CN1261769C - 卫星定位系统sps时间测量的方法和装置 - Google Patents

卫星定位系统sps时间测量的方法和装置 Download PDF

Info

Publication number
CN1261769C
CN1261769C CNB00805407XA CN00805407A CN1261769C CN 1261769 C CN1261769 C CN 1261769C CN B00805407X A CNB00805407X A CN B00805407XA CN 00805407 A CN00805407 A CN 00805407A CN 1261769 C CN1261769 C CN 1261769C
Authority
CN
China
Prior art keywords
record
article
time
information
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB00805407XA
Other languages
English (en)
Other versions
CN1344372A (zh
Inventor
N·克拉斯纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SnapTrack Inc
Original Assignee
SnapTrack Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26823814&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1261769(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SnapTrack Inc filed Critical SnapTrack Inc
Publication of CN1344372A publication Critical patent/CN1344372A/zh
Application granted granted Critical
Publication of CN1261769C publication Critical patent/CN1261769C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/09Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing processing capability normally carried out by the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • G01S19/235Calibration of receiver components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/243Demodulation of navigation message
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R20/00Setting the time according to the time information carried or implied by the radio signal
    • G04R20/02Setting the time according to the time information carried or implied by the radio signal the radio signal being sent by a satellite, e.g. GPS
    • G04R20/06Decoding time data; Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/10Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals
    • G01S19/11Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals wherein the cooperating elements are pseudolites or satellite radio beacon positioning system signal repeaters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/258Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to the satellite constellation, e.g. almanac, ephemeris data, lists of satellites in view
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0045Transmission from base station to mobile station

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Electric Clocks (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Navigation (AREA)

Abstract

一种利用卫星定位系统(SPS)来测量与卫星数据信息有关的时间的方法和装置。在一种方法中,在一个实体接收卫星数据信息中的至少一部分中的第一条记录,该实体通常是一个基站。第一条记录与卫星数据信息中的第二条记录进行比较。在这儿,第一条记录和第二条记录至少有部分时间的交迭。从该比较中确定一个时间,而该时间指出在远程实体何时接收到第一条记录(或获得第一条记录的源),该实体一般是移动SPS接收机。描述了本发明的各种方法,也描述了本发明的各种装置。本发明的方法和装置是利用SPS信号而不用读入卫星数据信息来测量日期-时间,该卫星数据信息在信号中是作为数据传送的。本发明的方法和装置适用于所接收的信号电平太弱以致于不能读入卫星数据信息的情况。

