fusion reactor
SI1856702T1 (sl) * 2005-03-07 2012-11-30 Univ California Plazemski sistem za generiranje elektrike
DK1856702T3 (da) * 2005-03-07 2012-09-03 Univ California Plasma-elektrisk generationssystem
US9123512B2 (en) 2005-03-07 2015-09-01 The Regents Of The Unviersity Of California RF current drive for plasma electric generation system
US9607719B2 (en) * 2005-03-07 2017-03-28 The Regents Of The University Of California Vacuum chamber for plasma electric generation system
US8031824B2 (en) 2005-03-07 2011-10-04 Regents Of The University Of California Inductive plasma source for plasma electric generation system
US7562638B2 (en) * 2005-12-23 2009-07-21 Lam Research Corporation Methods and arrangement for implementing highly efficient plasma traps
US7482607B2 (en) 2006-02-28 2009-01-27 Lawrenceville Plasma Physics, Inc. Method and apparatus for producing x-rays, ion beams and nuclear fusion energy
US9036765B2 (en) * 2006-05-30 2015-05-19 Advanced Fusion Systems Llc Method and system for inertial confinement fusion reactions
WO2008024927A2 (en) * 2006-08-23 2008-02-28 Fresco Anthony N Solute ion coulomb force acceleration and electric field monopole passive voltage source
JP2008070570A (ja) * 2006-09-13 2008-03-27 Ricoh Co Ltd 現像装置、画像形成装置
US8092605B2 (en) 2006-11-28 2012-01-10 Applied Materials, Inc. Magnetic confinement of a plasma
WO2008074161A1 (en) * 2006-12-21 2008-06-26 Athena Industrial Technologies Inc. Linear structure inspection apparatus and method
US20110127915A1 (en) * 2007-01-18 2011-06-02 Edwards W Farrell Plasma containment
RU2007105087A (ru) 2007-02-12 2008-08-20 Борис Федорович Полторацкий (RU) Плазменный преобразователь энергии и электромагнитный вихревой реактор для его осуществления
US20080240332A1 (en) * 2007-03-29 2008-10-02 Family Condecast EV 2 inertial guided themonuclear perfumagnetron fusion reactor
JP2009147556A (ja) * 2007-12-12 2009-07-02 Sony Corp アンテナ、通信装置及びアンテナ製造方法
EP2294582B1 (en) 2008-05-02 2018-08-15 Shine Medical Technologies, Inc. Device and method for producing medical isotopes
US8346662B2 (en) * 2008-05-16 2013-01-01 Visa U.S.A. Inc. Desktop alert with interactive bona fide dispute initiation through chat session facilitated by desktop application
AU2009261947B2 (en) * 2008-06-27 2015-08-20 The Regents Of The University Of California Circuit for direct energy extraction from a charged-particle beam
CA2738296A1 (en) * 2008-09-24 2010-04-01 Visa International Service Association Intelligent alert system and method
CA2738457A1 (en) 2008-09-25 2010-04-01 Visa International Service Association Systems and methods for sorting alert and offer messages on a mobile device
US20110200153A1 (en) * 2008-10-16 2011-08-18 Ferreira Jr Moacir L Magnetic and electrostatic nuclear fusion reactor
KR101001391B1 (ko) 2008-12-23 2010-12-14 한국기초과학지원연구원 플라즈마 탐침 구동장치
JP5169844B2 (ja) * 2009-01-06 2013-03-27 三菱電機株式会社 方向性結合器
RU2503159C2 (ru) 2009-02-04 2013-12-27 Дженерал Фьюжен, Инк. Устройство для сжатия плазмы и способ сжатия плазмы
US9449327B2 (en) * 2009-04-28 2016-09-20 Visa International Service Association Merchant alert based system and method including customer presence notification
US9710802B2 (en) 2009-04-28 2017-07-18 Visa International Service Association Merchant competition alert
US10387885B2 (en) 2009-04-28 2019-08-20 Visa International Service Association SKU level control and alerts
US20100274653A1 (en) * 2009-04-28 2010-10-28 Ayman Hammad Notification social networking
US9245654B2 (en) 2009-05-19 2016-01-26 Nonlinear Ion Dynamics, Llc Rotating high-density fusion reactor for aneutronic and neutronic fusion
US20110188623A1 (en) * 2009-05-19 2011-08-04 Wong Alfred Y Rotating High Density Fusion Reactor for aneutronic and neutronic fusion
US20150380113A1 (en) 2014-06-27 2015-12-31 Nonlinear Ion Dynamics Llc Methods, devices and systems for fusion reactions
US10269458B2 (en) * 2010-08-05 2019-04-23 Alpha Ring International, Ltd. Reactor using electrical and magnetic fields
