CN105779050B - 使用化学反应器中的旋转/分离系统将天然气转化成液态 - Google Patents

使用化学反应器中的旋转/分离系统将天然气转化成液态 Download PDF

Info

Publication number
CN105779050B
CN105779050B CN201610009273.1A CN201610009273A CN105779050B CN 105779050 B CN105779050 B CN 105779050B CN 201610009273 A CN201610009273 A CN 201610009273A CN 105779050 B CN105779050 B CN 105779050B
Authority
CN
China
Prior art keywords
natural gas
method described
room
magnetic field
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610009273.1A
Other languages
English (en)
Other versions
CN105779050A (zh
Inventor
黄耀辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nonlinear Ion Dynamics LLC
Original Assignee
Nonlinear Ion Dynamics LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/592,676 external-priority patent/US9937479B2/en
Application filed by Nonlinear Ion Dynamics LLC filed Critical Nonlinear Ion Dynamics LLC
Publication of CN105779050A publication Critical patent/CN105779050A/zh
Application granted granted Critical
Publication of CN105779050B publication Critical patent/CN105779050B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/125X-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/128Infrared light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/129Radiofrequency
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/0009Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/083Details relating to the shape of the electrodes essentially linear cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/085Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/085Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields
    • B01J2219/0852Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields employing permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/085Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields
    • B01J2219/0854Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields employing electromagnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/085Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields
    • B01J2219/0862Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields employing multiple (electro)magnets
    • B01J2219/0864Three (electro)magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0869Feeding or evacuating the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0871Heating or cooling of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0883Gas-gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1025Natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/36Applying radiation such as microwave, IR, UV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/38Applying an electric field or inclusion of electrodes in the apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/40Applying a magnetic field or inclusion of magnets in the apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供了用于从天然气给料分离氢以形成烃自由基的系统和方法。该系统的方面包括垂直的磁场和电场,从反应过程中分离氢的自由基形成的方法,以及基于离心力和相变的分离方法。气体由于洛伦兹力在室中旋转而不需要任何机械运动。旋转由于离心力分离气体和液体。较轻种类从该装置的中间区域端点被收集并被反馈用于进一步反应。受控湍流的新概念被引入以混合各种种类。新颖的磁场设备被引入,包括两个特别磁化的柱体。通过RF、微波、UV和旋转频率来新颖控制温度、压力、电子密度和曲线在考虑原子、分子、回旋加速器共振时尤其是可能的。电极能够被涂覆有催化剂;整个装置能够用作新型的化学反应器。