Description

卫星定位系统SPS时间测量的方法和装置
本申请是临时专利申请60/125,673的部分续展(CLP)申请,其标题是“卫星定位系统(SPS)时间测量的方法和装置”,申请日为1999年3月22日。故本申请要求以临时专利申请的申请日为准。
本发明涉及利用从卫星定位系统(SPS)接收的信号来确定其自己的位置或者确定日一时间(time-of-day)的方法和系统。本发明是由Norman Krasner申请的美国专利申请09/074,521的部分续展申请,申请日为1998年5月7日;该专利申请是美国专利申请08/794,649的续展申请,申请日为1997年2月3日,现在该申请专利号为5,812,087(称为“母案专利”)。因此这儿将母案专利结合一起作为参考。申请号为08/842,559,申请日为1997年4月15日的专利申请也结合于此作为参考。
大多数情况下,母案专利的方法工作可靠,允许一个系统(例如服务器系统)来确定另一个系统(例如移动SPS接收机/客户系统)的SPS信号的捕获时间(例如全球定位系统(GPS)信号)。
大多数有关的情况下,本发明的时间协调方法(称为“图形匹配”(patternmatching))工作可靠。在某些不正常情况,在移动站(例如母案专利图6中的移动单元453)和服务器(例如母案专利图6中的基站463)间的发送信号有非常长的延时。如果链路是使用允许任意长行程延时的打包通信,可能引起该类情况的发生。偶而会发生该打包会经很长一部分时间后才到达的情况。如此长的时延将要求服务器将从移动站收到的图形与储存于服务器的一个非常长的记录进行比较。这可能使计算很复杂或者要求有相当长的时间来执行必需的计算。另外,长时间的延迟可能引起与数据图形重复相关的模棱两可的情况。例如,美国GPS数据信号的一重要部分按30秒间隔重复,而小的部分按6秒间隔重复。在这种情况下,图形匹配过程会产生模棱两可的结果。
发明概述
根据本发明的一个方面,提供一种用于卫星定位系统SPS、用以测量与卫星数据信息有关的时间的方法,其特征在于,所述方法包含:
在一个实体接收卫星定位系统的至少一部分卫星数据信息的第一条记录;
对所述第一条记录与所述卫星数据信息的包括参考记录的第二条记录作比较,其中,所述第一条记录与所述第二条记录至少有部分时间的交迭,当接收所述的第一记录时,在确定一个估计时间后执行所述的比较;
从所述比较中确定一个时间,所述时间指出远程实体何时接收到第一条记录。
根据本发明的另一方面,提供一种利用卫星定位系统来测量与卫星数据信息有关的时间的方法,其特征在于,所述方法包含:
在一个实体接收一个卫星定位系统的一条卫星数据信息的至少一部分中的第一条记录;
当接收到所述的第一条记录时,从一个估计时间中确定一个比较范围;
对所述的第一条记录与所述卫星数据信息的包括参考记录的第二条记录作比较,其中所述第一条记录与所述第二条记录至少有部分时间的交迭,其中所述比较至少在所述比较范围中的一部分范围内进行;
从所述比较中确定一个时间,所述时间指出远程实体何时接收到所述的第一条记录。
根据本发明的另一方面,提供一种利用卫星定位系统测量与卫星数据信息相关的时间的装置,其特征在于,所述装置包含:
一个接收机,用于接收卫星数据信息中的至少一部分中的第一条记录;
一个连接到所述接收机的数据处理器,在比较范围内,数据处理器将所述第一条记录与所述卫星数据信息的第二条记录进行比较,其中所述第一条记录和所述第二条记录至少有部分时间的交迭,并从所述的比较中确定一个时间,所述时间指出远程实体何时接收到第一条记录,其中当所述远程实体接收到第一条记录时,从一个估计时间中确定所述的比较范围。
根据本发明的另一方面,提供一种利用卫星定位系统SPS测量与卫星数据信息有关的时间的方法,其特征在于,所述方法包含:
在移动SPS接收机接收卫星数据信息的至少一部分信息;
确定所述卫星数据信息中的至少一部分中的第一条记录;
当所述移动SPS接收机接收到所述第一条记录时,从一个估计时间确定一个参数,该参数指出一个比较范围,用以对一条参考记录与所述第一条记录进行比较;
为了确定一个时间,将所述第一记录发送至一个远程基站,该时间指出所述移动SPS接收机何时接收到所述第一条记录。
根据本发明的另一方面,提供一个卫星定位系统SPS接收机,其特征在于包括:
一个天线,用于接收SPS信号;
一个解调器,连接至所述天线,所述解调器从所述SPS信号中移去一个PN码;
一个处理器,连接至所述解调器,所述处理器确定从所述解调器接收的卫星信息的至少一部分中的第一条记录,以及当所述SPS接收机接收到所述第一条记录时,从一个估计时间中确定一个参数,该参数指出一个比较范围,用以对一条参考记录与所述第一条记录进行比较;
一个发射器,连接至所述处理器,所述发射器将所述第一条记录发送给一个远程基站。
根据本发明的另一方面,提供一个卫星定位系统SPS接收机,其特征在于包括:
一个SPS天线,用于接收SPS信号;
一个处理器,连接至SPS天线,所述处理器处理所述SPS信号和从所述SPS信号中确定至少一个伪距离,所述处理器从所述SPS信号中移去PN码,以提供所述SPS信号的一条卫星数据信息中的至少一部分中的第一条记录,并当所述SPS接收机接收到所述第一条记录时,从一个估计时间确定至少一个参数,该参数指出一个比较范围,用以对一条参考记录与所述第一条记录进行比较;
一个发射器,连接至所述数据处理器,所述发射器给所述远程基站发送所述第一条记录。
根据本发明的另一方面,提供在移动卫星定位系统SPS接收机中、一种用SPS测量与卫星数据信息有关的时间的方法,其特征在于,所述方法包含:
在所述移动SPS接收机接收卫星数据信息中的至少一部分中的第一条记录;
在所述移动SPS接收机接收所述卫星数据信息的包括参考记录的第二条记录,其中所述第一条记录与所述第二条记录至少有部分时间的交迭;
确定一个比较范围;
当所述移动SPS接收机接收到所述第一第记录时,至少在由一个估计时间确定的比较范围内比较所述第一条记录与所述第二条记录;
从所述比较中确定一个时间,所述时间指出所述移动SPS接收机何时接收到所述第一记录。
根据本发明的另一方面,提供一种移动卫星定位系统SPS接收机,其特征在于包括:
一个天线,用于接收SPS信号;
一个解调器,连接至所述天线,所述解调器从所述SPS中移去一个PN码;
一个处理器,连接至所述解调器,所述处理器确定由所述解调器接收的一条卫星数据信息中的至少一部分中的第一条记录,并且确定一个比较范围;
一个通信天线;
一个通信接收器,连接至所述的通信天线和所述处理器,所述通信接收机接收所述卫星数据信息的第二条记录,其中所述第一条记录和包括参考记录的第二条记录至少有部分时间的交迭,当在所述移动SPS接收机接收所述第一条记录时,所述处理器至少在由一个估计时间确定的所述比较范围内将所述第一条记录与所述第二条记录进行比较,并且确定一个时间,表明何时接收到所述第一条记录。
根据本发明的另一方面,提供一种利用卫星定位系统SPS对与卫星数据信息有关的时间进行辅助测量的装置,其特征在于,所述装置包括:
一个发射器,用于发送卫星数据信息的包括参考记录的第二条记录,该第二记录用于与卫星数据信息中的至少一部分中的第二条记录进行比较,所述发射器发送一条用于确定比较第一条记录与第二条记录的比较范围的信息,当远程移动GPS接收机接收到所述第一条记录时,所述的比较范围由一个估计时间确定。
根据本发明的另一方面,提供一种用于卫星定位系统SPS、用以测量与卫星数据信息有关的时间的方法,其特征在于,所述方法包含:
在一个实体接收卫星定位系统的至少一部分卫星数据信息的第一条记录;
对所述第一条记录与所述卫星数据信息的包括参考记录的第二条记录作比较,当接收所述的第一记录时,在确定一个估计时间后执行所述的比较;
从所述比较中确定一个时间,所述时间指出远程实体何时接收到第一条记录。
根据本发明的另一方面,提供一种利用卫星定位系统测量与卫星数据信息相关的时间的装置,其特征在于,所述装置包含:
一个接收机,用于接收卫星数据信息中的至少一部分的第一条记录;
一个连接到所述接收机的数据处理器,所述数据处理器在一个比较范围内进行对所述第一条记录与第二条记录的比较,该第二条记录包括所述卫星数据信息的一条参考记录,该比较范围当所述远程实体接收所述第一条记录时由一个估计时间确定,所述处理器由所述比较确定一个时间,所述时间指出一个远程实体接收到所述第一条记录的时间。
根据本发明的另一方面,提供在移动卫星定位系统SPS接收机中、一种用SPS测量与卫星数据信息有关的时间的方法,其特征在于,所述方法包含:
在所述移动SPS接收机接收卫星数据信息中的至少一部分中的第一条记录;
在所述移动SPS接收机接收所述卫星数据信息的包括参考记录的第二条记录;
确定一个比较范围;
当所述移动SPS接收机接收到所述第一第记录时,至少在由一个估计时间确定的所述比较范围内比较所述第一条记录与所述第二条记录;
从所述比较中确定一个时间,所述时间指出所述移动SPS接收机何时接收到所述第一记录。
本发明提供利用卫星定位系统,例如GPS或Glonass,来测量与卫星数据信息相关的时间的方法和装置。一个实施例的一种方法包括下列步骤:(1)在一个实体中接收一条卫星数据信息的至少一部分中的第一条记录;(2)将第一条记录与卫星数据信息的第二条记录进行比较。这儿第一条记录和第二条记录至少有部分时间的交迭,并在确定在何时接收到第一条记录的一个估计时间后进行比较;(3)从比较中确定一个时间,该时间指出远程实体在何时接收到第一条记录(例如第一条记录的源)。在本实施例的一个例子中,远程实体是一个移动SPS接收机而实体是一个基站。该基站与移动SPS接收机经过无线(或许也是有线的)链路进行通信。本发明的一种方法可只能在基站执行。在一个替代实施例中,可执行比较,然后用第一条记录接收到时的估计时间来验证比较所确定的时间是正确的。
本发明的一个用于建立接收机定时关系的一个实施例,该实施是为接收机形成一部分卫星数据信息的估计,并将该估计发送给基站。在基站将该估计与从另一个GPS接收机或GPS信息源接收到的卫星数据信息一条记录进行比较。该记录假定为没有错误的。接着该比较确定那一部分基站信息与远程单元发送的数据最相匹配。因为基站已经读入无错误的卫星数据信息,它能将那条信息的每一位数据比特与纯粹的时间标记联系起来,如通过发送卫星所见的。因此,该比较导致基站将一合适的时间分配给经远程站发送的估计数据。如需要,该时间信息可发回给远程站。
上述手段的一种变化是使基站给远程站发送一条清晰的卫星数据信息记录加上与该信息的开始部分有关的绝对时间。这种情况下,远程实体将该记录与数据的估计值作比较,该数据估计值通过处理收到GPS信息形成。该比较将提供两条记录间的时间偏移量,并因此为本地收集的数据建立一绝对时间。
附图简述
图1A是一个组合移动SPS和通讯系统的主要部件的框图。该系统能接收SPS信号,并与基站建立通讯。
图1B示出的是图1A的射频(RF)至中频(IF)转换器和频率合成器的典型实施例框图。
图2是一个描述本发明的一种方法的流程图。
图3是一个描述本发明的另一种方法的流程图。
图4A示出一种在本发明的一种特殊方法中由一个移动SPS接收机执行的方法;图4B示出由一个基站执行的一种相似的方法。
图5A示出本发明一个基站的一个实施例。
图5B示出本发明一个基站的另一个实施例。
图6示出本发明的一个系统,该系统包括一个SPS接收机、一个蜂窝电话站、一个基站、互联网和客户计算机系统。
图7示出在本发明中通常实施的图形匹配的简化视图,用于确定移动SPS接收机处卫星数据信息的接收时间。
图8A示出一种在本发明另一个特殊的实施例中的由移动SPS接收机执行的方法。而图8B示出一种由一个基站执行的相应的方法。
图9示出一种传统GPS接收机的简化结构。
图10A、10B、10C和10D示出一些按照本发明经过各阶段的信息处理后的采样SPS信号的例子。
图11A、11B和11C示出一些按照本发明经过信号处理各阶段后的采样SPS信号的进一步的例子。
图12A示出一个按照本发明一个实施例的粗略时间协调方法的例子。
图12B示出另一个按照本发明另一个实施例的粗略时间协调方法的例子。
较佳实施例的详细描述
下面将描述利用卫星定位系统来测量与卫星数据有关的时间的方法和装置。本发明的讨论将针对美国全球定位卫星(GPS)系统。但是,应当理解,这些方法同样适用于相似的卫星定位系统,例如:俄罗斯的Glonass系统。另外,还应认识到本发明的原理同样适用于利用假卫星(pseudolites)或卫星与假卫星组合的定位系统。另外所提供的有关基站和移动SPS接收机的各种结构是属描述性的,而不能认为是对本发明的限制。
图2示出本发明的一般方法,该方法可适用于由移动通信接收器和发射器组合成的移动SPS接收机中,如图1A所示的。图1A所示的移动GPS接收机100在步骤201,采样卫星数据信息,例如星历表,并建立该信息的一条记录。接着在方法200,步骤203中,远程站或移动GPS接收机将该记录传送给一个基站,例如图5A或5B所示的基站。该记录一般代表由移动GPS接收机收到的信息。在步骤205,基站将从移动SPS接收机传送来的该记录与另一条被称为卫星数据信息的参考记录作比较。该参考记录含有时间值,其中各段卫星数据信息已经指明与之相关的“参考”时间。在步骤207,基站通过卫星数据信息的移动GPS接收机确定采样的时间。该确定取决于与参考记录有关的时间值,且该确定将指出移动GPS接收机在何时接收到该记录或该记录源。在图12A和12B所示的实施例中,在移动GPS接收机通过确定SPS信号记录的接收的时间估计值来帮助实行操作205的比较。该估计值可以用来限制该记录与参考记录比较范围,或可以用来鉴定比较的结果。这一般将改善比较操作的速度,也保证该结果的精度(在远程站记录该记录和执行比较操作之间或许有不正常的长的传递响应时间)。
图7以简化的方式描述在图2的步骤205中的比较操作。尤其是图7示出移动接收机的记录与基站的参考记录间的尝试过的比较,分别如记录491和记录495所示。两记录的水平轴表示时间,移动接收机的记录的493部分表示为了比较而传送至基站的部分。通常基站也有相似的497部分,该497部分与从接收机收到的记录至少有部分时间交迭。在图7中,该交迭部分完整地落在基站的参考记录上,参考记录提供卫星数据信息遍及整个移动接收机的记录的间隔部分。然而,这仅仅是一个例子,交迭也可能仅是移动接收机的记录与来自基站的参考记录的重叠一部分。
图3进一步详细描述本发明的一种方法220,该方法测量用于卫星定位系统的与卫星数据信息相关的时间。在步骤221,移动的或远程GPS接收机获取GPS信号,并从那些所获取的GPS信号中确定伪距离。在步骤223,移动GPS接收机移去PN数据,并从所获取的GPS信息中建立卫星数据信号的一个记录,用于创建或判别伪距离。通常该记录代表所获取GPS信号中的历星表数据和一个估计数据。在步骤225,移动GPS接收机将该记录和确定的伪距离传送给一个基站,例如图5A或5B所示的基站。