EP2460160B8 (en) 2009-07-29 2013-12-04 General Fusion, Inc. Systems and methods for plasma compression with recycling of projectiles
US20110055058A1 (en) 2009-08-28 2011-03-03 Ayman Hammad Contact alert system and method
US20110089834A1 (en) * 2009-10-20 2011-04-21 Plex Llc Z-pinch plasma generator and plasma target
WO2012003009A2 (en) 2010-01-28 2012-01-05 Shine Medical Technologies, Inc. Segmented reaction chamber for radioisotope production
US9025717B2 (en) 2010-03-18 2015-05-05 Brent Freeze Method and apparatus for compressing plasma to a high energy state
US11000705B2 (en) * 2010-04-16 2021-05-11 W. Davis Lee Relativistic energy compensating cancer therapy apparatus and method of use thereof
US10319480B2 (en) 2010-08-05 2019-06-11 Alpha Ring International, Ltd. Fusion reactor using azimuthally accelerated plasma
CA2826664C (en) 2011-02-25 2014-09-23 General Fusion, Inc. Pressure wave generator with movable control rod for generating a pressure wave in a medium
US10734126B2 (en) 2011-04-28 2020-08-04 SHINE Medical Technologies, LLC Methods of separating medical isotopes from uranium solutions
RS56260B1 (sr) * 2011-11-14 2017-11-30 Univ California Sistem za formiranje i održavanje frc visokih performansi
US9767925B2 (en) 2012-03-23 2017-09-19 The Trustees Of Princeton University Method, apparatus, and system to reduce neutron production in small clean fusion reactors
RU2649662C2 (ru) 2012-04-05 2018-04-05 Шайн Медикал Текнолоджиз, Инк. Водная сборка и способ управления
US10811159B2 (en) * 2012-05-10 2020-10-20 The Trustees Of Princeton University Fueling method for small, steady-state, aneutronic FRC fusion reactors
US10229756B2 (en) 2013-08-22 2019-03-12 Princeton Satellite Systems, Inc. In space startup method for nuclear fusion rocket engines
WO2014036155A1 (en) * 2012-08-28 2014-03-06 Jh Quantum Tehcnology, Inc. Material processor with plasma generator
WO2014036147A1 (en) * 2012-08-28 2014-03-06 Jh Quantum Technology, Inc. System and method for plasma generation
WO2014032186A1 (en) 2012-08-29 2014-03-06 General Fusion, Inc. Apparatus for accelerating and compressing plasma
CN103093843B (zh) * 2013-01-21 2015-08-19 中国科学院合肥物质科学研究院 一种基于磁流体发电原理的新型偏滤器
BR112015017219B1 (pt) 2013-02-08 2018-01-09 General Fusion Inc. Gerador de onda de pressão com um pistão lançado por sabot
US10515726B2 (en) 2013-03-11 2019-12-24 Alpha Ring International, Ltd. Reducing the coulombic barrier to interacting reactants
WO2014204531A2 (en) * 2013-03-11 2014-12-24 Wong Alfred Y Rotating high density fusion reactor for aneutronic and neutronic fusion
US10049773B2 (en) * 2013-04-03 2018-08-14 Lockheed Martin Corporation Heating plasma for fusion power using neutral beam injection
US9959941B2 (en) 2013-04-03 2018-05-01 Lockheed Martin Corporation System for supporting structures immersed in plasma
US9934876B2 (en) 2013-04-03 2018-04-03 Lockheed Martin Corporation Magnetic field plasma confinement for compact fusion power
US9959942B2 (en) * 2013-04-03 2018-05-01 Lockheed Martin Corporation Encapsulating magnetic fields for plasma confinement
US9928926B2 (en) 2013-04-03 2018-03-27 Lockheed Martin Corporation Active cooling of structures immersed in plasma
US10274225B2 (en) 2017-05-08 2019-04-30 Alpha Ring International, Ltd. Water heater
KR102513127B1 (ko) * 2013-06-27 2023-03-23 논리니어 이온 다이나믹스 엘엘씨 핵융합 반응을 위한 방법, 장치 및 시스템
GB2510447B (en) * 2013-09-13 2015-02-18 Tokamak Energy Ltd Toroidal field coil for use in a fusion reactor
JP6876435B2 (ja) * 2013-09-24 2021-05-26 ティーエーイー テクノロジーズ, インコーポレイテッド 高性能frcを形成し維持するシステムおよび方法
US9305749B2 (en) * 2014-02-10 2016-04-05 Applied Materials, Inc. Methods of directing magnetic fields in a plasma source, and associated systems
KR20160132951A (ko) * 2014-03-11 2016-11-21 에너지 매터 컨버전 코포레이션 자기 커스프 구성에서 높은 에너지 하전 입자들을 한정하는 방법 및 장치
US10453575B1 (en) 2014-06-17 2019-10-22 Alfred Y. Wong Submicron fusion devices, methods and systems