Description

使用化学反应器中的旋转/分离系统将天然气转化成液态
相关申请的交叉引用
本申请根据35U.S.C.119(e)要求2014年1月8日申请的临时申请序列号No.61/910,551的优先权。本申请还根据35U.S.C.120要求作为2010年8月5日申请的共同未决的申请序列号No.12/850,633的部分继续申请的优先权,该申请是2010年5月19日申请的申请序列号No.12/783,550(现在是美国专利No.8,298,318)的部分继续申请,其根据35U.S.C.119(e)要求2009年5月19日申请的临时申请序列号No.61/179,625的优先权,这些公开其整体通过引用的方式结合于此。
技术领域
本申请一般涉及用于在连续流通(flow-through)反应系统中从气态燃料给料产生液态烃的方法和装置。
背景技术
来自天然气的能量供应受制于不能经济地将气态能量形式从生产地运输到分配地或使用地。更广泛期待的是,与气态烃相比,液态烃能够使得能量的还原和运输更经济可行。由此,作为从路上或海上油井提取的原油的副产物而产生的天然气通常是简单地作为废气或不可用气体被烧掉或“燃烧”而不是被利用。因此需要一种不需要昂贵冷却而将天然气转化成更能量密集的液态形式的简单且节约成本的方法。目前用于液化天然气的方法包括费-托(Fischer-Tropsch)法和相关工艺,以及冷却和冷凝以形成液化天然气(LNG)。但是,这些方法的每一个在经济上有局限。本申请描述了用于运输和分配以增加这种天然且低廉的能源的世界范围供应的液化天然气的非常好的方法。该方法基于物理和化学的基本原理,得到理论和实验证实。
发明内容
本申请的实施方式涉及用于在连续流通反应系统中不需要使用催化剂从气态烃给料产生液态和固态烃的系统和方法。该系统的元素包括以下改进:电磁等离子技术,对从烃基分离氢关键的旋转,通过浓缩自由基的给料将气态烃给料转化成液态烃,以及在旋转系统中从该反应的气态烃给料分离液态烃产物和氢气。高频旋转的一个方面是化学键可以被高离心力(有效重力或g场)断裂。该装置的一个实施方式产生电场并因此在沿轴向生成的磁场内生成沿径向的电流。径向电场和轴向磁场一起产生E×B力,其给带电粒子作用一个关于室轴的方位角方向的力。这种设计的关键特征是其缩放性,其由该新颖的电磁设计提供且不用任意移动机械部件。还进行配备以进一步在合适压力和温度下通过收集器阵列分离液体以以其唯一分子形式提取每个液态。
该装置和过程的缩放性是本发明的重要优点。对该缩放性有贡献的一个方面是如这里所述的新颖磁场源的使用。此外,与优化天然气向LNG或液体形式的转化的中间目标一致,下面描述的装置被设计用于在发生转化的位置处(即在外护罩处)具有对温度和压力的简单且可靠的控制。因此,本发明描述一种通用设备,其用于将分子转化成四种物质形式:固体、液体、气体和等离子体。该装置的又一个特征是期望增强发生在该装置内的任意过程的速率或效率。这是通过施加驱动电场变化由此改变电磁力和由此改变旋转速率的时间行为来引入“受控扰动”。该受控扰动将改变在不同半径处分子间的混合度。从这里公开的示意性实施方式的以下详细描述中可以更容易明白本申请的上述和其他目标、特征和优点。
除了描述的旋转装置之外,还可能的是使用分离或集成RF源(例如等离子体喷枪)实施该装置。RF用于产生RF键谐振(RF bond resonance)或RF等离子体;对电子而不是整个物质进行加热。这能够被调节并被控制以促进化学反应,这些化学反应对产生期望的最终产物是有利的。RF源能够被分开构建并附着到旋转装置上以提供期望自由基化学种类(species)的流入,或其可以与旋转设备集成或在该旋转设备内。可选地,纳米尖端(nanotip)电子发射器能够被装配(大约在与逻辑上设置RF源相同的位置处)以促进自由基的形成并驱动期望的化学反应。还建议在上述的过程期间添加水以产生甲醇。加入集成光和质谱分析(例如残余气体分析器)是一种选择,以帮助识别化学和物理种类并帮助控制反应。能够通过操纵所述设备或选择中的任意一者或所有来对电子密度和温度进行数字控制。用RF产生的紫外线(UV)波长能被控制以产生自由基并避免分子的完全断裂。该装置和其建议的选择的关键差别是该处理流中的离子以高达100,000RPS的旋转频率来驱动其中子质量的大约106倍。
反应室内的温度元素可以通过RF频率或通过对反应室进行冷却或加热来控制。能够通过改变电场、磁场或这两者改变旋转频率来控制压力元素。该装置能够被配置有各种几何形状的外部电极或真空护套且被配置有催化表面。结合描述的其他变量控制,公开了用于固体、液体和气体产物的新颖的化学反应器。
附图说明
附图形成本说明书的部分且被包括以进一步示出本申请的某些方面。通过参考这些附图的一个或多个并结合这里描述的特定实施方式的详细描述,可以更好理解本申请。
图1示出了根据本发明的一个方面的用于燃料库存(fuel stock)的反应和还原的示意性水平系统。
图2示出了显示RF激励源如何能与该装置整合以增加产生离子的效率的示意性系统。
图3是通过本发明对液态烃进行反应和还原的示意性方法的流程图。
图4A-4D是轴向磁场配置的各种实施方式的示意图,其中使用永磁体或电磁铁产生轴向磁场,或可替换地通过可磁化的内部和外部电极的轴向磁化来产生轴向磁场。该示意图还示出了电极表面,其能够被修改以用于期望化学反应的催化促进。
图5A是具有永磁体的示意性小室的侧视图。
图5B是图5A的剖视图。
图6A是可替换小室实施方式的侧视图。