在步骤227,基站对从移动GPS接收机来的记录与卫星的星历表的参考记录进行交叉相关处理。该参考记录通常包括该参考记录中与数据有关的精确时间标志(例如参考记录中每一比特数据有相关的时间值或“标志”),而正是用该时间标志确定最先获取GPS信号的移动GPS接收机的接收时间。在步骤229,基站从相关处理操作中,确定获取GPS信号的远程GPS接收机的捕获时间。然后在步骤231,基站利用由获取GPS信号的远程GPS接收机的捕获时间以及利用已确定的伪距离来确定位置信息,该位置信息可能是远程/移动GPS接收机的纬度和经度。在步骤233,基站可以将远程GPS接收机的位置信息传送给另一个实体,例如经网络(诸如因特网)耦合的计算机系统,或者经由内部网传送给基站。这将在以后结合图5B和图6作进一步描述。
下面将进一步详细解释在遥控SPS接收机中几种估计卫星数据的方法。方法分成两大类:
一类执行对数据的微分解调和软件判决(在移去PN后);另一类采样移去PN后的原始I/Q数据。图4A和4B以图表方式示出第一类方法,而图8A和8B表示第二类方法。注意,这里的目的是,要确定远程接收机和基站接收信号时,信号到达的时间差别。因为假定基站具有精确的时间,该时间差别将确定远程站接收数据时的精确时间。如下解释:两个手段差别在于,必须由远程站(移动SPS接收机)处理的数量和从远程站到基站经过通讯线路必须传送的信息量是不同的。基本上,在远程站处理负担与必须经过链路的数据量之间有一权衡。
在详细描述图4A和4B及因8A和8B中的程序之前,回顾传统的GPS操作以与本发明的方法作对比。在图9示出一个传统GPS接收机601的简化版本。
该传统接收机601从GPS射频(RF)前端(即下变频器和数字化器)接收数字化I/O输入信号603,并在混频器605将该输入信号603与从数字振荡器607来的振荡信号进行混频。然后,混频器605的输出在混频器609中与PN发生器611的输出进行混频。该PN发生器由从微控制器617来的信号619作芯片预置(Chip advance)控制。为了将信号转换成近基带,微处理器617也控制数字振荡器607。
在传统的GPS接收机操作中,从GPS卫星收到的信号在无噪声时的格式为:
Y(t)=AP(t)D(t)exp(j2πf0t+Φ)                  公式(1)
这儿P(t)是长度为1023,有±1误差的重复的二进制相移调节的伪随机码序列(芯片速率为每秒1.023兆碎片(Mchips))。D(t)是50波特数据信号,该信号按PN帧开始端排列,又假定该值为±1。在将信号转换成近基带后(即通过混频器605),用相关器(可认为相关器包括图9中的元件609、611、613、615和617)通常地将PN码移去。该设备本地重新产生P(t)码(为指定的卫星),并确定所收到的PN码与本地产生的PN码之间的相对相位。当相位调整时,相关器将该信号与本地产生的参考信号相乘,导致的信号格式:
P(t)×Y(t)=P(t)A P(t)D(t)exp(j2πf0t+φ)=AD(t)exp(j2πf0t+φ)
                                     公式(2)
在这点,信号经窄带滤波(例如在滤波器613),滤掉数据信号D(t)带宽外的噪声。然后经采样器615,可将采样速率减少至数据速率的较小数倍。这样,在公式2右边的时间变量t可取公式mT/K的值,m=0、1、2、…,K为一小的整数(例如2),T是比特周期。
此点的数据采样被用于执行PN跟踪操作,载波跟踪和数据解调。该操作也通常在微处控制器617中的软件算法来执行,但也可以用硬件来实行。在图9中,微控制器617将校正信号621和619分别反馈给数字振荡器和PN发生器,以便本地产生的载波信号和PN信号与所接收的信号,在相位上保持同步。对于同时接收的多路GPS信号(通常从四颗或更多颗卫星上收到4路或更多路GPS信号),该操作通常是并行执行的。
目前,在某些情况(例如:较低的信噪比(“SNR”)),GPS信号可能太弱,以至于数据D(t)不能可靠地被分离出来。如前所述,传统的GPS接收机需要读取该数据来确定世界时以及提供一个位置定位。在低信噪比(SNR)的情况下,由本发明提供一替代手段是远程站和基站一起工作,后者存取该卫星数据信息。远程站将该资料送给基站,让基站计算与远程站的原始接收的数据有关的时间。还存在一种可替代的配置,在该配置中,基站将资料送给远程站以便远程站计算该接收时间。主要考虑的是第一种情况。
应当注意,在某些情况,基站和远程站间的时间协调可以由下列两种方式中的任一种方式达到。一种是在通信链路上发送精确的定时信号(例如脉冲或特定的波形信号),另一种是通过对链路潜在能力的认识或测量环路延迟(假定是一双向对称的链路)来统计所经过的时间。可是有许多种情况,该手段是不切合实际的或不可能的。例如,在包括打包约定的许多链路中,每一个发送间的延迟均不同,并跨越许多秒钟。
本发明的手段是让远程站形成一部分数据序列D(t)的估计或处理该序列版本的估计,并将该数据发送给基站。该数据序列与由基站产生的相似的但高保真的信号进行比较。按照所给的尺度,如最小的均方根差,这两种序列在相对时间上进行滑动,直到产生最好的匹配为止。该“相关”过程与GPS接收机所用的为与PN展开序列同步的过程非常相似;可是该操作以较低速率的数据信号工作,此外该信号的图形是经常改变的,以及不可能预先知道的。
因为基站大概知道与该信息的每一元素有关的精确时间,该基站可以利用该知识加上前述的比较来查明与远程站接收的信号有关的原始时间。
这样,主要的问题在于数据序列D(t)的远程站的估计或由此派生的情况。
图8A和8B示出为估计数据序列的本发明的一个特殊实施例,该施例是为了在移去PN码后,简单采样和储存该信号的记录,如公式(2)所示。这儿该信号假定以数据速率的小倍数速率采样;每秒100的采样率可适合于该目的。注意两个I和Q支流均应采样。为了便于基站判别,应使该数据图案成为唯一的。因此,一条记录的长度应采用25个或更多的数据符号(0.5秒)。从公式(2)应注意,还可能依然存在一个小的剩余载波频率f0和末知的载波相位φ。如已知的载波频率精于正负一半的数据信号采样速率是很有利的,否则载波会有力地使数据信号的相位倒相,因此会损坏数据。
图8A描述一种按照该特殊实施例在移动GPS接收机实施的方法。在步骤503,接收机为该特殊GPS信号获取第一个(如不是第一个,或是下一个)PN码并从该信号中移去PN码。然后在步骤505,接收机进行精确的载波频率估计。接着在步骤507,从输入信号中移去载波。在步骤509和511,采样和数字量化该I和Q数据,该数字量化结果被保存为相关卫星数据信息的一条记录。然后将该记录发送给基站(或许带有发送特殊GPS信号的GPS卫星的相关的伪距离)。在步骤513,接收机判断接收机是否已经为所有有关的卫星(例移动GPS接收机视线内所有卫星或视线内至少4颗卫星)执行了步骤503、505、507、509和511(从此确定一条记录)。如果已经从每一颗有关的卫星中确定了卫星数据信息的一条记录,接着GPS接收机(在步骤515)将带有一个消逝的时间标记的记录发送给基站。基站用消逝时间标记来估计和/或选择基站中的“参考”记录,该参考记录与发送给基站的记录相比较(例如,经相关处理)。如果接收机还未从每一颗有关卫星中确定的一条记录,于是移动GPS接收机的处理过程从步骤513返回至步骤503,并且为了确定从下一颗有关卫星接收的卫星数据信息的一条记录,重新执行步骤503、505、507、509和511。图1A示出GPS接收机(以及通信接收机/发射机)的一个例子,该例子可执行图8A的方法。该GPS接收机在下面将作进一步详细描述。
当基站接收到该资料时,基站能改善频率估计和移去载波,然后经交叉相关处理确定相对定时。该交叉相关处理是将该数据与在清晰视线的天空中,从一个GPS接收机收到的高保真信号(或从某些其他高保真GPS信号源收到的,例如从因特网或从GPS地面控制站)提取出来的相似数据进行交叉相关处理。
图8B示出一种根据接收到从远程站发出的卫星数据信息记录,由基站执行的方法521。在步骤523,基站接收到一相似于卫星数据信息的记录,然后在步骤525锁相于收到的记录,并在步骤525移去任何剩余的相位误差/相位滚动。与步骤523和525同时地,步骤527示出以下过程,通常基站跟踪和解调GPS数据信息并将时间标记加到这些数据信息上,以便提供与已解调的卫星数据信息的各种间隔相联系的一精确时间值。基站将根据正在进行的基本工作如产生一连续的参考记录并将这条“参考”记录的运行采样储存于基站,执行对卫星数据信息的跟踪和解调工作。应当认识到参考记录的运行可维持当时时刻之前的长达约10至30分钟的时间周期。即在抛弃参考记录的旧的部分并及时有效地用最新的代替它之前,基站可维持一份该参考记录的拷贝长达30分钟。
在步骤529,基站将基站的参考记录与从远程站的参考记录进行相关处理,该远程站的参考记录是第一颗卫星(或下一颗)的第一条(如不是第一,则为下一条)卫星数据信息的一条记录。为了匹配图形,相关是两条记录间的一个有效的比较,因此,当远程站收到记录时,基站可以精确地确定时间(因为记录本身是一个源的估计值,当由远程站接收到该记录的源时,该确定的时间通常是一有效的时间)。应该认识到当用于描述本发明时,远程站记录的有效接收时间就是在远程站记录源的接收时间。在步骤531,基站搜索和内插峰值位置,该峰值位置指出远程站在何时接收到当前卫星记录和它的相关的卫星数据信息。在步骤533,基站将判断是否已经确定所有有关的卫星的所有时间以及相关的记录。如果没有确定,处理过程将返回至步骤529,并为每一个从远程站来的记录进行重新处理。如果已经处理完所有的记录,处理过程从步骤533进行至步骤535,该处理是为了确定所有有关卫星的相关的时间和其他相关的卫星数据信息。其中对有关的不同卫星的时间进行比较。在步骤537,多数逻辑用于删去错误的和不明确的数据,然后在步骤539判断是否所有的数据都是不明确的。如果所有的数据都不明确,基站通过给移动GPS单元中通讯接收机发出一个命令,命令移动GPS接收机再接收数据。如果所有数据不全是不明确的,接着在步骤543,基站求时间的权重平均值以确定在移动GPS接收机中卫星数据信息的平均接收时间。应该认识到,在某些情况例如那些当GPS信号的一个采样被数字量化及储存于数字存储器中以待进一处理时的情况,一旦该采样是短期的,就会有一部分有效接收时间。在其他的情况,例如包含连续相关处理:在某一时间处理一颗卫星的数据,捕获该卫星的信号和将该信号组成一条记录,然后及时捕获另一颗卫星的信号。在这种情况下,有多次接收,基站可判断其中的任何一次并按以下所述的方式使用它们。
应该认识到,至少在某些实施例中,在与通常从移动GPS接收机发射出的伪距离的相关的那条记录的接收时间,将被基站用于确定一条位置信息,例如移动GPS接收机的纬度,经度和/或海拔高度。
在某些情况下,很难确定剩余载波频率达到足够的精度(在步骤525),然后对来自远程站的数据和本地接收的数据的微分解调可以优先于交叉相关处理。在下面结合图4A和4B进一步描述该种微分解调。
如通讯链接能力(在移动GPS接收机和基站间)低,远程站对去扩展(despread)信号(移去PN的信号)进行附加处理有利的。如图4A和4B中所描述,达到此目的的好手段是远程站通过对数据信号执行延时相乘操作来微分检测该信号,将其中的延时设成一个比特的周期(20毫秒)或一比特周期的数倍。这样如果公式(2)的基带信号表示为
z(t)=AD(t)exp(j2πf0t+φ)                           公式(3)
则,合适的运算应是:
z(t)z(t-T)*=A2D(t)D(t-T)exp(j2πf0T)=A2D1(t)exp(j2πf0T)公式(4)
这里的星号表示复数共轭(complex conjugate),T是比特周期(20毫秒)而D1(t)是一个新的50波特序列,该序列是对原始数据序列进行微分解码形成的(例如对a-1映射一个跃变,对a+1没有映射跃变)。现在如载波频率误差与符号周期的倒数相比是少的,那末后面的指数项含有支配虚数部分的实数部分,并在产生的结果A2D1(t)中仅能保留该实数项。因而,公式(4)的运算产生一实数的信号串而不是在图8A所示方法的复数信号串。通过它本身,当经过通信链路传送记录时,只要传送所需信息的长度一半信息。因为信号A2D1(t)是在基带上,所以它可按该图8A所示方法的数据采样速率更小的速率采样。也还可能仅保留该数据的符号,因此减少了要传送的数据量。然而,这种手段将会减少基站解决比一个符号周期(20微秒)更长时间的能力。这儿,应当注意PN码以1毫秒间隔重复,并因此,PN码本身对进一步解决测量误差是很有用的。
图4A描述移动GPS接收机中执行的处理步骤,而图4B描述根据本发明这特殊的实施例在基站执行的处理步骤。在步骤301,移动GPS接收机从基站接收一个请求发送位置信息的请求。应当认识到在典型的实施例中,由通信接收机接收该请求,例如图1A中移动GPS接收机100所示的。在步骤303,在响应发送位置信息的请求时,移动GPS接收机从一条GPS信号中获取第一个(如果不是第一个,即是下一个)PN码并从所接收的GPS信号中移去PN码。在步骤305,远程站执行载波频率的精确估计;该估计的精度应当好于GPS数据信息的采样速率。在50波特GPS数据的情况下,该采样速率通常为100Hz。在GPS接收机中,通常有传统频率测量系统来执行步骤305的操作;这些频率测量系统通常使用载波跟踪环,该载波跟踪环常含有提取载波的锁相环和频率测量电路或作为选择的一种带有锁相环的频率跟踪环。在步骤307,移动GPS接收机从所剩余信号中移去载波频率,留下50波特数据。然后在步骤309,通过按两倍于该数据本身速率采样该数据,对该剩余数据进行微分检测。应当认识到,远程GPS接收机本身可以给基站发送数据和允许基站执行步骤309和311的微分检测和数字量化,而不是步骤309的微分检测数据。移动GPS接收机继续在步骤311量化和储存结果,该结果是一条通常具有0.5至1秒的时间周期的卫星数据信息的记录。然后在步骤313,移动GPS接收机确定是否已经为每一颗有关卫星建立了一条卫星数据信息的记录,该有关卫星可以是在视区范围内的所有卫星或视区范围内的至少四颗卫星。如果还未为每一颗有关卫星以及它的相应的卫星数据信息建立一条记录,那末处理进程从步骤313返回至步骤303,并继续此循环直到已经为每一颗有关卫星的每一条卫星数据信息建立了一条记录为止。如所有有关卫星的所有记录都已经确定和建立,接着处理过程从步骤313进行至步骤315。在该步骤中,移动GPS接收机通过它的通讯发射器,为所有有关卫星发送带有粗略的(消逝的)时间标记的记录。基站按前述的方式使用该粗略时间标记。