CA2958399C (en) 2014-08-19 2017-07-04 General Fusion Inc. System and method for controlling plasma magnetic field
CN104270163B (zh) * 2014-09-23 2017-03-29 李建尧 一种非接触式收音机
US9406405B2 (en) 2014-09-28 2016-08-02 Joel Guild Rogers Fusion energy device with internal ion source
PT3633683T (pt) 2014-10-13 2021-06-03 Tae Tech Inc Processo de fusão e compressão de toros compactos
JP6855374B2 (ja) 2014-10-30 2021-04-07 ティーエーイー テクノロジーズ, インコーポレイテッド 高性能frcを形成し維持するシステムおよび方法
CN105779050B (zh) 2015-01-08 2019-05-28 非线性离子动力有限责任公司 使用化学反应器中的旋转/分离系统将天然气转化成液态
KR102598740B1 (ko) 2015-05-12 2023-11-03 티에이이 테크놀로지스, 인크. 원하지 않는 맴돌이 전류를 감소시키는 시스템 및 방법
IL259313B2 (en) * 2015-11-13 2023-11-01 Tae Tech Inc Systems and methods for positioning stability of FRC plasma
CN105679380A (zh) * 2016-01-11 2016-06-15 王傑 常温氢俘获热中子核聚变点燃自持链式氢反应堆
WO2017172815A1 (en) * 2016-03-29 2017-10-05 Fusion One Corporation Methods and apparatus for coincidentally forming a virtual cathode and a high beta plasma
US10354761B2 (en) 2016-04-26 2019-07-16 John Fenley Method and apparatus for periodic ion collisions
EP3465694A4 (en) * 2016-06-03 2020-01-15 TAE Technologies, Inc. INTERFERENCE-FREE MEASUREMENTS OF A LOW AND ZERO MAGNET FIELD AT HIGH TEMPERATURE PLASMS
UA128079C2 (uk) 2016-10-28 2024-04-03 Тае Текнолоджіз, Інк. Системи і способи поліпшеної підтримки підвищених енергій високоефективної конфігурації з оберненим полем, що передбачають використання інжекторів нейтральних пучків з настроюваними енергіями пучків
AU2017355652B2 (en) 2016-11-04 2022-12-15 Tae Technologies, Inc. Systems and methods for improved sustainment of a high performance FRC with multi-scaled capture type vacuum pumping
UA126673C2 (uk) * 2016-11-15 2023-01-11 Тае Текнолоджіз, Інк. Системи і способи поліпшеної підтримки високоефективної конфігурації з оберненим полем і нагрівання електронів за допомогою вищих гармонік швидких хвиль у високоефективній конфігурації з оберненим полем
CN106816182B (zh) * 2016-12-20 2018-03-27 华中科技大学 一种注入电子收集器
CN107301882B (zh) * 2017-06-12 2019-04-19 孙旭阳 一种哑铃状结构可控核聚变装置
US20200381134A1 (en) * 2017-08-01 2020-12-03 Seven Z's Trust Light-Nuclei Element Synthesis
US10811144B2 (en) 2017-11-06 2020-10-20 General Fusion Inc. System and method for plasma generation and compression
US11930582B2 (en) * 2018-05-01 2024-03-12 Sunbeam Technologies, Llc Method and apparatus for torsional magnetic reconnection
WO2019217998A1 (en) * 2018-05-13 2019-11-21 Quantum Spring Research Pty Ltd Ion beam device and method for generating heat and power
RU2699243C1 (ru) * 2018-09-25 2019-09-04 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Термоядерный реактор
US11482342B2 (en) * 2018-10-07 2022-10-25 Tanner L. Horne Nuclear fusion reactor with toroidal superconducting magnetic coils implementing inertial electrostatic heating
CN111091917B (zh) * 2018-12-29 2021-04-13 上海宏澎能源科技有限公司 聚变装置以及中子发生器
WO2020226618A1 (en) * 2019-05-06 2020-11-12 Google Llc Charged particle beam power transmission system
US11672074B2 (en) 2019-07-11 2023-06-06 Lockheed Martin Corporation Shielding structures in plasma environment
US11049619B1 (en) * 2019-12-23 2021-06-29 Lockheed Martin Corporation Plasma creation and heating via magnetic reconnection in an encapsulated linear ring cusp
US10966310B1 (en) * 2020-04-03 2021-03-30 Wisconsin Alumni Research Foundation High-energy plasma generator using radio-frequency and neutral beam power
IL302734A (en) * 2020-11-09 2023-07-01 Tae Tech Inc Electron beam plasma heating system, devices and methods
CN112992385B (zh) * 2021-05-06 2021-08-03 西南交通大学 一种准环对称仿星器磁场位形的设计方法
US20230038333A1 (en) * 2021-08-08 2023-02-09 Glen A. Robertson Methods for creating rapidly changing asymmetric electron surface densities for acceleration without mass ejection
US11471848B1 (en) * 2021-10-22 2022-10-18 Advanced Fusion Systems Llc Universal chemical processor
CN116013553A (zh) * 2021-10-22 2023-04-25 李粉花 一种电子注入中和的惯性静电约束聚变装置