图6B是包括热交换器的图6A的剖视图。
图7是气体收集系统实施方式的示意图。
图8是根据本发明的实施方式的完整设置的示意图。
图9和图10示出了根据本发明的用于收集各种液化天然气产物的阵列收集器的示意性实施方式。
图11是示出了使用微波腔将电磁能耦合到该系统的旋转室中的示意图。
具体实施方式
天然气分子(例如甲烷或CH4,其被使得形成“自由基”类(例如CH3、CH2、CH1等(统称为CHX)))容易反应以与其他自由基烃形成更长链烃。戊烷(C5H12)是在室温下由该链延长形成的第一个液态烃。给料天然气结合供电子种类(例如氩)在存在磁场且有电流通过的情况下能够使其旋转。由于洛伦兹力,在没有任何机械运动情况下能够实现合适旋转。室中气体的旋转促使重的化学种类由于离心力而与轻种类分离。反应的天然气经历碳链延长。该过程导致形成戊烷种类,其是不挥发的且由于离心力以及沉淀从较轻种类分离。较轻且挥发性气体种类被重新循环以用于再电离和反应直到移除最终产物即戊烷(在室温下是液体)。在延长烃给料气体的过程中,其到氢原子的链必须首先被断开由此其他碳原子能够被附着到链上。释放的氢气快速从该装置被提取以避免再次形成初始种类。该释放的氢气是用于干净能量产生(clean energy production)的期望给料。
下图描述了示意性装置。但是,该装置可以被进行各种修改或构建以向给定化学反应或物理分离提供更好的缩放性或适应性。例如,可以调转阳极和阴极;阳极和阴极还可以包括磁场设备;外部电极可以包括该装置的外部护罩或可以被包含在另外的外部护罩中。
图1中示出的该系统的组件列出如下:
1.冷却水输入(实线箭头表示液体流)
2.甲烷/氩气输入/给送
3.中心放电棒(阳极)
4.中心放电棒绝缘
5.柱形内部柱形阳极电极
6.外部放电壳(外部柱形阴极电极,填充有冷却液1的双壁盖柱体)
7.未反应气体(甲烷、氩气)反馈线
8.室内的加力旋转和等离子体形成区
9.氢气输出到储存库
10.重气体和液态产物(戊烷)输出到储存库
11.室内真空区
12.磁场阵列
13.电源(5-500VDC)
参考图1,该系统操作在双柱形磁铁或磁场阵列(12)中。由例如不锈钢的材料制成的外部外罩或柱形壳(6)被设置在磁铁12的中心腔内。该外罩是封闭的,具有泵出溶液和输入溶液的端口。在该外罩内,内部电极(5)被设置,其关于外罩臂被电偏压。该装置然后被设置在磁场阵列12的磁场中。外部柱形壳(6)被设置有双壁以使得冷却液(1)通过其从入口端口流到出口端口。流过外壳(6)的输入/输出冷却流利用从大约50℃到低至-180℃的典型流体,例如液态氮,来提供温度控制。外壳(6)还用作电极(阴极,接地)。阳极包括中心放电棒(3)、绝缘(4)和暴露的柱形阳极(5)。磁铁12可以是超导或非超导磁铁,其具有轴向磁场且该磁场与阳极(即电极5)和阴极(即壳6)之间的径向DC场垂直。电流由电源(13)提供,优选但不限于5至500VDC。给料天然气在外部与可电离气体(例如氩气(或类似地容易电离的气体))混合至期望比例并给送到柱形壳(6)的入口(2)。当给料气在区域(8)内遭受电场时,形成等离子体且给料气体开始离解成CHX自由基和氢原子;其中如果分离的氢原子移至柱形壳6的中心区域(在该区域氢原子被提取为氢气),则例如CH3或CH2的自由基的存在使得烃链长度增加。在该相同区域(8)中,由于径向电场和垂直磁场会发生该电离气体的旋转。可以通过区域(11)在柱形壳(6)中施加真空。气体在从左边通过区域(8)移动到右边时进行反应,从而在该柱体中不同半径处产生更长碳链种类和氢气。由于高旋转速度,较重的气体和液体被迫使到达柱形壳的外部。这使得液体戊烷通过输出(10)在较大半径处被收集以及氢通过输出(9)在内半径处被收集。未反应的烃气体和氩气在较小中间半径处通过反馈线(7)被回收。通过外罩或壳6内的旋转力和电场(主要是DC但可选地使用AC破坏脉冲(disruptive pulse)进行放大)促进并延长种类的离解。
可替换地,包括阳极和阴极的新设计的永磁体能够用于替换外部超导磁铁(12)以促进该装置的缩放和便携性。不失一般性,作为阳极和阴极的电极的作用可以调转过来。
还可能的是使用外部柱体的内部表面,不管其是外部电极还是真空外罩,都能够帮助化学反应。内部表面可以涂覆有催化剂,以协同通过利用这里所述的方式控制温度或压力操纵该表面处的液相或气相来增强特定化学反应。
图2示出了在该装置上的两个示例位置处添加RF源。RF源能够被添加到图1中示出的装置中,以更有效离解气态烃并更快产生期望的液体终端产物。RF源产生注入能量给电子的振荡电场。例如,3kW RF放大器(14)通过可变电容器(15)被调节并通过天线装置(16)被发射。天线(16)能够例如被设置在如阴影方块示出的区域中的一个或两个区域的附近。RF源产生并由天线发射到柱形外罩的电子断开C-H键,由此离解分子。组件如下所示。
14.电源
15.频率调节器
16.天线
例如设置在装置外部的RF源可以通过入口(2)、(7)向旋转种类提供期望自由基种类流。可替换地,RF源能够被设置在内部(例如在外罩6的右手侧的阴影方块区域中)。作为示例给出的RF源的位置还可以用于安置纳米尖端发射器以提供用于产生期望的自由基种类的电子源。使用微波腔将电磁能直接耦合到该系统的另一配置在图11中示出,其中腔1101围绕主旋转室1102。这种耦合使得能够有效电离输入的中性气体混合物。这种电磁波能够被调制以产生期望的化学键共振。此外,其他形式的能量可以被使用,例如微波能量、红外能以及激光能。