在图4B所示的步骤327,基站接收来自移动GPS接收机的这些记录。在图4B所示步骤321中执行如下的操作:在移动GPS接收机工作时,通常基站也同时地在跟踪和解调GPS数据信息,并将时间标记加到这些数据信息中,以便有效地将时间标记加到这些数据信息中。接着在步骤323,基站将该数据微分解码为基本数据,该基本数据可用于步骤325中的相关处理操作。通常为相关处理操作储存从移动GPS接收机接收到的数据,并将接收的数据与步骤323所储存的微分解码的数据进行比较。在步骤325,基站为第一颗(如不是第一颗,或是下一颗)卫星,将基本数据与从移动GPS接收机来的记录作相关处理。在步骤327,基站搜索并内插峰值位置。该峰值位置指出来自当前正在进行处理的卫星的卫星数据信息到达移动接收机的时间。在步骤329,基站判断是否已经对来自移动GPS接收机接收的所有记录进行了相关处理。如果没有,处理过程返回到步骤325,在步骤325和327处理下一个卫星数据信息的下一条记录。如果在步骤329,已经判断已经对来自移动GPS接收机的所有记录都进行了相关处理,接着在步骤331,在不同的有关卫星所确认的时间之间进行比较。在步骤333,基站利用多数逻辑移去错误的或不明确的数据。接着在步骤335,基站判断是否所有的数据是错误的或不明确的。如果均是错误或不明确的,在步骤337基站命令移动接收机获取更多的数据,并且将重新执行从图4A所示的方法起并继续到图4B所示的方法止的整个过程。如果步骤335中判断的所有数据不是全部不明确,接着在步骤339,基站运算时间的权重平均值,并至少在某些实施例中,使用带有从移动GPS接收机发送的伪距离的该权重平均值,以便确定移动GPS接收机的位置信息。
为了描述处理步骤,刚刚介绍了一真实的GPS信号被采样,被收集进一个记录,被去扩展并以每个符号周期4倍的采样速率采样。图10A示出已移去部分载波的一部分真实去扩展波形的1秒钟的记录。符号图案是明显的,但是还显然地存在一个小的约1Hz剩余载波偏移量。图10B示出微分检测到的信号,该微分检测通过该信号与一个共轭相乘并延迟约20毫秒进行。该符号图形是清晰明显的。图10C示出理想的数据信号,而图10D示出该理想信号(例如在基站产生的)和图10B的信号相关处理的结果。注意图10B中的瞬时脉冲波形干扰,这些干扰是由采样影响和噪声等因素造成非理想信号引起的。
图11A示出信号中加入噪声时的已解调的数据,因此解调信号的SNR(信噪比)约为0dB。当接收的GPS信号功率电平比正常功率电平减少15dB以上时,例如通过阻塞情况,就可模拟出这种情况。图11B示出微分解调的数据。该比特图形是无法检测的。最后图11C示出这个噪声信号与清晰的参考信号进行交叉相关处理的结果。很显然,尖峰还很强,该峰值对RMS电平超过5.33(14.5dB),允许精确到达时间的估计。事实上,已应用有关此信号峰值的插补程序,指出一个小于采样间隔的十六分之一精度,即,小于0.3毫秒。
如前所述,基站能够给远程站发送数据序列和与该信息开始有关的时间。除了在远程站执行那些相关处理的方法外,远程站能经过如上所述相同的交叉相关方法估计这些数据信息的到达时间。如果远程站计算它自己的定位位置是非常有用的。在这种情况下,远程站也能从基站发送的数据中获取卫星的星历表数据。
图1A示出使用本发明的一个组合移动式GPS接收机和通讯系统的一个实施例。该组合移动式GP接收机和通讯系统100已经在专利申请号为08/652,833,申请日为1996年5月23日,其标题是“采用共享电路的组合GPS定位系统和通讯系统”的专利申请中作了详细描述。该申请在此作为参考(现在为美国专利6,002,363)。图1B进一步详细地描述图1中的射频(RF)至中频(IF)转换器7和频率合成器16。图1B所示这些部件也在申请号为08/652,833的专利申请中描述。图1A所示的移动GPS接收机和通讯系统100可配置成对存储的GPS信号执行特殊格式的数字信号处理。在这种方式下,该接收机具有很高的灵敏度。在美国专利申请号08/612,669,申请日为1996年3月8日,其标题是“一种改进的GPS接收机和处理GPS信号的方法”中作了进一步描述,该申请在此作为参考。在专利申请号08/612,669中描述的处理操作,通常利用快速傅里叶变换来计算多个中间卷积并将这些中间卷积储存于数字存储器中,然后用这些中间卷积提供至少一个伪距离。图1A所示的组合GPS和通讯系统100可能结合有某频率稳定或校正技术以进一步改进GPS接收机的灵敏度和精确度。这些技术在专利申请号为P003X,申请日为1996年12月4日,其标题是“一种利用通讯链路的经改进的GPS接收机”的专利申请中作了描述。该申请在此结合作参考(现在美国专利号5,841,396)。
这儿将作简要介绍,而不是详细描述图1A所示的组合移动式GPS接收机和通讯系统工程100的工作。在典型的实施例中,移动GPS接收机和通讯系统100从基站,例如基站17接收一条命令,它可以是如图5A或图5B所示的任一种基站。在通讯天线2上接收这个命令,在存入存储器9后,经过处理器10将命令处理成数字信息。该处理器10判断这信息是一条给基站提供位置信息的命令,这使处理器10激活系统的GPS部分,至少其中的某些部分可与通讯系统共享。例如包括设置转换6使射频(RF)至中频转换器(IF)7接收GPS天线1来的GPS信号,而不接收从通讯天线2来的通讯信号。接着接收GPS信号,经数字量化,储存于数字存储器9,然后依照在前面描述的专利申请号08/612,669中所介绍的数字信号处理技术对这些数据进处理。这种处理的结果通常包括视线内多个卫星的多个伪距离,并且接着将这些伪距离返回给基站,该操作由处理元件10激活发射部分并将返回基站的伪距离传送至通讯天线2送还给基站来实现。
图1A所示的基站17可以通过无线电通信链路直接连接至远程站,或如图6所示可以通过蜂窝电话站连接至远程站,该蜂窝电话站在电话站和基站之间提供有线通信链路。图5A和图5B描述这两种可能的基站。
按照本发明,图5A中所描述的基站401可以起到如自治单元的功能,该自治单元提供至/自移动GPS接收机的无线电链路以及处理接收的伪距离和相应的时间记录。基站401可用于位于大城市的基站,并可用于位于大城市中要进行跟踪的所有移动GPS接收机中。例如,这种基站401可以由警察部门或救援部门雇用,以跟踪戴有或使用移动GPS接收机的人。通常,可以把发射器单元409和接收器单元411合并成单一带有天线的收发单元。然而因为这些单元还可以单独地存在,所以加以分别地示出。发射器409的功能是经过发送天线410向移动GPS接收机提供命令;该发射器409通常处于数据处理单元405的控制下。该处理单元405可接收处理单元用户的请求来确定一特殊移动GPS接收机的位置。因此,数据处理器单元405能产生命令,该命令由发射器409发送给移动GPS接收机。相应地,在本发明的一个实施例中,移动GPS接收机也可以给接收器411发送回伪距离和相应记录,它们由接收天线412接收。接收器411从移动GPS接收机接收这些信息并把它们供给数据处理器405。接着数据处理器405从来自移动GPS的伪距离和从GPS接收器403收到的卫星数据信息或者其他参考质量的卫星数据信息源中得到位置信息。这在上述的专利申请中作了进一步介绍。该GPS接收机403提供卫星的星历表数据,该星历表数据与伪距离和确定时间一起用于为移动GPS接收机计算位置信息。该大规模存储器407含有卫星数据信息的参考记录的一个储存版本。这储存版本用于与从移动GPS接收机收到的记录作比较。数据处理器405可连接到显示器415(选项),也可以连接到带有GIS软件(选项)的大规模存储器413。应当认识到,因为大规模存储413和大规模存储器407可以包含在相同硬盘或其他大规模存储设备中。
图5B描述本发明的一个替代基站。该基站425可连接至远程发射和接收站,例如图6所示的蜂窝电话站455。该基站425也可以通过网络,如因特网或内部网或其他类型的计算机网络系统连接至客户系统。基站的这种试用方式在专利申请号为08/708,176,申请日为1996年9月6日,其标题是“基于远程定位设备客户服务器”的专利申请中作了进一步描述。该专利申请结合在此作参考。经过图6所示的蜂窝式电话站455和它相应的天线或天线457,基站425可与移动GPS接收单元,例如图6所示的组合移动GPS接收机和通信系统453进行通信。应当认识到,该组合移动GPS接收机和通信系统453与图1A所示的系统100也许相似。
如图5B所示的基站425包含处理器427。该处理器427可以是传统的微处理器,它经过总线430连接至主存储器429,该主存储器429可以是随机存取存储器(RAM)。该基站425还包含其他输入/输出设备,例如键盘,鼠标,显示器435和有关的输入/输出控制器,它们经总线430接至处理器427和存储器429。大规模存储器433,例如硬盘或CD ROM或其他大规模存储设备,经过总线430被连接到系统的各种部件,例如处理器427。输入/输出控制器431连接至总线430,它能在GPS接收机之间或卫星数据信息的其他源之间提供输入/输出控制服务。该输入/输出控制器431从GPS接收器430接收卫星数据信息,并将这些数据经过总线430提供给处理器。该处理器产生要加到卫星数据信息中的时间标记,然后将该标记储存于大规模存储器433中,以便随后用于与从移动GPS接收机收到的记录进行比较。在图5B中所示的两个调制解调器439和437用作与远离于基站425的其他系统相连的接口。在调制解调器或网络接口439的情况下,该设备连接至客户计算机,例如可通过因特网或某些其他计算机网来连接。该调制解调器或其他接口437给蜂窝式电话站,例如图6所示的蜂窝式电话站455,提供一个接口。图6描述系统451。
基站425可以由本领域的熟练人员用其他计算机结构来实现。例如可以是多总线、或一主总线和一外部总线、或者可以是多计算机系统和/或多处理器。优点是例如有一专用处理器来接收从GPS接收器403来的卫星数据信息以及处理该信息,以便按指定的方式提供一条参考记录。这样,按本发明制备参考记录,储存该记录和管理批量储存的数据过程中,就不会有什么阻碍了。
图6所示的系统451,在一个实施例中按以下的方式工作。客户系统463经过网络,例如到基站425的因特网461,发送一条信息。应当认识到在网络或因特网461,可能有插入式路由器或计算机系统,它们沿着一特殊移动GPS接收机的位置请求通过。然后,基站425经过一个链路,该链路通常是有线电话链路459,发送一条信息给蜂窝式电话站455。接着,该蜂窝式电话站455用自己的天线或天线457发送一条命令给组合移动GPS接收机和通信系统453。相似地按照本发明,该系统453将发回伪距离和卫星数据信息记录。然后蜂窝电话站455接收这些记录和伪距离,并经链路459传输回基站。随后基站按本发明描述进行工作,利用这些记录来确定卫星数据信息的接收时间、使用从远程GPS系统453来的伪距离和利用从基站GPS接收机或从其他GPS数据源的卫星星历表数据。随后该基站确定位置信息并经过网络,例如因特网461,将该位置信息传送给客户计算机系统453。该客户系统可能有自己的制图软件,允许该系统的用户在图上看见移动GPS系统453的确切位置。
当移动GPS系统接收到GPS信号时,有几种确定估计时间的方法。当移动站发送图形给服务器时,该移动站可能启动一定时器,等待从服务器返回的应答信息。如果收到的应答信息非常长,在成功发送之间,图形和时间偏移量一起被重发。此过程可能一直进行到在合适的时间周期内(比如说1秒内)接收到确认信号为止。这种方法可有效地确定发送时延,并且当传输延迟超过预定的数值(例延迟大于可接受的时间周期)时,重新发送匹配图形。这种传输延迟为两种图形的比较建立一个比较范围。
作为选择的方法,移动站和服务器可以通过环路(round trip)信号在开始时就建立一粗略的时间协调,例如为1秒或更精确。服务器可以给移动站发送日期一时间(time of day),它记录该时间并给服务器送一条确认信号。如在规定的时间T周期内收到确认信号,很明显,移动站所记录的时间是在服务器的T秒内。那末,当移动站为建立要发送给服务器的数据图形处理GPS信息时,可以把这段处理时间用T秒来标记精度。因此,当估计的GPS数据信息送给服务器时,服务器只要在移动站收到图形和参考图形(例由本地GPS接收机接收或其他数据馈送的)之间,在不大于T秒范围内及时检查偏移量。经过移动站给服务器发送自己的处理时间的本地版本和服务器送回确认信号,也可建立粗略的时间协调。服务器能把接收的移动站的时间与它自己的时间联系起来,从而确定一偏移量(有时也称为偏差)。如果环路时间是在T秒内,那未随后的从移动站给服务器的图形发送允许服务器将它的搜索范围限制在小于T秒的时间内,该时间标有移动站的本地时间。按此方式,服务器能限制比较的范围。
应当认识到,如果图形匹配操作是在移动站而不是在服务器内进行的,可在移动站和服务器之间完成粗略时间协调的相同处理。一旦服务器和移动站互相间建立了相互的粗略时间,到不大于T秒的一个数值,那末随后在移动站要执行的图形匹配操作就不需要在大于T秒范围内进行。
上述过程中可能有另外的变动。可能在某些情况下,在移动站和服务器或与服务器可通信的其它实体之间,发送电子脉冲或其他定时信号,而不是将数据来回发送和测量数据接收到的时间。那末脉冲或信号可以提供在移动站和服务器之间建立粗略协调时间的方法。通过接收信号或通过与服务器通信中分离的信号,移动站和服务器可以对时间获得粗略的知识。例如每一个站可以从另外一种通信信号中接收日期—时间广播信号,例如WWV。移动站和服务器两者均可检查公共的无线电信号,并在与广播信号相联的某特定出现时刻处达成一致来建立粗略的公共时间。
图12A示出跟着图形匹配的粗略时间协调方法的整个框图。在这儿,最后的图形匹配工作是在服务器内执行的。图12B示出一个在移动站执行与图形匹配相应的框图。
在图12A,服务器和移动站在操作700通过发送环路信息或信号和通过测量环路延时(称为T秒)执行时间协调。该测量用于在操作701中判断T是否是太大(例如大于30秒)。如果延时太长,要重新执行操作700(或可用前已讲论过在移动站和服务器之间的时间协调的替代方法)。如果延迟T不是太大,则执行操作702;该操作702与母案专利图2的操作203相类似。在操作703,服务器(例母案专利图6的基站425)经过匹配由移动站发送的图形/记录进行相关操作来确定精确时间。该粗略时间用于建立一个搜索窗口(窗口=CT-delta到CT+delta),在该窗口中选择服务器的记录,该服务器记录与从移动单元接收到的图形相比较。
在图12B,除了移动站执行图形匹配操作外(而不是服务器执行该操作),执行与操作700-703相类似的一系列操作(800-803)。
已经用各种图表作参考描述了本发明。所提供的图表只用作描述目的,不能以任何方式企图限制本发明。此外,已经描述了本发明的各种方法和设备的各种例子,并应当认识到,根据本发明这些例子可进行修改并且仍落在下列的权利要求的范围内。

Claims (88)

1.一种用于卫星定位系统SPS、用以测量与卫星数据信息有关的时间的方法,其特征在于,所述方法包含:
在一个实体接收卫星定位系统的至少一部分卫星数据信息的第一条记录;
对所述第一条记录与所述卫星数据信息的包括参考记录的第二条记录作比较,其中,所述第一条记录与所述第二条记录至少有部分时间的交迭,当接收所述的第一记录时,在确定一个估计时间后执行所述的比较;
从所述比较中确定一个时间,所述时间指出远程实体何时接收到第一条记录。
2.如权利要求1所述的方法,其特征在于,所述的远程实体是移动卫星定位系统SPS接收机,其中所述估计时间用于为所述第二条记录与所述第一条记录进行比较,指定一个相对于第二条记录的时间范围。
3.如权利要求1所述的方法,其特征在于,所述远程实体是移动SPS接收机,其中所述方法进一步包括:
当接收到所述第一条记录时,从所述估计时间确定比较范围。
4.如权利要求1所述的方法,其特征在于,所述第二条记录提供日期一时间信息,从而使所述时间可以由所述第二记录来确定。
5.一种利用卫星定位系统来测量与卫星数据信息有关的时间的方法,其特征在于,所述方法包含:
在一个实体接收一个卫星定位系统的一条卫星数据信息的至少一部分中的第一条记录;
当接收到所述的第一条记录时,从一个估计时间中确定一个比较范围;
对所述的第一条记录与所述卫星数据信息的包括参考记录的第二条记录作比较,其中所述第一条记录与所述第二条记录至少有部分时间的交迭,其中所述比较至少在所述比较范围中的一部分范围内进行;
从所述比较中确定一个时间,所述时间指出远程实体何时接收到所述的第一条记录。
6.如权利要求5所述的方法,其特征在于,所述方法由作为基站的实体专门执行。
7.如权利要求6所述的方法,其特征在于,所述远程实体是一个移动卫星定位系统SPS接收机。
8.如权利要求7所述的方法,其特征在于,所述移动SPS接收机是一个GPS全球定位系统接收机。
9.如权利要求7所述的方法,其特征在于,所述第二条记录提供日期—时间信息,从而使所述时间可由所述第二记录确定。
10.如权利要求9所述的方法,其特征在于,所述第二条记录储存于所述基站中。
11.如权利要求9所述的方法,其特征在于,所述比较包括在所述第一条记录和所述第二条记录之间执行交叉相关处理或一个采样接一个采样地进行比较。
12.如权利要求11所述的方法,其特征在于进一步包含在所述实体接收多个来自所述远程实体的伪距离。
13.如权利要求12所述的方法,其特征在于进一步包含:
用所述时间和所述多个伪距离来确定所述远程实体的位置信息。
14.如权利要求9所述的方法,其特征在于,所述第一条记录含有50波特数据。
15.如权利要求7所述的方法,其特征在于进一步包含精确地确定所述第一条记录的载波频率。
16.如权利要求7所述的方法,其特征在于,所述确定所述的比较范围包括在所述实体和所述远程实体之间发送至少一条信息或信号。
17.如权利要求16所述的方法,其特征在于,所述发送包含将来自所述实体的第一条信息或信号发送给所述远程实体,并且将来自所述远程实体的第二条信息或信号发送给所述实体。
18.如权利要求17所述的方法,其特征在于,所述第一条记录包含与多个伪距离的第一个伪距离对应的所述卫星数据信息的至少一部分信息的至少一条记录。
19.如权利要求18所述的方法,其特征在于进一步包含:
在所述实体接收第二条卫星数据信息的至少一部分中的第三条记录;
将所述第二条卫星数据信息的所述第三条记录与所述第四条记录作比较,其中所述第三条记录与所述第四条记录至少有部分时间的交迭,;
从所述比较步骤中确定第二个时间,所述第二个时间指出远程实体何时接收到所述第三条记录,其中所述第二卫星数据信息与所述多个伪距离的第二个伪距离相对应。
20.如权利要求7所述的方法,其特征在于,所述远程实体包含一个蜂窝电话,并且所述第一条记录经过蜂窝电话站从所述蜂窝电话中被接收到。
21.一种利用卫星定位系统测量与卫星数据信息相关的时间的装置,其特征在于,所述装置包含:
一个接收机,用于接收卫星数据信息中的至少一部分中的第一条记录;
一个连接到所述接收机的数据处理器,在比较范围内,数据处理器将所述第一条记录与所述卫星数据信息的第二条记录进行比较,其中所述第一条记录和所述第二条记录至少有部分时间的交迭,并从所述的比较中确定一个时间,所述时间指出远程实体何时接收到第一条记录,其中当所述远程实体接收到第一条记录时,从一个估计时间中确定所述的比较范围。
22.如权利要求21所述的装置,其特征在于,所述远程实体是一个移动卫星定位系统SPS接收机。
23.如权利要求22所述的装置,其特征在于,所述第二条记录提供日期一时间信息,从而使所述时间可以由所述第二条记录确定。
24.如权利要求23所述的装置,其特征在于进一步包含一个连接至所述数据处理器的存储设备,所述存储设备储存所述的第二条记录。
25.如权利要求24所述的装置,其特征在于进一步包含一个连接至所述数据处理器的一个GPS全球定位系统接收机,所述GPS接收机提供所述第二条记录。
26.如权利要求25所述的装置,其特征在于,所述接收机是一种无线通信接收机或一个有线通信接收机。
27.如权利要求26所述的装置,其特征在于,所述接收机接收从所述远程实体来的多个伪距离。
28.如权利要求27所述的装置,其特征在于,所述数据处理器用所述时间和所述多个伪距离来确定所述远程实体的位置信息。
29.如权利要求23所述的装置,其特征在于,所述第一条记录含有50波特数据。
30.如权利要求24所述的装置,其特征在于进一步包含连接至所述数据处理器的一个发射器,所述发射器用于与另一个实体通讯。
31.如权利要求22所述的装置,其特征在于,所述比较范围是在所述实体和所述远程实体间通过发送至少一条信息或信号来确定。
32.如权利要求28所述的装置,其特征在于,所述第一条记录含有所述卫星数据信息中的所述一部分中的至少一个记录,该记录与所述多个伪距离中的第一个伪距离有关。
33.如权利要求32所述的装置,其特征在于,所述接收机接收第二卫星数据信息中的至少一部分中的第三条记录,其中所述数据处理器将所述第三条记录与所述第二卫星数据信息的第四条记录进行比较,其中所述第三条记录与所述第四条记录至少有部分时间的交迭,而所述数据处理器从所述比较步骤中确定第二个时间,所述第二个时间指出所述远程实体何时接收到所述第三条记录,而所述第二卫星数据信息与所述的多个伪距离的第二个伪距离相对应。
34.如权利要求31所述的装置,其特征在于,所述发送包含将第一条信息或信号从所述实体发送至所述远程实体,并且将第二条信息或信号从所述远程实体发送至所述实体。
35.一种利用卫星定位系统SPS测量与卫星数据信息有关的时间的方法,其特征在于,所述方法包含:
在移动SPS接收机接收卫星数据信息的至少一部分信息;
确定所述卫星数据信息中的至少一部分中的第一条记录;
当所述移动SPS接收机接收到所述第一条记录时,从一个估计时间确定一个参数,该参数指出一个比较范围,用以对一条参考记录与所述第一条记录进行比较;
为了确定一个时间,将所述第一记录发送至一个远程基站,该时间指出所述移动SPS接收机何时接收到所述第一条记录。
36.如权利要求35所述的方法,其特征在于所述在移动SPS接收机接收至少一部分卫星数据信息的步骤进一步包括接收SPS信号并确定至少一个伪距离。
37.如权利要求36所述的方法,其特征在于所述发送所述第一条记录给一个远程基站的步骤进一步包括发送所述至少一个伪距离。
38.如权利要求35所述的方法,其特征在于,所述的接收,确定所述第一条记录和发送都是在一个移动卫星定位系统SPS接收机中执行。
39.如权利要求38所述的方法,其特征在于所述接收步骤进一步包括接收GPS信号并确定多个伪距离,其中,所述发送的步骤进一步包括发送所述多个伪距离。
40.如权利要求39所述的方法,其特征在于,所述第一条记录包含50个波特数据。
41.如权利要求36所述的方法,其特征在于进一步包含从所述GPS信号中移去载波频率。
42.如权利要求41所述的方法,其特征在于进一步包含微分检测所述第一条记录。
43.如权利要求35所述的方法,其特征在于,所述确定一个参数包括把第一条信息或信号从所述移动SPS接收机发送到所述远程基站或者从所述远程基站接收第二条信息或信号之一。
44.一个卫星定位系统SPS接收机,其特征在于包括:
一个天线,用于接收SPS信号;
一个解调器,连接至所述天线,所述解调器从所述SPS信号中移去一个PN码;
一个处理器,连接至所述解调器,所述处理器确定从所述解调器接收的卫星信息的至少一部分中的第一条记录,以及当所述SPS接收机接收到所述第一条记录时,从一个估计时间中确定一个参数,该参数指出一个比较范围,用以对一条参考记录与所述第一条记录进行比较;
一个发射器,连接至所述处理器,所述发射器将所述第一条记录发送给一个远程基站。
45.如权利要求44所述的接收机,其特征在于进一步包含:
一个通信天线,连接至所述发射器,所述通信天线用于将所述第一条记录发送给所述远程基站。
46.如权利要求44所述的接收机,其特征在于进一步包含:
一个相关器,连接至所述天线,所述相关器获取所述SPS信号和确定至少一个伪距离。
47.如权利要求44所述的一个接收机,其特征在于,所述参数的确定包含将第一条信息或信号从所述SPS接收机发送给所述远程基站或者从远程基站接收第二条信息或信号之一。
48.一个卫星定位系统SPS接收机,其特征在于包括:
一个SPS天线,用于接收SPS信号;
一个处理器,连接至SPS天线,所述处理器处理所述SPS信号和从所述SPS信号中确定至少一个伪距离,所述处理器从所述SPS信号中移去PN码,以提供所述SPS信号的一条卫星数据信息中的至少一部分中的第一条记录,并当所述SPS接收机接收到所述第一条记录时,从一个估计时间确定至少一个参数,该参数指出一个比较范围,用以对一条参考记录与所述第一条记录进行比较;
一个发射器,连接至所述数据处理器,所述发射器给所述远程基站发送所述第一条记录。
49.如权利要求48所述的SPS接收机,其特征在于,所述参数的所述确定包含将第一条信息或信号从所述SPS接收机发送至所述远程基站或者从所述远程基站接收第二条信息或信号。
50.在移动卫星定位系统SPS接收机中、一种用SPS测量与卫星数据信息有关的时间的方法,其特征在于,所述方法包含:
在所述移动SPS接收机接收卫星数据信息中的至少一部分中的第一条记录;
在所述移动SPS接收机接收所述卫星数据信息的包括参考记录的第二条记录,其中所述第一条记录与所述第二条记录至少有部分时间的交迭;
确定一个比较范围;
当所述移动SPS接收机接收到所述第一第记录时,至少在由一个估计时间确定的比较范围内比较所述第一条记录与所述第二条记录;
从所述比较中确定一个时间,所述时间指出所述移动SPS接收机何时接收到所述第一记录。
51.如权利要求50所述的方法,其特征在于,所述第二条记录提供日期—时间信息,从而使所述时间可以由所述第二条记录确定。
52.如权利要求51所述的一种方法,其特征在于,所述第二条记录接收自一个基站。
53.如权利要求52所述的方法,其特征在于进一步包含在所述移动SPS接收机接收卫星星历表信息。
54.如权利要求53所述的方法,其特征在于,所述星历表信息接收自所述基站。
55.如权利要求51所述的方法,其特征在于进一步包含接收SPS信号和确定多个伪距离,其中所述确定一个比较范围包含将第一条信息或信号从所述SPS接收机发送至一个远程基站或者从所述远程基站接收第二条信息或信号。
56.如权利要求55所述的方法,其特征在于,所述第一条记录是通过从所述卫星数据信息中移去一个PN码获取的。
57.一种移动卫星定位系统SPS接收机,其特征在于包括:
一个天线,用于接收SPS信号;
一个解调器,连接至所述天线,所述解调器从所述SPS中移去一个PN码;
一个处理器,连接至所述解调器,所述处理器确定由所述解调器接收的一条卫星数据信息中的至少一部分中的第一条记录,并且确定一个比较范围;
一个通信天线;
一个通信接收器,连接至所述的通信天线和所述处理器,所述通信接收机接收所述卫星数据信息的第二条记录,其中所述第一条记录和包括参考记录的第二条记录至少有部分时间的交迭,当在所述移动SPS接收机接收所述第一条记录时,所述处理器至少在由一个估计时间确定的所述比较范围内将所述第一条记录与所述第二条记录进行比较,并且确定一个时间,表明何时接收到所述第一条记录。
58.如权利要求57所述的移动SPS接收机,其特征在于,所述第二条记录提供日期—时间信息,从而使所述时间可以由所述第二条记录确定。
59.如权利要求58所述的移动SPS接收机,其特征在于,所述第二条记录接收自一个基站。
60.如权利要求59所述的移动SPS接收机,其特征在于,所述通信接收机接收卫星星历表信息。
61.如权利要求60所述的移动SPS接收机,其特征在于,所述卫星星表信息由所述基站提供。
62.如权利要求58所述的移动SPS接收机,其特征在于,所述移动SPS接收机确定伪距离。
63.一种利用卫星定位系统SPS对与卫星数据信息有关的时间进行辅助测量的装置,其特征在于,所述装置包括:
一个发射器,用于发送卫星数据信息的包括参考记录的第二条记录,该第二记录用于与卫星数据信息中的至少一部分中的第二条记录进行比较,所述发射器发送一条用于确定比较第一条记录与第二条记录的比较范围的信息,当远程移动GPS接收机接收到所述第一条记录时,所述的比较范围由一个估计时间确定。
64.一种用于卫星定位系统SPS、用以测量与卫星数据信息有关的时间的方法,其特征在于,所述方法包含:
在一个实体接收卫星定位系统的至少一部分卫星数据信息的第一条记录;
对所述第一条记录与所述卫星数据信息的包括参考记录的第二条记录作比较,当接收所述的第一记录时,在确定一个估计时间后执行所述的比较;
从所述比较中确定一个时间,所述时间指出远程实体何时接收到第一条记录。
65.如权利要求64所述的方法,其特征在于,所述的远程实体是移动卫星定位系统SPS接收机,其中所述估计时间用于为所述第二条记录与所述第一条记录进行比较,指定一个相对于第二条记录的时间范围。
66.如权利要求64所述的方法,其特征在于,所述远程实体是移动SPS接收机,其中所述方法进一步包括:
当接收到所述第一条记录时,从所述估计时间确定比较范围。
67.如权利要求64所述的方法,其特征在于,所述第二条记录提供日期—时间信息,从而使所述时间可以由所述第二记录来确定。
68.一种利用卫星定位系统测量与卫星数据信息相关的时间的装置,其特征在于,所述装置包含:
一个接收机,用于接收卫星数据信息中的至少一部分的第一条记录;
一个连接到所述接收机的数据处理器,所述数据处理器在一个比较范围内进行对所述第一条记录与第二条记录的比较,该第二条记录包括所述卫星数据信息的一条参考记录,该比较范围当所述远程实体接收所述第一条记录时由一个估计时间确定,所述处理器由所述比较确定一个时间,所述时间指出一个远程实体接收到所述第一条记录的时间远程远程。
69.如权利要求68所述的装置,其特征在于,所述远程实体是一个移动卫星定位系统SPS接收机。
70.如权利要求69所述的装置,其特征在于,所述第二条记录提供日期—时间信息,从而使所述时间可以由所述第二条记录确定。
71.如权利要求70所述的装置,其特征在于进一步包含一个连接至所述数据处理器的存储设备,所述存储设备储存所述的第二条记录。
72.如权利要求71所述的装置,其特征在于进一步包含一个连接至所述数据处理器的一个GPS全球定位系统接收机,所述GPS接收机提供所述第二条记录。
73.如权利要求72所述的装置,其特征在于,所述接收机是一种无线电机或一种有线通信接收机。
74.如权利要求73所述的装置,其特征在于,所述接收机接收从所述远程实体来的多个伪距离。
75.如权利要求74所述的装置,其特征在于,所述数据处理器用所述时间和所述多个伪距离来确定所述远程实体的位置信息。
76.如权利要求70所述的装置,其特征在于,所述第一条记录含有50波特数据。
77.如权利要求71所述的装置,其特征在于进一步包含连接至所述数据处理器的一个发射器,所述发射器用于与另一个实体通讯。
78.如权利要求69所述的装置,其特征在于,所述比较范围是在所述实体和所述远程实体间通过发送至少一条信息或信号来确定。
79.如权利要求75所述的装置,其特征在于,所述第一条记录含有所述卫星数据信息中的至少一部分中的至少一个记录,该记录与所述多个伪距离中的第一个伪距离有关。
80.如权利要求79所述的装置,其特征在于,所述接收机接收第二卫星数据信息中的至少一部分中的第三条记录,其中所述数据处理器将所述第三条记录与所述第二卫星数据信息的第四条记录进行比较,其中所述第三条记录与所述第四条记录至少有部分时间的交迭,而所述数据处理器从所述比较步骤中确定第二个时间,所述第二个时间指出所述远程实体何时接收到所述第三条记录,而所述第二卫星数据信息与所述的多个伪距离的第二个伪距离相对应。
81.如权利要求78所述的装置,其特征在于,所述发送包含将第一条信息或信号从所述实体发送至所述远程实体,并且将第二条信息或信号从所述远程实体发送至所述实体。
82.在移动卫星定位系统SPS接收机中、一种用SPS测量与卫星数据信息有关的时间的方法,其特征在于,所述方法包含:
在所述移动SPS接收机接收卫星数据信息中的至少一部分中的第一条记录;
在所述移动SPS接收机接收所述卫星数据信息的包括参考记录的第二条记录;
确定一个比较范围;
当所述移动SPS接收机接收到所述第一第记录时,至少在由一个估计时间确定的所述比较范围内比较所述第一条记录与所述第二条记录;
从所述比较中确定一个时间,所述时间指出所述移动SPS接收机何时接收到所述第一记录。
83.如权利要求82所述的方法,其特征在于,所述第二条记录提供日期—时间信息,从而使所述时间可以由所述第二条记录确定。
84.如权利要求83所述的一种方法,其特征在于,所述第二条记录接收自一个基站。
85.如权利要求84所述的方法,其特征在于进一步包含在所述移动SPS接收机接收卫星星历表信息。
86.如权利要求85所述的方法,其特征在于,所述卫星星历表信息接收自所述基站。
87.如权利要求83所述的方法,其特征在于进一步包含接收SPS信号和确定多个伪距离,其中所述确定一个比较范围包含将第一条信息或信号从所述SPS接收机发送至一个远程基站或者从所述远程基站接收第二条信息或信号。
88.如权利要求87所述的方法,其特征在于,所述第一条记录是通过从所述卫星数据信息中移去一个PN码获取的。
CNB00805407XA 1999-03-22 2000-03-22 卫星定位系统sps时间测量的方法和装置 Expired - Lifetime CN1261769C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12567399P 1999-03-22 1999-03-22
US60/125,673 1999-03-22
US09/531,806 US6377209B1 (en) 1997-02-03 2000-03-21 Method and apparatus for satellite positioning system (SPS) time measurement
US09/531,806 2000-03-21

Publications (2)

Publication Number Publication Date
CN1344372A CN1344372A (zh) 2002-04-10
CN1261769C true CN1261769C (zh) 2006-06-28

Family

ID=26823814

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB00805407XA Expired - Lifetime CN1261769C (zh) 1999-03-22 2000-03-22 卫星定位系统sps时间测量的方法和装置

Country Status (14)

Country Link
US (2) US6377209B1 (zh)
EP (1) EP1171779B1 (zh)
JP (4) JP2003523500A (zh)
KR (1) KR100829617B1 (zh)
CN (1) CN1261769C (zh)
AT (1) ATE403164T1 (zh)
AU (1) AU773464B2 (zh)
BR (1) BRPI0009100B1 (zh)
CA (1) CA2367032C (zh)
DE (1) DE60039687D1 (zh)
ES (1) ES2307503T3 (zh)
HK (1) HK1042749A1 (zh)
MX (1) MXPA01009528A (zh)
WO (1) WO2000057203A1 (zh)

Families Citing this family (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US10361802B1 (en) 1999-02-01 2019-07-23 Blanding Hovenweep, Llc Adaptive pattern recognition based control system and method
US6377209B1 (en) * 1997-02-03 2002-04-23 Snaptrack, Inc. Method and apparatus for satellite positioning system (SPS) time measurement
US6816710B2 (en) * 1998-05-06 2004-11-09 Snaptrack, Inc. Method and apparatus for signal processing in a satellite positioning system
US7711038B1 (en) 1998-09-01 2010-05-04 Sirf Technology, Inc. System and method for despreading in a spread spectrum matched filter
US7545854B1 (en) * 1998-09-01 2009-06-09 Sirf Technology, Inc. Doppler corrected spread spectrum matched filter
US7966078B2 (en) 1999-02-01 2011-06-21 Steven Hoffberg Network media appliance system and method
US6704348B2 (en) 2001-05-18 2004-03-09 Global Locate, Inc. Method and apparatus for computing signal correlation at multiple resolutions
US6411892B1 (en) * 2000-07-13 2002-06-25 Global Locate, Inc. Method and apparatus for locating mobile receivers using a wide area reference network for propagating ephemeris
KR100350227B1 (ko) * 2000-03-03 2002-08-27 한국전력공사 이온 주입에 의한 투명 고분자 막의 표면 내구성 향상 및광 투과도 조절 방법
US8116976B2 (en) 2000-05-18 2012-02-14 Csr Technology Inc. Satellite based positioning method and system for coarse location positioning
US7970412B2 (en) * 2000-05-18 2011-06-28 Sirf Technology, Inc. Aided location communication system
US7929928B2 (en) * 2000-05-18 2011-04-19 Sirf Technology Inc. Frequency phase correction system
US6778136B2 (en) * 2001-12-13 2004-08-17 Sirf Technology, Inc. Fast acquisition of GPS signal
US7813875B2 (en) * 2002-10-10 2010-10-12 Sirf Technology, Inc. Layered host based satellite positioning solutions
US6389291B1 (en) * 2000-08-14 2002-05-14 Sirf Technology Multi-mode global positioning system for use with wireless networks
US7970411B2 (en) * 2000-05-18 2011-06-28 Sirf Technology, Inc. Aided location communication system
US7546395B2 (en) * 2002-10-10 2009-06-09 Sirf Technology, Inc. Navagation processing between a tracker hardware device and a computer host based on a satellite positioning solution system
US8078189B2 (en) * 2000-08-14 2011-12-13 Sirf Technology, Inc. System and method for providing location based services over a network
US6856794B1 (en) * 2000-07-27 2005-02-15 Sirf Technology, Inc. Monolithic GPS RF front end integrated circuit
US6961019B1 (en) * 2000-08-10 2005-11-01 Sirf Technology, Inc. Method and apparatus for reducing GPS receiver jamming during transmission in a wireless receiver
WO2002016960A1 (en) * 2000-08-24 2002-02-28 Sirf Technology, Inc. Apparatus for reducing auto-correlation or cross-correlation in weak cdma signals
US7436907B1 (en) 2000-08-24 2008-10-14 Sirf Technology, Inc. Analog compression of GPS C/A signal to audio bandwidth
US6665612B1 (en) * 2000-08-29 2003-12-16 Sirf Technology, Inc. Navigation processing for a satellite positioning system receiver
US7463893B1 (en) 2000-09-22 2008-12-09 Sirf Technology, Inc. Method and apparatus for implementing a GPS receiver on a single integrated circuit
US7671489B1 (en) 2001-01-26 2010-03-02 Sirf Technology, Inc. Method and apparatus for selectively maintaining circuit power when higher voltages are present
US6703971B2 (en) * 2001-02-21 2004-03-09 Sirf Technologies, Inc. Mode determination for mobile GPS terminals
US7190712B2 (en) * 2001-05-18 2007-03-13 Global Locate, Inc Method and apparatus for performing signal correlation
US7769076B2 (en) * 2001-05-18 2010-08-03 Broadcom Corporation Method and apparatus for performing frequency synchronization
US6891880B2 (en) * 2001-05-18 2005-05-10 Global Locate, Inc. Method and apparatus for performing signal correlation
US7006556B2 (en) 2001-05-18 2006-02-28 Global Locate, Inc. Method and apparatus for performing signal correlation at multiple resolutions to mitigate multipath interference
US7995682B2 (en) * 2001-05-18 2011-08-09 Broadcom Corporation Method and apparatus for performing signal processing using historical correlation data
US6819707B2 (en) * 2001-05-18 2004-11-16 Global Locate, Inc. Method and apparatus for performing signal correlation using historical correlation data
US7567636B2 (en) * 2001-05-18 2009-07-28 Global Locate, Inc. Method and apparatus for performing signal correlation using historical correlation data
US8244271B2 (en) * 2001-05-21 2012-08-14 Csr Technology Inc. Distributed data collection of satellite data
US6618005B2 (en) * 2001-06-29 2003-09-09 Intel Corporation Determining wireless device locations
US6785543B2 (en) 2001-09-14 2004-08-31 Mobile Satellite Ventures, Lp Filters for combined radiotelephone/GPS terminals
US8027697B2 (en) 2007-09-28 2011-09-27 Telecommunication Systems, Inc. Public safety access point (PSAP) selection for E911 wireless callers in a GSM type system
US20030186699A1 (en) * 2002-03-28 2003-10-02 Arlene Havlark Wireless telecommunications location based services scheme selection
US8290505B2 (en) 2006-08-29 2012-10-16 Telecommunications Systems, Inc. Consequential location derived information
US8918073B2 (en) 2002-03-28 2014-12-23 Telecommunication Systems, Inc. Wireless telecommunications location based services scheme selection
US8126889B2 (en) 2002-03-28 2012-02-28 Telecommunication Systems, Inc. Location fidelity adjustment based on mobile subscriber privacy profile
CN1623103A (zh) * 2002-03-28 2005-06-01 诺基亚有限公司 确定信标信号的接收时间的方法、接收机和系统
US7426380B2 (en) 2002-03-28 2008-09-16 Telecommunication Systems, Inc. Location derived presence information
US9154906B2 (en) 2002-03-28 2015-10-06 Telecommunication Systems, Inc. Area watcher for wireless network
US7545319B2 (en) * 2002-06-20 2009-06-09 Sirf Technology, Inc. Configurable satellite positioning system receivers with programmable inputs
US6738013B2 (en) * 2002-06-20 2004-05-18 Sirf Technology, Inc. Generic satellite positioning system receivers with selective inputs and outputs
US6768448B2 (en) * 2002-08-02 2004-07-27 Qualcomm Incorporated Apparatus and method for time maintenance in a satellite position system receiver
WO2004017092A1 (en) * 2002-08-15 2004-02-26 Sirf Technology, Inc. Interface for a gps system
US6768452B2 (en) * 2002-12-19 2004-07-27 Texas Instrucments Incorporated System and method for providing time to a satellite positioning system (SPS) receiver from a networked time server
WO2004093450A1 (en) * 2003-04-18 2004-10-28 International Business Machines Corporation System and method for accessing through wireless internet access points information or services related to broadcast programs
US7822105B2 (en) 2003-09-02 2010-10-26 Sirf Technology, Inc. Cross-correlation removal of carrier wave jamming signals
US8013787B2 (en) 2003-09-02 2011-09-06 Sirf Technology Inc. Control and features for satellite positioning system receivers
US7424293B2 (en) * 2003-12-02 2008-09-09 Telecommunication Systems, Inc. User plane location based service using message tunneling to support roaming
GB2409376B (en) * 2003-12-17 2006-06-28 Motorola Inc A subscriber unit, a cellular communication system and a method for determining a location therefor
US7260186B2 (en) 2004-03-23 2007-08-21 Telecommunication Systems, Inc. Solutions for voice over internet protocol (VoIP) 911 location services
US20080090546A1 (en) 2006-10-17 2008-04-17 Richard Dickinson Enhanced E911 network access for a call center using session initiation protocol (SIP) messaging
US20080126535A1 (en) 2006-11-28 2008-05-29 Yinjun Zhu User plane location services over session initiation protocol (SIP)
US7365680B2 (en) * 2004-02-10 2008-04-29 Sirf Technology, Inc. Location services system that reduces auto-correlation or cross-correlation in weak signals
US20060031696A1 (en) * 2004-07-20 2006-02-09 King Thomas M Method and apparatus for determining time
US7113128B1 (en) * 2004-10-15 2006-09-26 Telecommunication Systems, Inc. Culled satellite ephemeris information for quick, accurate assisted locating satellite location determination for cell site antennas
US6985105B1 (en) * 2004-10-15 2006-01-10 Telecommunication Systems, Inc. Culled satellite ephemeris information based on limiting a span of an inverted cone for locating satellite in-range determinations
US7629926B2 (en) * 2004-10-15 2009-12-08 Telecommunication Systems, Inc. Culled satellite ephemeris information for quick, accurate assisted locating satellite location determination for cell site antennas
JP4657288B2 (ja) * 2005-02-18 2011-03-23 三菱電機株式会社 位置測位装置
US7353034B2 (en) 2005-04-04 2008-04-01 X One, Inc. Location sharing and tracking using mobile phones or other wireless devices
US8660573B2 (en) 2005-07-19 2014-02-25 Telecommunications Systems, Inc. Location service requests throttling
US20070049288A1 (en) * 2005-08-24 2007-03-01 Lamprecht Leslie J Creating optimum temporal location trigger for multiple requests
US7526015B2 (en) * 2005-09-15 2009-04-28 02Micro International Ltd. Parallel correlator implementation using hybrid correlation in spread-spectrum communication
US9282451B2 (en) 2005-09-26 2016-03-08 Telecommunication Systems, Inc. Automatic location identification (ALI) service requests steering, connection sharing and protocol translation
US7825780B2 (en) * 2005-10-05 2010-11-02 Telecommunication Systems, Inc. Cellular augmented vehicle alarm notification together with location services for position of an alarming vehicle
US8467320B2 (en) 2005-10-06 2013-06-18 Telecommunication Systems, Inc. Voice over internet protocol (VoIP) multi-user conferencing
US7907551B2 (en) 2005-10-06 2011-03-15 Telecommunication Systems, Inc. Voice over internet protocol (VoIP) location based 911 conferencing
US20070189270A1 (en) * 2006-02-15 2007-08-16 Borislow Daniel M Network adapter
US8150363B2 (en) 2006-02-16 2012-04-03 Telecommunication Systems, Inc. Enhanced E911 network access for call centers
US8059789B2 (en) 2006-02-24 2011-11-15 Telecommunication Systems, Inc. Automatic location identification (ALI) emergency services pseudo key (ESPK)
US7471236B1 (en) * 2006-03-01 2008-12-30 Telecommunication Systems, Inc. Cellular augmented radar/laser detector
US9167553B2 (en) 2006-03-01 2015-10-20 Telecommunication Systems, Inc. GeoNexus proximity detector network
US7899450B2 (en) 2006-03-01 2011-03-01 Telecommunication Systems, Inc. Cellular augmented radar/laser detection using local mobile network within cellular network
US7629923B2 (en) * 2006-03-14 2009-12-08 Media Tek Inc. Method and device for storing economically auxiliary correction data applied in global navigation satellite system
US8208605B2 (en) 2006-05-04 2012-06-26 Telecommunication Systems, Inc. Extended efficient usage of emergency services keys
US7724186B2 (en) * 2006-06-30 2010-05-25 Sirf Technology, Inc. Enhanced aiding in GPS systems
US8121238B2 (en) 2006-06-30 2012-02-21 Csr Technology Inc. System and method for synchronizing digital bits in a data stream
JP2009543074A (ja) 2006-07-07 2009-12-03 スカイフック ワイヤレス,インク. Wlan測位装置の位置を推定するためにwlan対応アクセス・ポイントから情報を収集するシステム及び方法
US7966013B2 (en) 2006-11-03 2011-06-21 Telecommunication Systems, Inc. Roaming gateway enabling location based services (LBS) roaming for user plane in CDMA networks without requiring use of a mobile positioning center (MPC)
US7856234B2 (en) 2006-11-07 2010-12-21 Skyhook Wireless, Inc. System and method for estimating positioning error within a WLAN-based positioning system
CN1975458B (zh) * 2006-12-12 2011-03-23 深圳市赛格导航科技股份有限公司 冗余gps系统及其方法
US7466209B2 (en) * 2007-01-05 2008-12-16 Sirf Technology, Inc. System and method for providing temperature correction in a crystal oscillator
US20080167018A1 (en) * 2007-01-10 2008-07-10 Arlene Havlark Wireless telecommunications location based services scheme selection
US8050386B2 (en) 2007-02-12 2011-11-01 Telecommunication Systems, Inc. Mobile automatic location identification (ALI) for first responders
US20080247531A1 (en) * 2007-04-03 2008-10-09 Borislow Daniel M Techniques for Populating a Contact List
US7724612B2 (en) * 2007-04-20 2010-05-25 Sirf Technology, Inc. System and method for providing aiding information to a satellite positioning system receiver over short-range wireless connections
US8249616B2 (en) * 2007-08-23 2012-08-21 Texas Instruments Incorporated Satellite (GPS) assisted clock apparatus, circuits, systems and processes for cellular terminals on asynchronous networks
WO2009038726A1 (en) 2007-09-17 2009-03-26 Telecommunication Systems, Inc. Emergency 911 data messaging
US7995683B2 (en) * 2007-10-24 2011-08-09 Sirf Technology Inc. Noise floor independent delay-locked loop discriminator
US7642957B2 (en) * 2007-11-27 2010-01-05 Sirf Technology, Inc. GPS system utilizing multiple antennas
TWI408396B (zh) * 2007-11-27 2013-09-11 Mediatek Inc 具有省電功能之電子裝置及其操作方法
US7929530B2 (en) 2007-11-30 2011-04-19 Telecommunication Systems, Inc. Ancillary data support in session initiation protocol (SIP) messaging
US9130963B2 (en) 2011-04-06 2015-09-08 Telecommunication Systems, Inc. Ancillary data support in session initiation protocol (SIP) messaging
US8144053B2 (en) * 2008-02-04 2012-03-27 Csr Technology Inc. System and method for verifying consistent measurements in performing GPS positioning
JP2008175824A (ja) * 2008-02-07 2008-07-31 Softbank Mobile Corp 測位方法及び測位システム
US20090209224A1 (en) * 2008-02-20 2009-08-20 Borislow Daniel M Computer-Related Devices and Techniques for Facilitating an Emergency Call Via a Cellular or Data Network
US8699984B2 (en) 2008-02-25 2014-04-15 Csr Technology Inc. Adaptive noise figure control in a radio receiver
US20110205115A1 (en) * 2008-02-25 2011-08-25 Sirf Technology, Inc. Always on GPS Device
US7616064B2 (en) * 2008-02-28 2009-11-10 Noshir Dubash Digital synthesizer for low power location receivers
US8478305B2 (en) * 2008-04-09 2013-07-02 Csr Technology Inc. System and method for integrating location information into an internet phone system
US8072376B2 (en) * 2008-06-27 2011-12-06 Sirf Technology Inc. Method and apparatus for mitigating the effects of cross correlation in a GPS receiver
US8073414B2 (en) * 2008-06-27 2011-12-06 Sirf Technology Inc. Auto-tuning system for an on-chip RF filter
US8068587B2 (en) 2008-08-22 2011-11-29 Telecommunication Systems, Inc. Nationwide table routing of voice over internet protocol (VOIP) emergency calls
US8892128B2 (en) 2008-10-14 2014-11-18 Telecommunication Systems, Inc. Location based geo-reminders
US8525681B2 (en) 2008-10-14 2013-09-03 Telecommunication Systems, Inc. Location based proximity alert
US8433283B2 (en) * 2009-01-27 2013-04-30 Ymax Communications Corp. Computer-related devices and techniques for facilitating an emergency call via a cellular or data network using remote communication device identifying information
US9301191B2 (en) 2013-09-20 2016-03-29 Telecommunication Systems, Inc. Quality of service to over the top applications used with VPN
US8867485B2 (en) 2009-05-05 2014-10-21 Telecommunication Systems, Inc. Multiple location retrieval function (LRF) network having location continuity
US8022877B2 (en) 2009-07-16 2011-09-20 Skyhook Wireless, Inc. Systems and methods for using a satellite positioning system to detect moved WLAN access points
US20120208557A1 (en) * 2009-10-19 2012-08-16 Carter Robert A Location Reliability Determination
US8441398B2 (en) * 2010-02-03 2013-05-14 Texas Instruments Incorporated Receivers, circuits, and methods to improve GNSS time-to-fix and other performances
US8336664B2 (en) 2010-07-09 2012-12-25 Telecommunication Systems, Inc. Telematics basic mobile device safety interlock
WO2012005769A1 (en) 2010-07-09 2012-01-12 Telecommunication Systems, Inc. Location privacy selector
US8571089B2 (en) 2010-08-09 2013-10-29 Qualcomm Incorporated Time-setting in satellite positioning system receivers
US8688087B2 (en) 2010-12-17 2014-04-01 Telecommunication Systems, Inc. N-dimensional affinity confluencer
US8942743B2 (en) 2010-12-17 2015-01-27 Telecommunication Systems, Inc. iALERT enhanced alert manager
WO2012087353A1 (en) 2010-12-22 2012-06-28 Telecommunication Systems, Inc. Area event handling when current network does not cover target area
WO2012141762A1 (en) 2011-02-25 2012-10-18 Telecommunication Systems, Inc. Mobile internet protocol (ip) location
US8649806B2 (en) 2011-09-02 2014-02-11 Telecommunication Systems, Inc. Aggregate location dynometer (ALD)
US9479344B2 (en) 2011-09-16 2016-10-25 Telecommunication Systems, Inc. Anonymous voice conversation
US8831556B2 (en) 2011-09-30 2014-09-09 Telecommunication Systems, Inc. Unique global identifier header for minimizing prank emergency 911 calls
US9313637B2 (en) 2011-12-05 2016-04-12 Telecommunication Systems, Inc. Wireless emergency caller profile data delivery over a legacy interface
US9264537B2 (en) 2011-12-05 2016-02-16 Telecommunication Systems, Inc. Special emergency call treatment based on the caller
US8984591B2 (en) 2011-12-16 2015-03-17 Telecommunications Systems, Inc. Authentication via motion of wireless device movement
US9384339B2 (en) 2012-01-13 2016-07-05 Telecommunication Systems, Inc. Authenticating cloud computing enabling secure services
US8688174B2 (en) 2012-03-13 2014-04-01 Telecommunication Systems, Inc. Integrated, detachable ear bud device for a wireless phone
US9544260B2 (en) 2012-03-26 2017-01-10 Telecommunication Systems, Inc. Rapid assignment dynamic ownership queue
US9307372B2 (en) 2012-03-26 2016-04-05 Telecommunication Systems, Inc. No responders online
US9338153B2 (en) 2012-04-11 2016-05-10 Telecommunication Systems, Inc. Secure distribution of non-privileged authentication credentials
US9313638B2 (en) 2012-08-15 2016-04-12 Telecommunication Systems, Inc. Device independent caller data access for emergency calls
US9208346B2 (en) 2012-09-05 2015-12-08 Telecommunication Systems, Inc. Persona-notitia intellection codifier
US9456301B2 (en) 2012-12-11 2016-09-27 Telecommunication Systems, Inc. Efficient prisoner tracking
US8983047B2 (en) 2013-03-20 2015-03-17 Telecommunication Systems, Inc. Index of suspicion determination for communications request
US9408034B2 (en) 2013-09-09 2016-08-02 Telecommunication Systems, Inc. Extended area event for network based proximity discovery
US9516104B2 (en) 2013-09-11 2016-12-06 Telecommunication Systems, Inc. Intelligent load balancer enhanced routing
US9479897B2 (en) 2013-10-03 2016-10-25 Telecommunication Systems, Inc. SUPL-WiFi access point controller location based services for WiFi enabled mobile devices
US10375108B2 (en) * 2015-12-30 2019-08-06 Schweitzer Engineering Laboratories, Inc. Time signal manipulation and spoofing detection based on a latency of a communication system
US9913116B2 (en) * 2016-02-24 2018-03-06 Robert D. Pedersen Multicast expert system information dissemination system and method
WO2018173795A1 (ja) * 2017-03-23 2018-09-27 ソニーセミコンダクタソリューションズ株式会社 送信装置および方法、並びに、受信装置および方法
CN110501728B (zh) * 2018-05-16 2022-03-29 清华大学 定位基站跳时信号的鉴频方法及鉴频装置
CN108801206A (zh) * 2018-07-02 2018-11-13 安徽理工大学 一种高精度三维移动变形测试平台
US11630424B2 (en) 2018-07-13 2023-04-18 Schweitzer Engineering Laboratories, Inc. Time signal manipulation detection using remotely managed time
US10819727B2 (en) 2018-10-15 2020-10-27 Schweitzer Engineering Laboratories, Inc. Detecting and deterring network attacks
CN112788733B (zh) * 2019-11-11 2021-11-12 大唐移动通信设备有限公司 时钟偏差确定方法及装置
US20210157017A1 (en) * 2019-11-25 2021-05-27 Tupaia Ltd. System and method for combined ranging and gnss positioning
CN116567584B (zh) * 2023-07-11 2023-09-08 泉州海盈船务有限公司 一种船舶与岸基通信的方法及系统

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445118A (en) 1981-05-22 1984-04-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Navigation system and method
US4449830A (en) 1981-07-31 1984-05-22 Combustion Engineering, Inc. Method and apparatus for measuring elapsed time between an initiating event and a dependent event
EP0124587A4 (en) * 1982-10-29 1986-07-24 Istac Inc METHOD AND APPARATUS FOR DERIVING A PSEUDO-DISTANCE FROM SATELLITES PLACED ON TERRESTRIAL ORBIT.
JPS61155879A (ja) * 1984-12-28 1986-07-15 Nissan Motor Co Ltd 位置計測装置
US4734701A (en) 1986-03-12 1988-03-29 Magnavox Government And Industrial Electronics Company Null processing receiver apparatus and method
JPH0827341B2 (ja) * 1987-06-05 1996-03-21 株式会社光電製作所 Gps航法装置
JPH02134587A (ja) * 1988-11-15 1990-05-23 Toyota Motor Corp Gps受信装置
GB2307125B (en) 1989-03-21 1998-01-07 British Aerospace Adaptive Background Compensation Circuit For Optical Imaging Equipment
GB2240240A (en) * 1990-01-19 1991-07-24 Philips Electronic Associated Radio receiver for direct sequence spread spectrum signals
GB2241623A (en) 1990-02-28 1991-09-04 Philips Electronic Associated Vehicle location system
US5117232A (en) 1990-06-04 1992-05-26 Raytheon Company Global system positioning receiver
JPH0486581A (ja) * 1990-07-30 1992-03-19 Sony Corp 移動体測位システム
JPH04198786A (ja) * 1990-11-28 1992-07-20 Mitsubishi Electric Corp 人工衛星を用いた測位方法
JPH04315076A (ja) * 1991-04-12 1992-11-06 Sharp Corp Gpsローカル測位システム
US5434787A (en) 1991-04-12 1995-07-18 Sharp Kabushiki Kaisha System for measuring position by using global positioning system and receiver for global position system
JPH04326079A (ja) * 1991-04-26 1992-11-16 Nippondenso Co Ltd Gps受信機
US5225842A (en) 1991-05-09 1993-07-06 Navsys Corporation Vehicle tracking system employing global positioning system (gps) satellites
US5379224A (en) 1991-11-29 1995-01-03 Navsys Corporation GPS tracking system
US5317322A (en) 1992-01-06 1994-05-31 Magnavox Electronic Systems Company Null processing and beam steering receiver apparatus and method
JP3127042B2 (ja) * 1992-05-01 2001-01-22 功次 山脇 高機能測位端末装置
JPH06130144A (ja) * 1992-10-15 1994-05-13 Toshiba Corp ナビゲーション装置
US5319374A (en) 1993-02-02 1994-06-07 Trimble Navigation Limited Precise universal time for vehicles
US5317323A (en) 1993-03-05 1994-05-31 E-Systems, Inc. Passive high accuracy geolocation system and method
US5420592A (en) 1993-04-05 1995-05-30 Radix Technologies, Inc. Separated GPS sensor and processing system for remote GPS sensing and centralized ground station processing for remote mobile position and velocity determinations
US5510797A (en) 1993-04-15 1996-04-23 Trimble Navigation Limited Provision of SPS timing signals
US5521887A (en) 1993-07-30 1996-05-28 Trimble Navigation Limited Time transfer system
JPH0743446A (ja) * 1993-08-02 1995-02-14 Aisin Seiki Co Ltd Gps衛星デ−タの検証装置
JP3314490B2 (ja) * 1993-11-04 2002-08-12 株式会社デンソー 移動体位置管理システム
JPH07280912A (ja) * 1994-04-08 1995-10-27 Matsushita Electric Ind Co Ltd Gps受信機
US5552794A (en) * 1994-04-29 1996-09-03 Rockwell International Corporation Position estimation using satellite range rate measurements
US5532690A (en) 1995-04-04 1996-07-02 Itt Corporation Apparatus and method for monitoring and bounding the path of a ground vehicle
US5625556A (en) 1995-04-28 1997-04-29 Trimble Navigation Limited Accurate time standard for vehicle operation
GB2301725B (en) 1995-05-31 2000-02-02 Gen Electric A reduced-power GPS-based system for tracking multiple objects from a central location
AU705213B2 (en) 1995-06-06 1999-05-20 Terion, Inc. Determining propagating and clear frequency in wireless data communications network
US5570097A (en) * 1995-08-11 1996-10-29 Northrop Grumman Corporation Retransmitted GPS interferometric system
US5841396A (en) * 1996-03-08 1998-11-24 Snaptrack, Inc. GPS receiver utilizing a communication link
DE69637755D1 (de) * 1995-10-09 2009-01-02 Snaptrack Inc Gps-empfänger und verfahren zur verarbeitung von gps-signalen
US5945944A (en) 1996-03-08 1999-08-31 Snaptrack, Inc. Method and apparatus for determining time for GPS receivers
US5841026A (en) * 1996-05-15 1998-11-24 Trimble Navigation Limited Automatic transference between real-time operation and post-processing in a GPS survey system
US5963601A (en) * 1996-05-20 1999-10-05 Trimble Navigation Limited Variable suppression of multipath signal effects
US6215442B1 (en) * 1997-02-03 2001-04-10 Snaptrack, Inc. Method and apparatus for determining time in a satellite positioning system
US5812087A (en) * 1997-02-03 1998-09-22 Snaptrack, Inc. Method and apparatus for satellite positioning system based time measurement
US6377209B1 (en) * 1997-02-03 2002-04-23 Snaptrack, Inc. Method and apparatus for satellite positioning system (SPS) time measurement
JP5770028B2 (ja) * 1999-03-22 2015-08-26 クゥアルコム・インコーポレイテッドQualcomm Incorporated 衛星位置決めシステムの時間測定のための方法および装置
US6317322B1 (en) * 2000-08-15 2001-11-13 The Furukawa Electric Co., Ltd. Plate type heat pipe and a cooling system using same
US6459407B1 (en) * 2001-09-10 2002-10-01 Nokia Mobile Phones Cross-correlation system for time recovery in network-assisted GPS positioning

Also Published As

Publication number Publication date
KR100829617B1 (ko) 2008-05-16
US6377209B1 (en) 2002-04-23
DE60039687D1 (de) 2008-09-11
CN1344372A (zh) 2002-04-10
EP1171779A1 (en) 2002-01-16
MXPA01009528A (es) 2003-01-28
AU4175300A (en) 2000-10-09
JP2014238405A (ja) 2014-12-18
JP2013079965A (ja) 2013-05-02
JP5931704B2 (ja) 2016-06-08
JP2012168183A (ja) 2012-09-06
WO2000057203A1 (en) 2000-09-28
US20020033767A1 (en) 2002-03-21
BR0009100A (pt) 2002-02-05
CA2367032C (en) 2009-12-22
KR20020013514A (ko) 2002-02-20
JP2003523500A (ja) 2003-08-05
ES2307503T3 (es) 2008-12-01
US6583757B2 (en) 2003-06-24
HK1042749A1 (en) 2002-08-23
BRPI0009100B1 (pt) 2016-03-29
ATE403164T1 (de) 2008-08-15
WO2000057203A9 (en) 2002-01-31
EP1171779B1 (en) 2008-07-30
CA2367032A1 (en) 2000-09-28
AU773464B2 (en) 2004-05-27

Similar Documents

Publication Publication Date Title
CN1261769C (zh) 卫星定位系统sps时间测量的方法和装置
US6052081A (en) Method and apparatus for satellite positioning system based time measurement
JP4313044B2 (ja) 無線位置決定システムにおける時間取得
HU229144B1 (en) Determining time in a gps receiver
CN1487306A (zh) 处理gps信号的gps接收机及方法
US20060223549A1 (en) Network system for aided GPS broadcast positioning
JP4898844B2 (ja) 携帯型電子デバイスのための位置決めシステム
HUE030446T2 (en) Method and apparatus for locating wireless network hybrid
CN1255641A (zh) 应用基准位置的无线帮助式全球定位系统
US20020105458A1 (en) Method of despreading GPS signals
CN105474042B (zh) 用于检测信号降级环境中的gnss卫星信号的方法和装置
CN1886672A (zh) 获取卫星数据的方法
US7161533B2 (en) Method and a system for positioning, and an electronic device
CN2921856Y (zh) 一种卫星定位系统时间测量的装置
CN1914516A (zh) Gps设备
JP2011237438A (ja) 衛星位置決めシステムの時間測定のための方法および装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20060628

CX01 Expiry of patent term