US20230269860A1 (en) * 2022-02-21 2023-08-24 Leidos Engineering, LLC High electron trapping ratio betatron

Family Cites Families (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US454846A (en) * 1891-06-30 Cott burgess
US3120470A (en) * 1954-04-13 1964-02-04 Donald H Imhoff Method of producing neutrons
US3170841A (en) 1954-07-14 1965-02-23 Richard F Post Pyrotron thermonuclear reactor and process
US3071525A (en) * 1958-08-19 1963-01-01 Nicholas C Christofilos Method and apparatus for producing thermonuclear reactions
US3036963A (en) * 1960-01-25 1962-05-29 Nicholas C Christofilos Method and apparatus for injecting and trapping electrons in a magnetic field
BE591516A (zh) 1960-02-26
US3182213A (en) 1961-06-01 1965-05-04 Avco Corp Magnetohydrodynamic generator
US3132996A (en) 1962-12-10 1964-05-12 William R Baker Contra-rotating plasma system
US3386883A (en) 1966-05-13 1968-06-04 Itt Method and apparatus for producing nuclear-fusion reactions
US3485716A (en) * 1967-11-01 1969-12-23 Atomic Energy Commission Method and apparatus for injecting and trapping charged particles in a magnetic field
US3530036A (en) 1967-12-15 1970-09-22 Itt Apparatus for generating fusion reactions
US3530497A (en) 1968-04-24 1970-09-22 Itt Apparatus for generating fusion reactions
US3527977A (en) 1968-06-03 1970-09-08 Atomic Energy Commission Moving electrons as an aid to initiating reactions in thermonuclear devices
US3577317A (en) 1969-05-01 1971-05-04 Atomic Energy Commission Controlled fusion reactor
US3621310A (en) 1969-05-30 1971-11-16 Hitachi Ltd Duct for magnetohydrodynamic thermal to electrical energy conversion apparatus
US3664921A (en) * 1969-10-16 1972-05-23 Atomic Energy Commission Proton e-layer astron for producing controlled fusion reactions
AT340010B (de) 1970-05-21 1977-11-25 Nowak Karl Ing Einrichtung zur erzielung einer nuklearen reaktion mittels kunstlichem plasma vorzugsweise zur kontrollierten atomkernfusion
US3668065A (en) 1970-09-15 1972-06-06 Atomic Energy Commission Apparatus for the conversion of high temperature plasma energy into electrical energy
US3663362A (en) * 1970-12-22 1972-05-16 Atomic Energy Commission Controlled fusion reactor
US4001396A (en) * 1971-08-04 1977-01-04 Chinoin Pharmaceutical And Chemical Works Ltd. Hormonal product extracted from parathyroid gland and process for the preparation thereof
LU65432A1 (zh) 1972-05-29 1972-08-24
US4233537A (en) 1972-09-18 1980-11-11 Rudolf Limpaecher Multicusp plasma containment apparatus
US3800244A (en) * 1973-01-16 1974-03-26 Gen Electric Rf resonance electron excitation
US4182650A (en) * 1973-05-17 1980-01-08 Fischer Albert G Pulsed nuclear fusion reactor
US5015432A (en) 1973-10-24 1991-05-14 Koloc Paul M Method and apparatus for generating and utilizing a compound plasma configuration
US5041760A (en) 1973-10-24 1991-08-20 Koloc Paul M Method and apparatus for generating and utilizing a compound plasma configuration
US4010396A (en) 1973-11-26 1977-03-01 Kreidl Chemico Physical K.G. Direct acting plasma accelerator
FR2270733A1 (en) 1974-02-08 1975-12-05 Thomson Csf Magnetic field vehicle detector unit - receiver detects changes produced in an emitted magnetic field
US4098643A (en) 1974-07-09 1978-07-04 The United States Of America As Represented By The United States Department Of Energy Dual-function magnetic structure for toroidal plasma devices
US4057462A (en) 1975-02-26 1977-11-08 The United States Of America As Represented By The United States Energy Research And Development Administration Radio frequency sustained ion energy
US4054846A (en) 1975-04-02 1977-10-18 Bell Telephone Laboratories, Incorporated Transverse-excitation laser with preionization
US4065351A (en) 1976-03-25 1977-12-27 The United States Of America As Represented By The United States Energy Research And Development Administration Particle beam injection system
US4347621A (en) 1977-10-25 1982-08-31 Environmental Institute Of Michigan Trochoidal nuclear fusion reactor