另外的入口或出口(未示出)能够提供用于流入例如水以产生甲醇。另外的出口能够允许化学反应产物的更区分的分离。
还指出,也能够使用与导电流体中的电流相关联的洛伦兹力来旋转烃液体或甲醇。液体具有的优点是其能够简单地在液体中产生电荷,这些电荷不会重组。洛伦兹力将使液体旋转从而能够发生分离。这里对分离气体和化学反应的所有论述能够应用于液体;气体和液体一般都认为是流体。
图3是根据本申请的期望过程的一个示例的流程图,示出了用于从天然气给料产生并还原液体烃的示意性方法。总的原理是天然气自由基彼此反应。一旦气体被分解成氢和自由基(301),自由基就是易起化学反应的,因为一个共价键打开或“不固定”并准备与另一自由基组合以形成新的稳定分子。在302,电场和磁场(洛伦兹力)产生烃等离子体的旋转和由此产生离心力。在303,通过等离子体的旋转,H2形成并从烃分子分离。其余的自由基彼此反应以形成更长链的烃。在304,液体形式的更长链的烃分子在室温下被收集,较轻(例如氢)气体通过该系统被回收以用于重复处理。
图4A是在内部电极(5)与外壳(6)(用作外部电极)之间即同心柱形电极之间的空间中以及沿着内部和外部电极的表面产生轴向磁场的新方法的概念示意图。轴向磁场与径向电场一起提供E×B力,其用于在相对于同心柱形电极的公共中心轴的方位角方向上移动电极之间和电极表面处的带电粒子。
在图4B示出的第一实施方式中,内部电极(5)和外部电极(6)之间的轴向磁场(“B场”)由环形或一对外部环形永磁体12-B提供,其在轴向方向被磁化。内部电极(5)和外部电极(6)位于这对环形磁铁之间,其中使用环形磁铁能够有效地提供主要在内部电极和外部电极之间并沿其表面的轴向磁场。
在图4C示出的第二实施方式中,例如超导电磁铁12-C的电磁铁提供内部电极(5)和外部电极(6)之间且沿其表面的轴向磁场。超导磁铁12-C提供可调节轴向磁场,其强度能够被调节。
图4D示出的第三实施方式允许提供内部电极(5)和外部电极(6)之间并沿其表面的轴向磁场的经济且有效的缩放性。在该第三实施方式中,内部电极(5)和外部电极(6)由可磁化材料构成,其在相同的轴向被磁化。永久轴向磁化的内部电极(5)和外部电极(6)还提供在内部和外部电极之间的间隙中的轴向磁场线。内部和外部电极的可磁化材料能够通过非超导或超导磁铁在相同轴向被磁化。通过磁化内部和外部柱形电极,可以不用另外使用超导磁铁或使用外部一对环形永磁体就能引入轴向磁场B。这种改进极大降低了成本并增加了该装置的缩放性和便携性。
除了用作磁源,内部电极(5)和外部电极(6)还可以在其内表面上具有催化涂层以有助于期望的化学反应。
磁铁阵列或超导磁铁用于在垂直于径向的轴向z上生成磁场,而电源在径向生成电场。电源在垂直于轴平面中的磁场的径平面中生成的电流感应关于z轴的旋转力。该力称为洛伦兹力,由以下公式描述:F=J×B,其中F是旋转力(洛伦兹力),J是垂直于B场的电流密度以及B是磁场的幅度。旋转力与从中心电极(5)到外部外罩(6)的壁的电荷转移有关。
使用图1和图2示出的系统,能够实现极大旋转速度,其直接贡献于极大分离效率,如以下等式所示:
其中q是分离因子,ω是旋转速率,r是半径,Δm是种类质量差,k是波兹曼常数以及T是温度。该等式示出,分离效率与旋转速度的平方指数相关。
旋转和电流是影响出现烃自由基和原子形式的氢的主要因素。离心力、电流的局部加热、微湍流以及分子碰撞影响被旋转的期望化学和原子种类的形成。
紧凑模型能够使用永磁体来设计并被运输到用于处理天然气的需要位置。这些模型形成串联或并联操作的阵列。在串联操作的情况中,每个出口被发送以用于进一步提纯。连续或串联操作等同于在较大直径的一个单个单元内的提纯。并联操作允许更大的吞吐量。
图5A-5B、图6A-6B、图7和图8示出了根据本申请的各种系统实施。在示出的所有实施方式中,冷却水通过入口进入到室中并在该室的双壁之间流动以冷却外罩。两个冷却线路将热交换器与内部电极连接。热水通过出口流出热交换器,其中热量由该热水带走。冷却的水然后以连续操作循环的方式回到内部电极,这使得能够在室内发生持久的化学反应。
残余气体分析器(RGA)根据来自该室的放电后给定状态的每一个状态中存在的量来提供甲烷和丙烷的准确成分数据。甲烷和丙烷的量以及其每一个占被转化的天然气总量的百分比从RGA软件的实用库菜单(Utilities Library Menu)得到。RGA是本领域公知的质谱仪且由此这里不提供更详细的描述。给定室内不同形式的气体的可变压力和温度,本领域技术人员理解,能够根据本发明使用用于准确确定它们的各种已知方法。
根据本发明的进一步方面,气体收集系统包括冷却水管和压力计。由于不同液化天然气产物能够在不同温度和压力条件下产生,因此压力计和冷却水管调节反应室中的压力和温度以得到每个产物所需的条件。
图9和图10示出了根据公知相位图收集不同液化产物的示意性阵列收集器,该图示出了各种不同气体产物例如甲烷、丁烷、丙烷、乙烷等被液化的条件。通过使用耦合阵列中的不同收集器,其每一个被耦合到数字流控制器,数字流控制器包括致动收集器容器的阀的温度和压力计,不同条件能够被产生以收集不同液化产物,例如甲烷、丁烷、丙烷、乙烷和氢气。如所示,随着压力从P1升到P5,压力逐渐变高以满足每种气体的液化条件。
虽然示例实施方式描述了燃料例如戊烷、甲烷、丙烷和丁烷,但本申请也适用更高级液体例如汽油、航空燃油以及柴油且应当被认为包含在权利要求书的范围内。

Claims (14)

1.一种将天然气化学转化成液化形式的方法,该方法包括:
向室中提供给料天然气混合物;
在所述室的第一方向生成电场;
给所述室注入电能以至少部分电离所述天然气混合物并使得所述混合物中的天然气离解成烃自由基;
在所述室的垂直于所述第一方向的第二方向中生成磁场以引起所电离天然气混合物关于所述室的轴旋转并引起所述烃自由基之间的化学反应以从所述自由基形成具有增加的烃链长度的烃分子;
控制至少温度条件以在所述室中产生液化天然气产物;以及
从旋转电离的天然气混合物还原至少一种液化天然气产物。
2.根据权利要求1所述的方法,其中所述注入的步骤包括使用RF能量。
3.根据权利要求1所述的方法,其中所述注入的步骤包括使用微波能量。
4.根据权利要求1所述的方法,其中所述注入的步骤包括使用红外能量。
5.根据权利要求1所述的方法,其中所述注入的步骤包括使用激光能量。
6.根据权利要求1所述的方法,其中所述给料天然气混合物包括天然气与容易电离的背景气体的混合物。
7.根据权利要求6所述的方法,其中所述容易电离的背景气体包括氩气。
8.根据权利要求1所述的方法,其中所述生成磁场的步骤包括使用超导磁铁。
9.根据权利要求1所述的方法,其中所述生成磁场的步骤包括使用永磁体。
10.根据权利要求1所述的方法,其中所述生成磁场的步骤包括磁化所述室的组件。
11.根据权利要求1所述的方法,该方法还包括控制压力条件以在所述室内产生液化天然气产物。
12.根据权利要求1所述的方法,该方法还包括从所述室还原氢气。
13.根据权利要求1所述的方法,其中所述还原的步骤包括使用收集器的阵列,每个收集器根据不同液化产物的相变条件收集不同的液化产物。
14.一种用于将天然气化学转化成液化形式的装置,该装置包括:
室;
电压源,用于在所述室内建立电压差;
能量源,被配置成电离引入到所述室的给料天然气混合物的组分以产生等离子体;以及
磁源,用于在所述室中在垂直所述电压差的方向生成磁场,所述磁场使得所述等离子体在所述室内在关于所述室的轴的方向旋转以使得所述混合物中的天然气离解成烃自由基并使得所述自由基反应以引起所述烃自由基之间的化学反应以从所述自由基形成具有增加的烃链长度的烃分子;
其中来自旋转电离的天然气混合物的至少一种液化天然气产物从所述室中被提取。
CN201610009273.1A 2015-01-08 2016-01-07 使用化学反应器中的旋转/分离系统将天然气转化成液态 Active CN105779050B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/592,676 2015-01-08
US14/592,676 US9937479B2 (en) 2009-05-19 2015-01-08 Conversion of natural gas to liquid form using a rotation/separation system in a chemical reactor

Publications (2)

Publication Number Publication Date
CN105779050A CN105779050A (zh) 2016-07-20
CN105779050B true CN105779050B (zh) 2019-05-28

Family

ID=55177737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610009273.1A Active CN105779050B (zh) 2015-01-08 2016-01-07 使用化学反应器中的旋转/分离系统将天然气转化成液态

Country Status (4)

Country Link
US (1) US11642645B2 (zh)
EP (1) EP3045514B1 (zh)
CN (1) CN105779050B (zh)
CA (1) CA2916875C (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346404A (zh) * 2018-04-08 2019-10-18 中国科学院理化技术研究所 一种适用于80k-400k温区的相平衡测量装置
RU2687422C1 (ru) 2018-10-12 2019-05-13 Борис Владленович Миславский Способ и устройство для плазмохимической конверсии газа/газовой смеси
US11247949B2 (en) * 2019-03-27 2022-02-15 Gtl Systems, Inc. System and method for conversion of methane into hydrocarbon fuels
CN110176340A (zh) * 2019-06-28 2019-08-27 岑凯军 一种组合磁体、永磁体磁能转化装置及转化装置控制方法
CN111234864B (zh) * 2020-02-21 2021-11-30 陕西华大骄阳能源环保发展集团有限公司 一种低温等离子体辅助的轻质烷烃催化液化方法
CN113244866B (zh) * 2021-05-14 2022-05-06 昆明理工大学 一种微波辅助气体催化合成轻烃的装置及其方法