US4303467A (en) 1977-11-11 1981-12-01 Branson International Plasma Corporation Process and gas for treatment of semiconductor devices
US4274919A (en) 1977-11-14 1981-06-23 General Atomic Company Systems for merging of toroidal plasmas
US4202725A (en) 1978-03-08 1980-05-13 Jarnagin William S Converging beam fusion system
US4189346A (en) 1978-03-16 1980-02-19 Jarnagin William S Operationally confined nuclear fusion system
US4246067A (en) 1978-08-30 1981-01-20 Linlor William I Thermonuclear fusion system
US4267488A (en) 1979-01-05 1981-05-12 Trisops, Inc. Containment of plasmas at thermonuclear temperatures
US4397810A (en) 1979-03-16 1983-08-09 Energy Profiles, Inc. Compressed beam directed particle nuclear energy generator
US4314879A (en) 1979-03-22 1982-02-09 The United States Of America As Represented By The United States Department Of Energy Production of field-reversed mirror plasma with a coaxial plasma gun
US4416845A (en) 1979-08-02 1983-11-22 Energy Profiles, Inc. Control for orbiting charged particles
DE2947498C2 (de) * 1979-11-24 1982-01-21 Degussa Ag, 6000 Frankfurt Verfahren zur Herstellung von Cyanwasserstoff
JPS5829568B2 (ja) 1979-12-07 1983-06-23 岩崎通信機株式会社 2ビ−ム1電子銃陰極線管
US4548782A (en) 1980-03-27 1985-10-22 The United States Of America As Represented By The Secretary Of The Navy Tokamak plasma heating with intense, pulsed ion beams
US4390494A (en) 1980-04-07 1983-06-28 Energy Profiles, Inc. Directed beam fusion reaction with ion spin alignment
US4350927A (en) 1980-05-23 1982-09-21 The United States Of America As Represented By The United States Department Of Energy Means for the focusing and acceleration of parallel beams of charged particles
US4317057A (en) 1980-06-16 1982-02-23 Bazarov Georgy P Channel of series-type magnetohydrodynamic generator
US4434130A (en) 1980-11-03 1984-02-28 Energy Profiles, Inc. Electron space charge channeling for focusing ion beams
US4430130A (en) * 1981-09-08 1984-02-07 Sorensen Roald H Basketball goal
US4584160A (en) * 1981-09-30 1986-04-22 Tokyo Shibaura Denki Kabushiki Kaisha Plasma devices
DE3146230A1 (de) * 1981-11-21 1983-05-26 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von n-substituierten n-isocyanatocarbonyl-carbamaten
US4543231A (en) 1981-12-14 1985-09-24 Ga Technologies Inc. Multiple pinch method and apparatus for producing average magnetic well in plasma confinement
US4560528A (en) * 1982-04-12 1985-12-24 Ga Technologies Inc. Method and apparatus for producing average magnetic well in a reversed field pinch
JPH06105597B2 (ja) * 1982-08-30 1994-12-21 株式会社日立製作所 マイクロ波プラズマ源
JPS5960899A (ja) 1982-09-29 1984-04-06 株式会社東芝 イオン・エネルギ−回収装置
US4618470A (en) 1982-12-01 1986-10-21 Austin N. Stanton Magnetic confinement nuclear energy generator
US4483737A (en) 1983-01-31 1984-11-20 University Of Cincinnati Method and apparatus for plasma etching a substrate
US4601871A (en) 1983-05-17 1986-07-22 The United States Of America As Represented By The United States Department Of Energy Steady state compact toroidal plasma production
US4650631A (en) 1984-05-14 1987-03-17 The University Of Iowa Research Foundation Injection, containment and heating device for fusion plasmas
US4639348A (en) 1984-11-13 1987-01-27 Jarnagin William S Recyclotron III, a recirculating plasma fusion system
US4615755A (en) * 1985-08-07 1986-10-07 The Perkin-Elmer Corporation Wafer cooling and temperature control for a plasma etching system
US4826646A (en) 1985-10-29 1989-05-02 Energy/Matter Conversion Corporation, Inc. Method and apparatus for controlling charged particles
US4630939A (en) * 1985-11-15 1986-12-23 The Dow Chemical Company Temperature measuring apparatus
SE450060B (sv) 1985-11-27 1987-06-01 Rolf Lennart Stenbacka Forfarande for att astadkomma fusionsreaktioner, samt anordning for fusionsreaktor
US4687616A (en) * 1986-01-15 1987-08-18 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for preventing cyclotron breakdown in partially evacuated waveguide
US4894199A (en) 1986-06-11 1990-01-16 Norman Rostoker Beam fusion device and method
DK556887D0 (da) * 1987-10-23 1987-10-23 Risoe Forskningscenter Fremgangsmaade til fremstilling af en pille og injektor til injektion af saadan pille
ATE137880T1 (de) 1990-01-22 1996-05-15 Steudtner Werner K Dipl Ing Kernfusionsreaktor
US5160695A (en) 1990-02-08 1992-11-03 Qed, Inc. Method and apparatus for creating and controlling nuclear fusion reactions
US5160685A (en) * 1990-03-21 1992-11-03 Midwest Plastic Fabricators Method for bending pipe
US5311028A (en) 1990-08-29 1994-05-10 Nissin Electric Co., Ltd. System and method for producing oscillating magnetic fields in working gaps useful for irradiating a surface with atomic and molecular ions
US5122662A (en) * 1990-10-16 1992-06-16 Schlumberger Technology Corporation Circular induction accelerator for borehole logging
US5206516A (en) * 1991-04-29 1993-04-27 International Business Machines Corporation Low energy, steered ion beam deposition system having high current at low pressure
US6488807B1 (en) 1991-06-27 2002-12-03 Applied Materials, Inc. Magnetic confinement in a plasma reactor having an RF bias electrode
US5207760A (en) * 1991-07-23 1993-05-04 Trw Inc. Multi-megawatt pulsed inductive thruster
US5240425A (en) * 1991-09-20 1993-08-31 Hirose Electric Co., Ltd. Electrical connector
JPH05101899A (ja) * 1991-10-07 1993-04-23 Masahiro Nishikawa 中性粒子ビーム照射装置
US5323442A (en) 1992-02-28 1994-06-21 Ruxam, Inc. Microwave X-ray source and methods of use
US5502354A (en) 1992-07-31 1996-03-26 Correa; Paulo N. Direct current energized pulse generator utilizing autogenous cyclical pulsed abnormal glow discharges
RU2056649C1 (ru) 1992-10-29 1996-03-20 Сергей Николаевич Столбов Способ управляемого термоядерного синтеза и управляемый термоядерный реактор для его осуществления
US5339336A (en) 1993-02-17 1994-08-16 Cornell Research Foundation, Inc. High current ion ring accelerator
FR2705584B1 (fr) * 1993-05-26 1995-06-30 Commissariat Energie Atomique Dispositif de séparation isotopique par résonance cyclotronique ionique.
US5473165A (en) 1993-11-16 1995-12-05 Stinnett; Regan W. Method and apparatus for altering material
US5557172A (en) * 1993-12-21 1996-09-17 Sumitomo Heavy Industries, Ltd. Plasma beam generating method and apparatus which can generate a high-power plasma beam
US5537005A (en) 1994-05-13 1996-07-16 Hughes Aircraft High-current, low-pressure plasma-cathode electron gun
US5420425A (en) 1994-05-27 1995-05-30 Finnigan Corporation Ion trap mass spectrometer system and method
US5656819A (en) 1994-11-16 1997-08-12 Sandia Corporation Pulsed ion beam source
EP0805803B1 (de) * 1995-01-23 2002-10-30 Lonza AG Verfahren zur herstellung von 1,4,5,6-tetrahydropyrazin-2-carbonsäureamiden
US5656519A (en) * 1995-02-14 1997-08-12 Nec Corporation Method for manufacturing salicide semiconductor device
US5653811A (en) * 1995-07-19 1997-08-05 Chan; Chung System for the plasma treatment of large area substrates
US20040213368A1 (en) 1995-09-11 2004-10-28 Norman Rostoker Fusion reactor that produces net power from the p-b11 reaction
AU7374896A (en) * 1995-09-25 1997-04-17 Paul M. Koloc A compound plasma configuration, and method and apparatus for generating a compound plasma configuration
US6255654B1 (en) 1995-10-23 2001-07-03 Science Applications International Corporation Density detection using discrete photon counting
JP3385327B2 (ja) 1995-12-13 2003-03-10 株式会社日立製作所 三次元四重極質量分析装置
US5764715A (en) * 1996-02-20 1998-06-09 Sandia Corporation Method and apparatus for transmutation of atomic nuclei
KR100275597B1 (ko) 1996-02-23 2000-12-15 나카네 히사시 플리즈마처리장치
US6000360A (en) * 1996-07-03 1999-12-14 Tokyo Electron Limited Plasma processing apparatus
US5811201A (en) 1996-08-16 1998-09-22 Southern California Edison Company Power generation system utilizing turbine and fuel cell
US5923716A (en) 1996-11-07 1999-07-13 Meacham; G. B. Kirby Plasma extrusion dynamo and methods related thereto
JPH10335096A (ja) * 1997-06-03 1998-12-18 Hitachi Ltd プラズマ処理装置
US6894446B2 (en) 1997-10-17 2005-05-17 The Regents Of The University Of California Controlled fusion in a field reversed configuration and direct energy conversion
US6628740B2 (en) 1997-10-17 2003-09-30 The Regents Of The University Of California Controlled fusion in a field reversed configuration and direct energy conversion
US6271529B1 (en) * 1997-12-01 2001-08-07 Ebara Corporation Ion implantation with charge neutralization
EP0986507B1 (en) 1998-03-20 2006-10-25 Georgia-Pacific Corporation Disposable, microwaveable containers and process for their manufacture
US6390019B1 (en) * 1998-06-11 2002-05-21 Applied Materials, Inc. Chamber having improved process monitoring window
FR2780499B1 (fr) 1998-06-25 2000-08-18 Schlumberger Services Petrol Dispositifs de caracterisation de l'ecoulement d'un fluide polyphasique
US6335535B1 (en) 1998-06-26 2002-01-01 Nissin Electric Co., Ltd Method for implanting negative hydrogen ion and implanting apparatus
US6111695A (en) * 1998-08-13 2000-08-29 Foci Fiber Optic Communications, Inc. Optical circulator
US6255648B1 (en) 1998-10-16 2001-07-03 Applied Automation, Inc. Programmed electron flux
US6248251B1 (en) 1999-02-19 2001-06-19 Tokyo Electron Limited Apparatus and method for electrostatically shielding an inductively coupled RF plasma source and facilitating ignition of a plasma
US6755086B2 (en) 1999-06-17 2004-06-29 Schlumberger Technology Corporation Flow meter for multi-phase mixtures
US6322706B1 (en) 1999-07-14 2001-11-27 Archimedes Technology Group, Inc. Radial plasma mass filter
US6452168B1 (en) 1999-09-15 2002-09-17 Ut-Battelle, Llc Apparatus and methods for continuous beam fourier transform mass spectrometry
DE10060002B4 (de) 1999-12-07 2016-01-28 Komatsu Ltd. Vorrichtung zur Oberflächenbehandlung
US6593539B1 (en) 2000-02-25 2003-07-15 George Miley Apparatus and methods for controlling charged particles
US6408052B1 (en) * 2000-04-06 2002-06-18 Mcgeoch Malcolm W. Z-pinch plasma X-ray source using surface discharge preionization
US6593570B2 (en) 2000-05-24 2003-07-15 Agilent Technologies, Inc. Ion optic components for mass spectrometers
US6664740B2 (en) * 2001-02-01 2003-12-16 The Regents Of The University Of California Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US6611106B2 (en) * 2001-03-19 2003-08-26 The Regents Of The University Of California Controlled fusion in a field reversed configuration and direct energy conversion
US7132996B2 (en) 2001-10-09 2006-11-07 Plasma Control Systems Llc Plasma production device and method and RF driver circuit
GB0131097D0 (en) 2001-12-31 2002-02-13 Applied Materials Inc Ion sources
US7115887B1 (en) * 2005-03-15 2006-10-03 The United States Of America As Represented By The United States Department Of Energy Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography

Also Published As

Publication number Publication date
US20060267505A1 (en) 2006-11-30
US20030024476A1 (en) 2003-02-06
BRPI0206814B1 (pt) 2017-10-17
CN1500371A (zh) 2004-05-26
ES2550217T3 (es) 2015-11-05
BR0206814A (pt) 2005-02-01
US20060039519A1 (en) 2006-02-23
JP5439290B2 (ja) 2014-03-12
US9386676B2 (en) 2016-07-05
US20090220039A1 (en) 2009-09-03
SK50292012A3 (sk) 2004-04-06
US7129656B2 (en) 2006-10-31
EP2187712A3 (en) 2012-10-31
US7439678B2 (en) 2008-10-21
US7180242B2 (en) 2007-02-20
WO2002062112A8 (en) 2004-02-12
US20060186838A1 (en) 2006-08-24
US7126284B2 (en) 2006-10-24
MXPA03006931A (es) 2003-11-18
US20160329110A1 (en) 2016-11-10
JP2007322440A (ja) 2007-12-13
EA006325B1 (ru) 2005-12-29
AU2007202901A1 (en) 2007-07-12
BRPI0216000B1 (pt) 2017-10-17
US10217531B2 (en) 2019-02-26
KR100883621B1 (ko) 2009-02-13
SK288442B6 (sk) 2017-01-03
JP5317346B2 (ja) 2013-10-16
US7015646B2 (en) 2006-03-21
US20050220245A1 (en) 2005-10-06
US20060076897A1 (en) 2006-04-13
WO2002062112A3 (en) 2002-11-14
HK1144048A1 (zh) 2011-01-21
JP2009300453A (ja) 2009-12-24
DK1356717T3 (da) 2010-08-02
AU2002245362C1 (en) 2008-08-07
US7569995B2 (en) 2009-08-04
US20100046687A1 (en) 2010-02-25
US20140203706A1 (en) 2014-07-24
US7119491B2 (en) 2006-10-10
US6891911B2 (en) 2005-05-10
US9265137B2 (en) 2016-02-16
PT2187712E (pt) 2015-09-23
US7477718B2 (en) 2009-01-13
IL188654A0 (en) 2008-04-13
US20030230241A1 (en) 2003-12-18
US20170337990A1 (en) 2017-11-23
EP2187713A3 (en) 2013-05-08
IL188654A (en) 2014-02-27
US6664740B2 (en) 2003-12-16
EA200500956A1 (ru) 2005-10-27
JP2004538444A (ja) 2004-12-24
KR20070020157A (ko) 2007-02-16
NZ527344A (en) 2005-05-27
US6995515B2 (en) 2006-02-07
PL363361A1 (en) 2004-11-15
AU2011201603B2 (en) 2012-01-19
EA200300853A1 (ru) 2003-12-25
SK11012003A3 (sk) 2004-04-06
JP2010243501A (ja) 2010-10-28
US20060199459A1 (en) 2006-09-07
EP2187713A2 (en) 2010-05-19
SK288027B6 (sk) 2012-12-03
EP1356717B1 (en) 2010-04-14
US7613271B2 (en) 2009-11-03
AU2011201603A1 (en) 2011-04-28
DK2187713T3 (en) 2015-08-10
PT2187713E (pt) 2015-09-22
DE60235959D1 (de) 2010-05-27
US7026763B2 (en) 2006-04-11
ATE464643T1 (de) 2010-04-15
AU2007202901B2 (en) 2011-04-21
EA011288B1 (ru) 2009-02-27
JP4097093B2 (ja) 2008-06-04
US20100181915A1 (en) 2010-07-22
US9370086B2 (en) 2016-06-14
SG149686A1 (en) 2009-02-27
JP4112983B2 (ja) 2008-07-02
KR100883619B1 (ko) 2009-02-13
US8461762B2 (en) 2013-06-11
US20170025189A1 (en) 2017-01-26
US20160189803A1 (en) 2016-06-30
US9672943B2 (en) 2017-06-06
KR20040008126A (ko) 2004-01-28
ES2344193T3 (es) 2010-08-20
EP1356717A2 (en) 2003-10-29
HK1065918A1 (en) 2005-03-04
US10361005B2 (en) 2019-07-23
EP2187713B1 (en) 2015-07-22
US20080063133A1 (en) 2008-03-13
IL157159A (en) 2010-11-30
WO2002062112A2 (en) 2002-08-08
JP2006308604A (ja) 2006-11-09
CY1110220T1 (el) 2015-01-14
US20030221622A1 (en) 2003-12-04
EP2187713B9 (en) 2015-11-04
US20030230240A1 (en) 2003-12-18
IL157159A0 (en) 2004-02-08
ES2550800T3 (es) 2015-11-12
PL206448B1 (pl) 2010-08-31
HK1144047A1 (zh) 2011-01-21
US20070172017A1 (en) 2007-07-26
EP2187712A2 (en) 2010-05-19
US20050179394A1 (en) 2005-08-18
CA2437360A1 (en) 2002-08-08
EP2187712B1 (en) 2015-07-15
DK2187712T3 (en) 2015-08-31
CA2437360C (en) 2015-04-14
US20090168945A1 (en) 2009-07-02

Similar Documents

Publication Publication Date Title
CN1269387C (zh) 一种约束等离子体的设备和方法
CN1276692C (zh) 一种将聚变产物能量转换为电能的方法及相应转换器
JP5319273B2 (ja) Frc磁場においてイオンおよび電子を駆動するシステムおよび方法
US8279994B2 (en) Tokamak reactor for treating fertile material or waste nuclear by-products
US10643753B2 (en) Hollow particle beam emitter
CN1134197A (zh) 用于“清洁”核能生产的用粒子束加速器驱动的能量放大器
CN1186565A (zh) 能量储存装置
CN102224547A (zh) 磁约束装置
Ciullo et al. Nuclear fusion with polarized fuel
US20150228369A1 (en) Fueling method for small, steady-state, aneutronic frc fusion reactors
Yi et al. Characterization of a medium-sized washer-gun for an axisymmetric mirror
CN1874646A (zh) 场反转配置中的受控聚变和直接能量转换
Pedersen et al. Confinement of plasmas of arbitrary neutrality in a stellarator
Shimizu et al. Analysis of Tungsten Transport in JT-60U Plasmas
Gorshkov et al. The criterion of optimal configuration of magnetic field in a thruster with closed electron drift
Shah et al. Effect of surface produced negative ions on near wall sheath
Wauters Study and optimization of magnetized ICRF discharges for tokamak wall conditioning and assessment of the applicability to ITER
Peterson Progress in the Quest for Fusion in the Laboratory.
Hillairet et al. Lower hybrid antennas for nuclear fusion experiments
Bollinger Highly Efficient Sources of Negative Hydrogen Ions
Witherspoon et al. Plasma Guns for Magnetized Fuel Targets for PJMIF
Fowler Tandem mirror fusion program
Ivanov et al. Experimental study of the processes in the expander of the axisymmetric mirror device
Betti Magnetic fields lock in the heat for fusion
Miyoshi et al. The tandem mirror

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1065918

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060809

Termination date: 20190201