Family Cites Families (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3170841A (en) 1954-07-14 1965-02-23 Richard F Post Pyrotron thermonuclear reactor and process
US3029199A (en) 1958-05-20 1962-04-10 William R Baker Plasma device
US3014857A (en) 1958-09-02 1961-12-26 James D Gow Plasma device
GB915771A (en) * 1959-01-12 1963-01-16 Ici Ltd Method of conducting gaseous chemical reactions
US3005757A (en) 1960-11-14 1961-10-24 James C Lewis Preparation of chlorogenicase
US3343020A (en) 1964-10-08 1967-09-19 Hayden S Gordon Apparatus for the acceleration, storage and utilization of counter-rotating charged particle beams
US3376211A (en) 1965-04-19 1968-04-02 Phillips Petroleum Co Method and apparatus for performing chemical reactions by means of an electric arc
US3386883A (en) 1966-05-13 1968-06-04 Itt Method and apparatus for producing nuclear-fusion reactions
US3500077A (en) 1967-12-19 1970-03-10 Atomic Energy Commission Method and apparatus for accelerating ions out of a hot plasma region
US3603822A (en) * 1969-02-07 1971-09-07 Lng Services Inc Method and system for magnetohydrodynamic generation of electricity
DE1943588C1 (de) 1969-08-27 1977-12-22 Kernverfahrenstechnik Gmbh Verfahren und Vorrichtung zur Trennung eines wenigstens teilweise ionisierten Gasgemisches in eine leichtere und eine schwerere Fraktion
US3663394A (en) 1970-06-01 1972-05-16 Dow Chemical Co Process for the vapor phase rearrangement of hydrocarbons utilizing microwave energy
SE338962B (zh) 1970-06-04 1971-09-27 B Lehnert
US3663360A (en) 1970-08-13 1972-05-16 Atomic Energy Commission Conversion of high temperature plasma energy into electrical energy
US3703460A (en) 1970-09-30 1972-11-21 Atomic Energy Commission Non-equilibrium plasma reactor for natural gas processing
US3791949A (en) * 1971-12-09 1974-02-12 Westinghouse Electric Corp Processes for chemical conversion
FR2174678B1 (zh) 1972-03-06 1975-08-29 Commissariat Energie Atomique
NL7302102A (zh) 1973-02-15 1974-08-19
US4010089A (en) * 1974-06-07 1977-03-01 Battelle Memorial Institute Reacting coal
US4145250A (en) 1976-02-26 1979-03-20 General Atomic Company In situ regeneration of the first wall of a deuterium-tritium fusion device
US4363775A (en) 1976-12-30 1982-12-14 International Nuclear Energy Systems Co. Controlled nuclear fusion apparatus
US4185213A (en) * 1977-08-31 1980-01-22 Reynolds Metals Company Gaseous electrode for MHD generator
US4347621A (en) 1977-10-25 1982-08-31 Environmental Institute Of Michigan Trochoidal nuclear fusion reactor
US4189346A (en) 1978-03-16 1980-02-19 Jarnagin William S Operationally confined nuclear fusion system
US4563341A (en) 1978-05-19 1986-01-07 Flynn Hugh G Method and means for converting graphite to diamond
US4211620A (en) 1979-06-01 1980-07-08 Childers-Fowler Research and Development Company Method of and apparatus for producing hydrogen and oxygen by photoelectrically-induced electrolysis
JPS6057366B2 (ja) 1979-09-12 1985-12-14 株式会社日立製作所 遠心分離法
CA1148600A (en) * 1981-09-23 1983-06-21 James C. Hayes Self induced laser magnetohydrodynamic (mhd) electric generator
US4663932A (en) * 1982-07-26 1987-05-12 Cox James E Dipolar force field propulsion system
US4735762A (en) 1983-09-29 1988-04-05 The United States Of America As Represented By The United States Department Of Energy Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression
US4574038A (en) 1985-08-01 1986-03-04 Alberta Oil Sands Technology And Research Authority Microwave induced catalytic conversion of methane to ethylene and hydrogen
US4767590A (en) 1986-04-25 1988-08-30 The United States Of America As Represented By The United States Department Of Energy Anomalous - viscosity current drive
US5186788A (en) 1987-07-23 1993-02-16 Matsushita Electric Industrial Co., Ltd. Fine pattern forming method
US5076971A (en) 1987-10-23 1991-12-31 Altran Corporation Method for enhancing alpha decay in radioactive materials
US5042058A (en) 1989-03-22 1991-08-20 University Of California Ultrashort time-resolved x-ray source
JPH0814633B2 (ja) 1989-05-24 1996-02-14 株式会社日立製作所 核融合炉
US5277773A (en) 1989-12-27 1994-01-11 Exxon Research & Engineering Co. Conversion of hydrocarbons using microwave radiation
US4975164A (en) 1989-12-27 1990-12-04 Exxon Research And Engineering Company Conversion of C2 + hydrocarbons using microwave radiation (OP-3515)
US5289585A (en) 1990-03-26 1994-02-22 Siemens Nixdorf Informationssysteme Ag Multiprocessor system having a system bus for the coupling of several processing units with appertaining private cache memories and a common main memory
US5270515A (en) 1990-04-02 1993-12-14 Long Raymond E Microwave plasma detoxification reactor and process for hazardous wastes
WO1994006263A1 (en) * 1992-09-01 1994-03-17 The University Of North Carolina At Chapel Hill High pressure magnetically assisted inductively coupled plasma
US5695597A (en) * 1992-11-11 1997-12-09 Mitsubishi Denki Kabushiki Kaisha Plasma reaction apparatus
JPH07140277A (ja) 1993-09-27 1995-06-02 Toichi Chikuma 常温核融合装置
US5968231A (en) 1993-12-14 1999-10-19 Grignotage, (Sarl) Cyclone exchanger with tranquilizing tank and method for purifying and decontaminating air
FR2726729B1 (fr) 1994-11-04 1997-01-31 Metal Process Dispositif de production d'un plasma permettant une dissociation entre les zones de propagation et d'absorption des micro-ondes
CN1186565A (zh) 1995-05-31 1998-07-01 电子能量系统公司 能量储存装置
US20030223528A1 (en) 1995-06-16 2003-12-04 George Miley Electrostatic accelerated-recirculating-ion fusion neutron/proton source
US20040213368A1 (en) 1995-09-11 2004-10-28 Norman Rostoker Fusion reactor that produces net power from the p-b11 reaction
IT1292817B1 (it) 1997-03-20 1999-02-11 Renzo Boscoli Metodo e macchina per la produzione di energia tramite reazioni di fusione nucleare.
US5868909A (en) * 1997-04-21 1999-02-09 Eastlund; Bernard John Method and apparatus for improving the energy efficiency for separating the elements in a complex substance such as radioactive waste with a large volume plasma processor
US6628740B2 (en) 1997-10-17 2003-09-30 The Regents Of The University Of California Controlled fusion in a field reversed configuration and direct energy conversion
US6258216B1 (en) 1997-11-14 2001-07-10 Archimedes Technology Group, Inc. Charged particle separator with drift compensation
US6217776B1 (en) 1998-11-16 2001-04-17 Archimedes Technology Group, Inc. Centrifugal filter for multi-species plasma
US6235202B1 (en) 1998-11-16 2001-05-22 Archimedes Technology Group, Inc. Tandem plasma mass filter
US6251281B1 (en) 1998-11-16 2001-06-26 Archimedes Technology Group, Inc. Negative ion filter
US6248240B1 (en) 1998-11-16 2001-06-19 Archimedes Technology Group, Inc. Plasma mass filter
US6251282B1 (en) 1998-11-16 2001-06-26 Archimedes Technology Group, Inc. Plasma filter with helical magnetic field
US6096220A (en) 1998-11-16 2000-08-01 Archimedes Technology Group, Inc. Plasma mass filter
US6214223B1 (en) 1999-07-14 2001-04-10 Archimedes Technology Group, Inc. Toroidal plasma mass filter
US6322706B1 (en) 1999-07-14 2001-11-27 Archimedes Technology Group, Inc. Radial plasma mass filter
US6593539B1 (en) 2000-02-25 2003-07-15 George Miley Apparatus and methods for controlling charged particles
US6664740B2 (en) 2001-02-01 2003-12-16 The Regents Of The University Of California Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US6398920B1 (en) 2001-02-21 2002-06-04 Archimedes Technology Group, Inc. Partially ionized plasma mass filter
US6611106B2 (en) 2001-03-19 2003-08-26 The Regents Of The University Of California Controlled fusion in a field reversed configuration and direct energy conversion
US6824748B2 (en) 2001-06-01 2004-11-30 Applied Materials, Inc. Heated catalytic treatment of an effluent gas from a substrate fabrication process
WO2002104085A2 (en) * 2001-06-19 2002-12-27 Toky0 Electron Limited A closed-drift hall effect plasma vacuum pump for process reactors
US20040095705A1 (en) 2001-11-28 2004-05-20 Mills Randell L. Plasma-to-electric power conversion
US6730231B2 (en) 2002-04-02 2004-05-04 Archimedes Technology Group, Inc. Plasma mass filter with axially opposed plasma injectors
US6726844B2 (en) 2002-06-12 2004-04-27 Archimedes Technology Group, Inc. Isotope separator
US6787044B1 (en) 2003-03-10 2004-09-07 Archimedes Technology Group, Inc. High frequency wave heated plasma mass filter
US20080061191A1 (en) 2003-05-06 2008-03-13 Gochnour Gary R Multi-functional high energy plasma aircraft and nuclear fusion system to produce energy from a controlled nuclear fusion reaction
US10443139B2 (en) 2003-09-05 2019-10-15 Brilliant Light Power, Inc. Electrical power generation systems and methods regarding same
AU2003300916A1 (en) 2003-12-12 2005-07-14 Robert Indech Apparatus and method for facilitating nuclear fusion
US6956217B2 (en) 2004-02-10 2005-10-18 Archimedes Operating, Llc Mass separator with controlled input
US20050249324A1 (en) 2004-04-21 2005-11-10 Meacham George B K Rotating plasma current drive
US20060022641A1 (en) * 2004-05-24 2006-02-02 Scalpel Drive Innovation, Llc System, apparatus, and method for increasing particle density and energy by creating a controlled plasma environment into a gaseous media
US7292191B2 (en) 2004-06-21 2007-11-06 Theodore Anderson Tunable plasma frequency devices
SI1856702T1 (sl) 2005-03-07 2012-11-30 Univ California Plazemski sistem za generiranje elektrike
AU2006220546B2 (en) 2005-03-07 2012-06-14 The Regents Of The University Of California Plasma electric generation system
EP1866933A2 (en) 2005-03-18 2007-12-19 Cone Partners, Ltd. Low temperature fusion
US7620694B2 (en) 2005-09-27 2009-11-17 Intel Corporation Early issue of transaction ID
US20080226011A1 (en) 2005-10-04 2008-09-18 Barnes Daniel C Plasma Centrifuge Heat Engine Beam Fusion Reactor
US7741577B2 (en) * 2006-03-28 2010-06-22 Battelle Energy Alliance, Llc Modular hybrid plasma reactor and related systems and methods
US7600077B2 (en) 2007-01-10 2009-10-06 Arm Limited Cache circuitry, data processing apparatus and method for handling write access requests
WO2008128422A1 (fr) 2007-04-18 2008-10-30 Jiubin Chen Réacteur nucléaire
US8277631B2 (en) 2007-05-04 2012-10-02 Principle Energy Solutions, Inc. Methods and devices for the production of hydrocarbons from carbon and hydrogen sources
US8182560B2 (en) * 2007-08-29 2012-05-22 Kaufman Thomas W Method for gasifying hydrocarbon materials for the production of hydrogen
FR2923732B1 (fr) * 2007-11-16 2011-03-04 Nicolas Ugolin Procede utilisant l'energie thermique solaire couplee a des plasmas pour produire un carburant liquide et du dihydrogene a partir de biomasse ou de charbon fossile (procede p-sl et p-sh)
US20090205254A1 (en) 2008-02-14 2009-08-20 Zhonghua John Zhu Method And System For Converting A Methane Gas To A Liquid Fuel
GB2463117A (en) 2008-09-08 2010-03-10 Landa Lab Ltd Generating electricity from the thermal motion of gas molecules
BRPI0912590A2 (pt) 2008-08-28 2017-06-20 Advanced Fusion Systems Llc "sistemas para aperfeiçoar as condições de pré-ignição de reações de fusão termonuclear"
US8298318B2 (en) * 2009-05-19 2012-10-30 Wong Alfred Y Integrated spin systems for the separation and recovery of isotopes
US9245654B2 (en) 2009-05-19 2016-01-26 Nonlinear Ion Dynamics, Llc Rotating high-density fusion reactor for aneutronic and neutronic fusion
US10269458B2 (en) 2010-08-05 2019-04-23 Alpha Ring International, Ltd. Reactor using electrical and magnetic fields
US20150380113A1 (en) 2014-06-27 2015-12-31 Nonlinear Ion Dynamics Llc Methods, devices and systems for fusion reactions
US20110188623A1 (en) * 2009-05-19 2011-08-04 Wong Alfred Y Rotating High Density Fusion Reactor for aneutronic and neutronic fusion
US20110011728A1 (en) 2009-07-15 2011-01-20 Sackinger William M System and method for conversion of molecular weights of fluids
WO2011064739A1 (fr) 2009-11-25 2011-06-03 Mofakhami, Florence Procédé pour générer des neutrons
US20110142185A1 (en) 2009-12-16 2011-06-16 Woodruff Scientific, Inc. Device for compressing a compact toroidal plasma for use as a neutron source and fusion reactor
DE102010023339A1 (de) 2010-06-10 2011-12-15 Siemens Aktiengesellschaft Beschleuniger für zwei Teilchenstrahlen zum Erzeugen einer Kollision
GB201009768D0 (en) 2010-06-11 2010-07-21 Tokamak Solutions Uk Ltd Compact fusion reactor
US10319480B2 (en) 2010-08-05 2019-06-11 Alpha Ring International, Ltd. Fusion reactor using azimuthally accelerated plasma
US20180005711A1 (en) 2013-06-27 2018-01-04 Alpha Ring International, Ltd. Reactor using azimuthally varying electrical fields
US20180322962A1 (en) 2017-05-08 2018-11-08 Alpha Ring International, Ltd. Reactor using electrical and magnetic fields
US20180330829A1 (en) 2010-08-05 2018-11-15 Alpha Ring International, Ltd. Electron emitter for reactor
WO2012048160A2 (en) 2010-10-07 2012-04-12 Advanced Magnet Lab, Inc. System incorporating current path between conductive members
US20160256847A9 (en) * 2011-04-12 2016-09-08 Richard Max Mandle Centrifugal fluid ring reactor
HUP1100247A2 (en) 2011-05-11 2012-11-28 Gyoergy Dr Egely Method and device for renewable energy producting with resonant nano powdering plasma
US20160307649A1 (en) 2012-04-25 2016-10-20 Azaroghly YAZDANBOD Apparatus and process for penetration of the coulomb barrier
DE112013003201T5 (de) 2012-06-25 2015-04-09 Robert Bosch Gmbh Metall/Sauerstoff-Batterie mit elektrochemischer Sauerstoffkompression
US10515726B2 (en) 2013-03-11 2019-12-24 Alpha Ring International, Ltd. Reducing the coulombic barrier to interacting reactants
CN105027222B (zh) * 2013-03-11 2016-12-14 黄耀辉 用于无中子和中子聚变的旋转高密度聚变反应器
US20190057782A1 (en) 2013-03-11 2019-02-21 Alpha Ring International, Ltd. Direct energy conversion - applied electric field
CA2912694A1 (en) 2013-05-22 2014-11-27 Unified Gravity Corporation Hydrogen-lithium fusion device
US10274225B2 (en) 2017-05-08 2019-04-30 Alpha Ring International, Ltd. Water heater
US20180322963A1 (en) 2013-06-27 2018-11-08 Alpha Ring International, Ltd. Helium generator
US20170352435A1 (en) 2013-06-27 2017-12-07 Alpha Ring International, Ltd. Tabletop reactor
US9934177B2 (en) 2014-11-04 2018-04-03 Cavium, Inc. Methods and systems for accessing storage using a network interface card
US20180330830A1 (en) 2017-05-08 2018-11-15 Alpha Ring International, Ltd. Hybrid reactor using electrical and magnetic fields

Also Published As

Publication number Publication date
EP3045514B1 (en) 2024-03-06
CA2916875A1 (en) 2016-07-08
CA2916875C (en) 2021-01-05
US20180221847A1 (en) 2018-08-09
CN105779050A (zh) 2016-07-20
US11642645B2 (en) 2023-05-09
EP3045514A1 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
CN105779050B (zh) 使用化学反应器中的旋转/分离系统将天然气转化成液态
EP2606003B1 (en) An apparatus, a system and a method for producing hydrogen
US20120034135A1 (en) Plasma reactor
US7741577B2 (en) Modular hybrid plasma reactor and related systems and methods
US9997322B2 (en) Electrode assemblies, plasma generating apparatuses, and methods for generating plasma
CN105027222B (zh) 用于无中子和中子聚变的旋转高密度聚变反应器
US20080246406A1 (en) Helicon plasma source with permanent magnets
KR102403479B1 (ko) 핵융합 반응을 위한 방법, 장치 및 시스템
US20180057755A1 (en) Wave modes for the microwave induced conversion of coal
CN103501889B (zh) 通过在SiO2和FeTiO3颗粒与磁波之间产生电磁相互作用获得硅和钛的方法
CN106879261A (zh) 使用可再生一次能源同时产生电和化学制品
US9937479B2 (en) Conversion of natural gas to liquid form using a rotation/separation system in a chemical reactor
WO2007002455A2 (en) Helicon plasma source with permanent magnets
TW402859B (en) An apparatus and method for generating plasma
US20180099914A1 (en) Radial electro-magnetic system for the conversion of small hydrocarbon molecules to larger hydrocarbon molecules using a rotational chemical reactor/separator chamber
CN104445205A (zh) 一种用于生产硅及氮化硅纳米颗粒的装置
CN211929064U (zh) 一种管道式磁向整极装置
CN107572508A (zh) 生产石墨烯粉体的设备
CN219981116U (zh) 一种用于粉末球化的同轴型电容耦合等离子体装置
US20230415117A1 (en) Plasma gas reactor
Gervasini et al. A steady state cusp device for plasma studies and technological applications
CN110026144A (zh) 一种气相离子催化分子宏量转化的装置及方法
CN204237561U (zh) 一种用于生产硅及氮化硅纳米颗粒的装置
JP2012072029A (ja) メタンハイドレートの処理方法及び処理装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant