CN1252938C - 接收机、发射机-接收机和通信方法 - Google Patents

接收机、发射机-接收机和通信方法 Download PDF

Info

Publication number
CN1252938C
CN1252938C CNB981032745A CN98103274A CN1252938C CN 1252938 C CN1252938 C CN 1252938C CN B981032745 A CNB981032745 A CN B981032745A CN 98103274 A CN98103274 A CN 98103274A CN 1252938 C CN1252938 C CN 1252938C
Authority
CN
China
Prior art keywords
symbol
group
circuit
information
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB981032745A
Other languages
English (en)
Other versions
CN1216419A (zh
Inventor
迫田和之
铃木三博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN1216419A publication Critical patent/CN1216419A/zh
Application granted granted Critical
Publication of CN1252938C publication Critical patent/CN1252938C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/265Fourier transform demodulators, e.g. fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/067Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing soft decisions, i.e. decisions together with an estimate of reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Error Detection And Correction (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种接收机,能够精确地复原发送的信息比特序列的接收机,按照如下步骤运作,消除发送线路中接收到的相位转动,并以简单的结构对每个符号考虑发送线路的可靠性而更精确地进行最大似然序列预测。根据引导符的幅度和相位对每个符号预测发送线路的特性;根据预测结果和接收符号组计算符号中表示发送线路的可靠性的加权系数;把信息符号组的每个符号乘以加权系数,把发送线路的可靠性反映在符号中;对从复原的经编码的比特组进行最大似然序列预测,来复原信息比特序列。

Description

接收机、发射机-接收机和通信方法
本发明涉及接收机、发射机-接收机和通信方法,本发明适用于无线通信系统,如携带式电话系统。
在包括称之为蜂窝系统的无线通信系统中,把用来提供通信服务的区域分成为规定大小的单元:在每个单元内设置作为固定的无线电台的一个基站,用作可移动的无线台的携带电话与单元内的有电话的基站进行无线通信。推荐有各种系统用作携带电话和基站之间的通信系统,一种典型的系统是时分多路传输连接系统,即:时分多址(TDMA)系统。
如图1A和1B所示,例如在TDMA系统中,一个预定的频道被暂时划分为预定时间宽度的帧F0,F1,等等,每一帧被分成为预定时间宽度的时隙TS0到TS3,在指定给该本地站的时隙TS0的时限内,用该频道来发射发送信号。为有效地使用频率,用同一个频道来实现复合通信(称为多路通信)的系统。下面将描述被指定来进行发送的时隙TS0参照为发送时隙TX,要被一个发送时隙TX发送的数据块(即:信息单元)被参照为一个时隙。
下面参照图2和3来描述用TDMA方式进行发射和接收的无线通信系统的发射机和接收机。如图2和图3所示,发射机和接收机例如被安装在携带电话系统的携带电话和基站上,并用来从携带电话到基站的通信(称为上行通信)以及从基站到携带电话的通信(称为下行通信)。
如图2所示,发射机1包括卷积编码电路2、交错缓冲存储器3、时隙分割电路4、调制电路5、引导符附加电路6、发射电路7和天线8。首先把用作发送数据的信息比特序列S1输入到卷积编码电路2。
由预定级数的移位寄存器和异或电路构成的卷积电路2对所输入的信息比特序列S1进行卷积编码,并把所得到的经编码的比特序列S2输出到交错缓冲存储器3。交错缓冲存储器3把经编码的比特序列S2连续地存储到它的内存区中。在经编码的比特序列S2被存满整个内存区时(即:存储了要求量的经编码的比特序列S2时),交错缓冲存储器3对经编码的比特序列S2重新随机地定序(以下把重新定序称之为交错),并把交错经编码的比特序列S2得到的经编码的比特序列S3输出到时隙分割电路4。按照这样的连接关系,交错缓冲存储器3具有多时隙的存储容量,以便能把经编码的比特序列分散到多个发射时隙TX内。
时隙分割电路4按每个预定的比特数分割经编码的比特序列S3,以便把经编码的比特序列S3指定到发射时隙TX,并把指定比特序列S3到发射时隙TX所得到的经编码的比特序列S4连续地输出到调制电路5。调制电路5对所提供的每一个经编码的比特序列S4进行预定的调制(例如:基于同步检测的调制,如QPSK),然后把所得到的信息符号组S5输出到引导符附加电路6。
如图4所示,引导符附加电路6把引导符P加到对应划分到发射时隙TX的信息符号组S5的每个信息符的开头位置(即:信息符I的开头)作为引头,并把所得到的发射信息符号组S6输出到发射电路7。按照这样的连接关系,按这种情况所附加的引导符P是接收机方预先所知道的码型的符号,并且,接收机方按照引导符P预测发射线路特性(如:衰减状态)。
发射电路7按顺序对附加了的引导符的发射信息符号组S6进行滤波,并对所得到的信息符号组S6进行数-模变换来产生发射信号。然后,发射电路7对发射信号进行频率变换来产生预定频道的发射信号S7,并把信号S7放大到预定的功率后,经天线8发射该信号S7。这样,就把发射信号S7与发射时隙TX的定时同步地从发射机发射出去。
如图3所示,接收机10由天线11、接收电路12、发射线路预测电路13、解调电路14、时隙连接电路15、去交错缓冲存储器16和维特比译码电路7构成。接收机10经天线11接收由发射机1发射的发射信号S7,并把信号S7作为接收信号S11输入到接收电路12,接收电路12放大输入的接收信号S11,并对接收信号S11进行频率变换来得到基带信号。然后,接收电路12对基带信号进行滤波,并对该基带信号进行模-数变换来获得对应于上述发射符号组S6的接收符号组S12,然后把该符号组S12输出到发射线路预测电路13。
用来确定发射线路特性并根据确定结果进行均衡的发射线路预测电路13参照接收符号组S12内的引导符P来预测发射线路的特性,并根据预测结果来计算发射线路的反向特性。另外,发射线路预测电路13用由均衡器构成的均衡电路在时域内把发射线路的反向特性值与接收符号组S12的各个信息符号部分进行卷积相乘,以便消除如发射线路所引起的衰减那样的影响。发射线路预测电路13按照这种方法来复原被发射的信息符号组S5,并把它们作为接收信息符号组S13输出到解调电路14。
解调电路14对接收信息符号组S13进行预定的解调来复原对应于发射侧的经编码的比特序列S4的经编码的比特组S14,并把比特组S14输出到时隙连接电路15。按照这种连接关系,由于附加在发射线路上的噪声分量,经编码的比特组S14每比特都不是具有0值或1值的二进制信号,而是多值信号。时隙连接电路15是用来把时隙中分割得到的经编码的比特组S14相互连接起来构成连续信号的电路。当经编码的比特组S14被累积达到后级去交错缓冲存储器16的存储容量时,时隙连接电路15就把它们连接起来,并把所得到的经编码的比特序列S15输出到去交错缓冲存储器16。
具有多时隙存储容量的去交错缓冲存储器16把所提供的经编码的比特序列S15连续地存储在它的内存区中,并执行发射机1的交错缓冲存储器13内进行的重新定序的逆步骤来把经编码的比特序列S15的次序复原到初始次序,然后把所得到的经编码的比特序列S16输出到维特比译码电路17(后面把复原到初始次序称之为去交错)。由软决定维特比译码电路构成的维特比译码电路17决定基于输入的经编码的比特序列S16使用时的卷积代码的可能的格架结构,并预测能够用作复原数据的所有传输状态之外的最大似然状态(称之为最大似然序列预测),然后输出被发送的信息比特序列S1S。
在普通的接收机10中,所发送的符号被暂时安排在每个时隙内,因此,由均衡器构成的均衡电路在时域内进行卷积相乘就能消除发射线路内所引起的影响,但是这导致接收机的高度复杂的结构。另外,在上述的TDMA系统中,通信质量主要取决于发射时隙TX的定时。在普通的接收机10中,表示发射时隙TX的通信质量的可靠性对经该时隙发送的任何经编码的比特都没有影响。因此,所存在的问题是维特比译码电路17不能精确地进行最大似然序列预测,而且也不能精确地复原所发射的信息比特序列。
鉴于上述的情况,本发明的目的是提供一种接收机、发射机-接收机和通信方法,按照本发明,以高精确度进行最大似然序列预测能够用简单的结构精确复原被发射的信息比特序列。
当然,从下面结合附图所进行的详细说明将能够使本发明的原理和实用性更加清楚,附图中,同一个零件标注以相同的标号或符号。
附图简要说明
图1A和1B是说明TDMA系统的原理的示意图;
图2是普通的发射机的结构方框图;
图3是普通的接收机的结构方框图;
图4是表示普通引导符的排列的示意图;
图5是本发明的实施例的无线通信系统的结构方框图;
图6是图5中的无线通信系统的发射机的结构方框图;
图7是用来说明QPSK调制原理的信号点排列图;
图8是用来说明8PSK调制原理的信号点排列图;
图9是用来说明16QAM调制原理的信号点排列图;
图10是用来说明64QAM调制原理的信号点排列图;
图11是说明引导符排列的示意图;
图12是用来说明逆傅立叶变换后的发送符号的示意图;
图13是图5中的无线通信系统的接收机的结构方框图;
图14是发射线路预测电路的结构方框图;
图15是用来说明发射线路预测电路中的乘法器51的原理示意图;
图16是用来说明发射线路预测电路中的符号序列S40的示意图;
图17是用来说明发射线路预测电路中的产生参考符号序列的方法的示意图;
图18是用来说明发射线路预测电路中的产生参考符号序列的方法的示意图;
图19是用来说明发射线路预测电路中的产生参考符号序列的方法的示意图;
图20是加权电路结构方框图;
图21是按照QPSK调制的解调电路的结构方框图;
图22是按照8PSK调制的解调电路的结构方框图;
图23是按照16QAM调制的解调电路的结构方框图;和
图24是按照64QAM调制的解调电路的结构方框图。
下面参照附图来描述本发明的优选实施例。
(1)无线通信系统的总体结构
图5中,标号20表示一个无线通信系统,例如携带电话系统,本发明作为一个整体被用于这种系统。该系统由一个基站系统21和一个携带电话22构成,基站系统21被设置在通过划分用来提供通信服务的区域而形成的每个单元中,携带电话22用作与基站系统21进行通信的移动站。
基站系统21包括一个发射机23、一个接收机24和一个控制器25。发射机23用预定的频道把信息比特序列发送到携带电话22,接收机24用预定的频道接收从携带电话22发送的信息比特序列,控制器25用来控制发射机23和接收机24的运行。同样,携带电话22包括一个发射机26、一个接收机27和一个控制器28。发射机26用预定的频道把信息比特序列发送到基站系统21,接收机27用预定的频道接收从基站系统21发送的信息比特序列,控制器28用来控制发射机26和接收机27的运行。
在无线通信系统20中设置有多个频道,用来进行基站系统21和携带电话22之间的通信,并用这些频道之外的任一对频道来进行从基站系统21到携带电话22的通信和/或从携带电话22到基站系统21的通信。在这种情况下,每一个频道由例如24个副载波构成,以便把要发送的信息比特序列分散地叠加在通信用的副载波上来进行所谓的多载波通信。在无线通信系统20中,把要发送的信息比特序列划分为多个时隙,并把一个时隙中得到的序列分散地叠加在上面的副载波上。另外,在无线通信系统20中,按照规定的码型随机地改变各个时隙所用的频道,这种频道的变化(所谓跳频)能够减少来自其他通信的干扰波的影响。
后面将详细地描述安装在基站系统21和携带电话22上的发射机23、26和接收机24、27,因为发射机23、26有相同的结构,接收机24、27也具有相同的结构,所以,以下仅描述发射机23和接收机27。
(2)发射机结构
首先,来描述发射机结构,如图6所示,其中对应于图2的部分标注相同的标号,发射机23包括卷积编码电路2、交错缓冲存储器3、时隙分割电路4、调制电路5、引导符附加电路31、逆快速傅立叶变换电路(IFFT)32、发射电路33和天线8。除增加了逆快速傅立叶变换电路32、改变了引导符附加电路31和发射电路33中的处理方法之外,发射机23与图2中所示的发射机l大部分都一样。
在发射机23中,由时隙分割电路4分割的经编码的比特序列S4被输入到调制电路5。调制电路5对所输入的经编码的比特序列S4进行基于同步检测的调制,包括正交相移键控调制(QPSK或叫做4相位调制)、8相移键控调制(8PSK或叫做8相位调制)、16正交幅度调制(16QAM或叫做16估值正交幅度调制)、64正交幅度调制(64QAM或叫做64估值正交幅度调制)的各种调制方法都可以用于上述调制。
下面将简要地描述上述的调制方法。从字面上表示的意义来看,QPSK调制是一种4相位状态的相位调制方法,如图7所示,其中,用处于相位值π/4,3π/4,5π/4或7π/4的4类信号点(符号)来代表2比特信息;如图8所示,8PSK调制是一种8相位状态的相位调制方法,其中,用处于幅值为l的同心圆上的相位值相互间隔π/4的8类信号点来代表3比特信息;如图9所示,16QAM调制是一种16类幅度不同的信号点的调制方法,其中,用阈值划分I分量和Q分量的每个幅度值所产生的16类幅度不同的信号点来代表4比特信息;如图10所示,64QAM调制是一种64类幅度不同的信号点的调制方法,其中,用阈值
Figure C9810327400112
Figure C9810327400113
划分I分量和Q分量的每个幅度值所产生的64类幅度不同的信号点来代表4比特信息。在图75图10中,附于信号点上的每个数字值是该点所代表的位信息。
调制电路5对经编码的比特序列S4进行这些调制的一种,并把所得到的信息符号组S5输出到随后的引导符附加电路31。引导符附加电路31是用来把引导符P附加到每一个信息符号组S5的电路。如图11所示,在发射机23中,不把各个引导符P附加到符号组的头部,而以相等的间隔把它插入到构成一个符号组的信息符I之间。
按照这种连接关系,因为时隙内的符号被分散在如上所述24个副载波上,所以一个时隙就具有24个包含引导符P和信息符I的符号。引导符P是接收机侧知道的码型符号:其幅度值是1,相位值被随机设定。但是该相位值要设定得不同于别的通信系统,以使发射线路能被预测得合适。这是因为在接收机侧进行的发射线路的预测是根据引导符P来进行的:如果在别的通信系统中使用相同的引导符P,就会预测别的通信系统的发射线路。
附加引导符P所产生的发送符号组S20被输出到随后的逆快速傅立叶变换电路32,该电路32对每一个发送符号组S20进行逆傅立叶变换,以便把每个组内的各个符号分散地叠加在前述的24个副载波上(即:把符号安排在用来发射的频率轴上)。这样,就从安排在时间轴上的所输入的符号组产生出安排在频率轴上的信号。图12表示根据频率对符号组S20进行逆傅立叶变换所产生的发送符号组S21的状态。图12表示包含引导符P和信息符I的24个符号被安排在频率轴上,并且对符号组S21进行逆傅立叶变换来把该24个符号分别指定给24个副载波。
另外,逆快速傅立叶变换电路32对由对符号组S21进行逆傅立叶变换产生的发送符号组S21进行所谓开窗处理,以便控制不必要的带外寄生频带。具体地说,是采用余弦平滑滤波器来根据时基对发送符号组S21进行开窗,然后把经过逆快速傅立叶变换电路32处理所产生的发送符号组S21输出到随后的发射电路33。
发射电路33对发送符号组S21进行滤波,然后对发送符号组S21进行数-模变换,以便产生发射信号。然后,发射电路33对前面的发射信号进行频率变换来产生规定频道的发射信号S22,把发射信号S22放大到预定的功率之后,经天线8发射信号S22。另外,发射电路33按照规定的码型随机地改变用于每个时隙的频道,由此来减小从其他通信所接收到的干扰波的影响。
因此,发射机23把划分在时隙内的经编码的比特组分散地叠加在副载波上,经多个副载波来发射要被发射的发送信息比特序列,由此来进行多载波通信。
(3)接收机结构
如图13所示,其中,对应于图3的部分标注以同样的标号,接收机27包括天线11、接收电路40、快速傅立叶变换电路(FFT)41、解调器42、时隙连接电路15、去交错缓冲存储器16和维特比译码电路17。除增加了快速傅立叶变换电路41、改变了接收电路40和解调器42中的处理方法之外,接收机27与图3中所示的接收机10大部分都一样。
首先,天线11接收由发射机23发射的发送信号S22,并把该信号作为接收信号S30输入到接收电路40。接收电路40把所输入的接收信号S30进行放大之后,对该接收信号S30进行频率变换来获得一个基带信号,再对该基带信号进行滤波,并对该基带信号进行模-数变换而得到接收符号组S31,并把接收符号组S31输出到快速傅立叶变换电路41。
按照这种连接关系,接收电路40根据与发射方所使用的相同码型来变更要接收的频道,从而能跟随发射方的频道改变,并在接收方精确地进行接收。
快速傅立叶变换电路41对所输入的接收符号组S31进行所谓开窗处理,从而得到一个时隙的信号分量并对所得到的信号分量进行傅立叶变换。这样来把前面安排在频率轴上的信号组的分量安排在时基上。然后,把由进行傅立叶变换所得到的接收符号组S31输入到随后的解调器42。按照这种连接关系,与在发射方逆快速傅立叶变换电路32的情况一样,快速傅立叶变换电路41采用余弦平滑滤波器来根据时基对接收符号组S31进行开窗处理。
解调器42包括发送线路预测电路43、加权电路44和解调电路45。首先把提供来的接收符号组S32输入到发送线路预测电路43和加权电路44,发送线路预测电路43从接收符号组S32中提取出引导符P,按照引导符P的幅度和相位对每个符号预测发送线路的特性,并把表示上述预测结果的符号序列S33输出到随后的加权电路44。
加权电路44按照接收符号组S32和表示发送线路的特性的符号序列S33对每个符号计算发送线路的可靠性(即:质量)。加权电路44把接收符号组S32内的每个信息符I乘以表示计算得到的可靠性的加权系数,以便由每个信息符I反映发送线路的可靠性。然后,加权电路44把反映发送线路可靠性的接收信息符号组S34输出到解调电路45,把表示符号中计算出的发送线路可靠性的加权系数S35也输出到解调电路45。
解调电路45对符号组S34进行规定的解调(即:对应于发射方进行的调制的解调,如:QPSK,8PSK,16QAM或64QAM)来从接收信息符号组S34中取出经编码的比特组S36,并把经编码的比特组S36输出到随后的时隙连接电路15。按照这种连接关系,在进行基于幅度调制的解调如16QAM或64QAM时,解调电路45把加权系数S35作为解调的决定阈值,并由此从接收信息符号组S34中得到构成经编码的比特组S36的每个软决定位。因为发送线路中的每一个软决定位都带有噪声,所以,构成经编码的比特组S36的每个软决定位并不是二进制信号0或1,而是多值信号。
时隙连接电路15是用来把时隙中断续得到的经编码的比特组S36相互连接起来而制成连续信号的电路,当经编码的比特组S36累积达到后级的去交错缓冲存储器16的存储容量时,该电路就把经编码的比特组S36连接起来,并把所得到的经编码的比特序列S37输出到缓冲存储器16。
有多时隙存储容量的去交错缓冲存储器16连续地把所提供的经编码的比特序列S37存储在其内存区中,并进行发射机23的交错缓冲存储器3中进行的重新定序的逆过程来把序列S37的次序复原为初始次序,再把所得的经编码的比特序列S38输出到维特比译码电路17。
由一个软决定维特比译码电路构成的维特比译码电路17对所输入的经编码的比特序列S38进行最大似然序列预测来复原被发送的信息比特序列S39。在这种情况下,前级加权电路44对每个符号计算发送线路的可靠性并把信息符号I乘以表示可靠性的加权系数,由此,在每个接收到的信息符号I的信号电平上已经反映出发送线路的可靠性(即:质量)。因此,输入到维特比译码电路17的经编码的比特序列S38的信号电平反映发送线路的可靠性,所以,上述序列S38的输入能使维特比译码电路17对每个符号进行考虑发送线路的可靠性的最大似然序列预测,结果就能够精确地复原信息比特序列S40。
(4)发送线路预测电路的结构
下面将详细描述发送线路预测电路43,在随后的说明中,包括在接收到的接收符号组S32中的引导符P和信息符I分别表示为引导符P′和信息符I′。如图14所示,在发送线路预测电路43中,把由快速傅立叶变换电路41提供的接收符号组S32输入到信号分离开关50,通过引导符P′的定时打开信号分离开关50从接收符号组S32抽取引导符P′,然后输出到乘法器51。
从引导符存储电路52读出的参考引导符Pref被输入到乘法器51,乘法器51把引导符P′的值与参考引导符Pref的共轭值进行复数乘法运算,以便得到除以引导符Pref的值的引导符P′的值。按照这种连接关系,参考引导符Pref是与由发送方发送来的引导符P一样的符号:其幅值为1,相位值等于引导符P的相位值。因此,如图15所示,理论上说,由乘法器51进行的分离响应于把所接收到的引导符P′复原为0的过程,并且所得到的符号序列S40中的每个符号的幅值都是1,相位都是0。
然而,实际上,由于噪声、衰减、干扰波和快速傅立叶变换电路41中开窗的偏差的影响,接收符号组S32包括不希望的信号分量。因此,所接收到的引导符P′与所发送来的引导符P并不完全一致。如图16所示,符号序列S40中由乘法器51输出的所有符号的幅值都不是1,相位也都不是0。
因此,注意监视从乘法器51输出的符号序列S45就能预测发送线路的特性,如:噪声、衰减、干扰波的影响和开窗的偏差。所以,发送线路预测电路43就这样通过分析符号序列S40来预测发送线路的特性。
这样所得到的符号序列S40被输入到随后的乘法器53和延时电路54。延时电路54连续地对符号序列S40的符号进行延时,并把得到的延时符号序列S41输出到乘法器53。乘法器53对被提供为符号序列S40的当前符号的共轭值与被提供为延时符号序列S41的先前符号的共轭值进行复数乘法运算,由此来计算出当前符号和先前符号之间的相位差信号S42,并把信号S42输出到随后的相位值计算电路55。相位值计算电路55计算相位差信号S42的反正切函数,来得到当前符号和先前符号之间的相位差S43,并把相位差S43输出到随后的加法器56。
加法器56是一个计算电路,把相位差S43加到得到的先前符号的绝对值相位上,由此计算出当前符号的绝对相位值,该加法器56把相位差S43加到由延时电路57延时的先前符号的绝对相位值S44上,由此计算出当前符号的绝对相位值S45,并把绝对相位值S45输出到延时电路57、乘法器58和累加电路59。
按照着这种连接关系,如上所述,首先得到当前符号和先前符号之间的相位差,再把相位差加到先前符号的绝对相位值上,从而得到当前符号的绝对相位值,这样,即使作为一个整体符号序列S40的相位转动是2π或更大,也能决定符号间的相位差小于π时相位的转动方向。因此,能够可靠地计算出每个符号的绝对相位值。上述的绝对相位值是用来指示实际转动值的索引,例如:当相位转动是5π/2时,不假定为π/2,而假定5π/2为实际转动值。
累加电路59是用来对一个时隙把由符号序列S40得到的绝对相位值累加起来的电路,该电路把所输入的绝对相位值S45累加起来,并把得到的累加相位值S46输出到计算部分60。乘法器58把由加法器56提供的绝对相位值S45乘以由后面要描述的符号计数器61提供的符号数S47,由此得到绝对相位值和每个符号的符号数之间的乘积S48,并把乘积S48输出到累加电路62。累加电路62对一个时隙把由符号序列S40得到的乘积S48累加起来,并把得到的累加值S49输出到计算部分60。
另外,还把上述符号序列S40送到幅度计算电路63,把符号序列S40的每个符号进行平方运算,得到平方结果的平方根来计算出符号序列S40的每个符号的幅度,并把每个符号的幅度作为幅值S50输出到累加电路64和乘法器65。
累加电路64对一个时隙把由符号序列S40得到的幅值S50累加起来,由此来把各个符号的幅值累加起来,并把得到的累加幅值S51输出到计算部分60。乘法器65把由幅度计算电路63提供的幅值S50乘以由后面要描述的符号计数器61提供的符号数S47,由此来得到每个符号的幅值和符号数之间的乘积S52,并把乘积S52输出到累加电路66。累加电路66对一个时隙把由符号序列S40得到的乘积S52进行累加,并把得到的累加值S53输出到计算部分60。
发送线路预测电路43把接收符号组也输入到符号计数器61,符号计数器61是用来根据符号时钟对接收符号组S32内的符号数进行计数的电路,以便在时隙中出现当前输入的引导符P′位置上进行检查。电路43把得到的符号数S47输出到上述的乘法器58和65,并把符号数S47输出到累加电路67和平方电路68。
累加电路67对一个时隙把从引导符P′得到的符号数S47累加起来,并把得到的符号数的累加值S54输出到计算部分60。同时,平方电路68计算符号数S47的平方值S55,并把平方值S55输出到累加电路69。累加电路69把一个时隙的平方值S55累加起来,并把所得到平方值S55的累加值S56输出到计算部分60。
计算部分60根据得到的值(S46、S49、S51、S53、S54和S56)计算表示前述的发送线路特性的符号序列S33,并把得到的符号序列S33输出到随后的加权电路44。按照这种连接关系,由计算部分60计算出的符号序列S33包括经受幅度波动的接收符号组S32的波动幅值和接收符号组S32的相位转动值。在后面的描述中,把符号序列S33称为参考符号序列S33。
(5)参考符号序列产生方法
下面将描述由计算部分60产生参考符号序列的方法。在描述具体的参考符号序列产生方法之前,首先来说明产生方法的原理。如图17所示,发射机23把符号组S5的各个符号叠加在24个副载波上,然后在一个时隙内发射发送符号组S5。其上叠加有发送符号组S5的副载波通过规定的发送处理如频率变换处理之后,经天线8发射出去。从天线8发射出去的发送信号S22在达到接收机27之前受例如发送线路内的频率选择衰减等的影响。接收机27接收发送信号S22,并得到基带信号,然后对信号S22进行傅立叶变换,得到对应于发送符号组S5的接收符号组S32。
由于接收符号组S32受发送线路内的频率选择衰减、干扰波和/或上述进行傅立叶变换时开窗误差等的影响,所以,符号组S32的幅度波动,并且相位相对于发送符号组S5转动。图18和19表示接收符号组S32的幅度波动和相位转动的例子。如图18所示,在符号中,接收符号组S32的每个符号的幅值由于幅度波动而变化。
每个符号的带有波动的幅值通常用幅度函数m来表示,一般,幅度函数m是使用符号数n作为参数的指数m的函数。然而,如接近于实际精度的下列方程(1)所示,假定初始因子为φr、零指数因子(即:初始值)为ζr,这个幅度函数m就可以表示为符号数n的线性函数。
            m=φr·n+ζr  ……(1)
由实际接收到的接收符号组S32得到表示在方程(1)中的幅度函数m,就能用幅度函数rn产生表示每个符号带有波动的幅值的参考符号序列S33。这样,如上所述,用由接收符号组S32中的引导符P′得到的值(S51、S53、S54和S56)得到幅度函数rn的初始因子φr和零指数因子ζr来产生参考符号序列S33。
同样,如图19所示,接收符号组S32的每个符号的相位转动值也是变化的。通常把每个符号的相位转动值表示为相位函数θn,通常,相位函数θn是使用符号数n作为参数的指数m的函数。然而,如接近于实际精度的下列方程(2)所示,假定初始因子为φθ、零指数因子(即:初始值)为ζθ,这个相位函数θn就可以表示为符号数n的线性函数。
         θn=φθ·n+ζθ……(2)
由实际接收到的接收符号组S32得到表示在方程(2)中的相位函数θn,就能用相位函数θn产生表示接收符号组S32的每个符号的相位转动值的参考符号序列S33。因此,如上所述,用由接收符号组S32中的引导符P′得到的值(S46、S49、S54和S56)得到相位函数θn的初始因子φθ和零指数因子ζθ来产生参考符号序列S33。
下面将产生参考符号序列S33描述的具体方法。假定累加每个符号的绝对相位值得到的累加相位值S46为A,累加每个绝对相位值和符号数之间的乘积得到的累加值S49为B,累加每个符号的幅值得到的幅度累加值S51为C,累加每个幅值和符号数之间的乘积得到的累加值S53为D,符号数的累加值S54为E,累加符号数的每个平方值得到的S56累加值为F,一个时隙内的引导符P′的总数为G,计算部分60由此得到幅度函数m的初始因子φr、零指数因子ζr以及相位函数θn的初始因子φθ、零指数因子ζθ,并用按照最小二乘法的下列方程(3)-(6)来替换各个值。
φr=(G×D-C×E)/(G×F-E×E)……(3)
ζr=(C-φr×E)/G    ……(4)
φθ=(G×B-A×E)/(G×F-E×E)……(5)
ζθ=(A-φθ×E)/G    ……(6)
另外,计算部分60用得到的因子φr、ζr、φθ和ζθ计算出方程(1)和(2)所表示的幅度函数rn和相位函数θn,并且用符号数n取代幅度函数rn和相位函数θn,而得到每个符号的带有幅度波动的幅值和每个符号的相位转动值,由此产生表示波动幅值和相位转动的参考符号序列S33。
根据这样得到的引导符P′来预测发送线路的特性,如幅度波动和相位转动,即使在发送线路中发生频率选择衰减也能够容易地预测出符号中的衰减特性。按照这种连接关系,当快速傅立叶变换电路41中的窗口偏位时,就会等间隔地发生各个符号的相位的过量转动。如上所述,根据经过快速傅立叶变换电路41所得到的引导符P′进行预测,就能够同时预测出相位转动。
(6)加权电路的结构
这一节描述上述的加权电路44。如图20所示,加权电路44首先把由快速傅立叶变换电路41得到的接收符号组S32输入到信号分离开关70;当接收符号组S32处于信息符I′的定时的情况下,信号分离开关70接到缓冲存储器71,当接收符号组S32处于引导符P′的定时的情况下,信号分离开关70接到减法器72,把符号I′与P′分离开。
缓冲存储器71是一个存储电路,用来把信息符I′累积达到一个时隙,缓冲存储器71连续地把由信号分离开关70得到的各个信息符I′连续存储在它的内存区中。当信息符I′被累积一个时隙时,缓冲存储器71就连续地读出,并与后面要描述的乘法器73的数据输出定时同步地输出信息符I′。同时,如后所述,由信号分离开关70所得到的每个引导符P′被输入到减法器72,并被用于噪声分量的功率计算。
加权电路44把由发送送线路预测电路43产生的参考符号序列S33输入到信号分离开关74。当输人参考符号序列S33处于对应于信息符I′的信息符Ix的定时时,信号分离开关74接到缓冲存储器75,当符号序列S33处于对应于引导符P′的符号Px的定时时,信号分离开关74接到减法器72,信号分离开关74由此把参考符号序列S33分离为分别对应于信息符I′和引导符P′的符号Ix和符号Px。
缓冲存储器75是一个存储电路,用来把由参考符号序列S33得到的每个符号Ix累积达到一个时隙,缓冲存储器75连续地把由信号分离开关74得到的符号Ix存储在它的内存区中。当符号Ix被累积一个时隙时,缓冲存储器75就连续地读出,并与上述缓冲存储器71的数据输出定时同步地输出累积的符号Ix。
同时,对应于由信号分离开关74得到的引导符P′的符号Px被输入到减法器72,减法器72是一个消除包括在接收符号组S32内的噪声分量(即:不希望的信号分量)的电路。该减法器把上述符号Px的幅值从输入的引导符P′的幅值中减掉,以得到引导符P′内的噪声分量,并把得到的噪声分量作为接收符号组S32的噪声分量S60输出到平方电路76。
平方电路76把每个噪声分量S60平方,由此来计算出每个符号的噪声功率S61,并把得到的噪声功率S61输出到累加电路77。累加电路77把各个符号的噪声功率S61累加起来,由此得到一个时隙的噪声功率的总量,并把该总量作为总噪声功率S62输出到倒数计算电路78。倒数计算电路78得到总噪声功率S62的倒数S63,并把倒数S63输出到乘法器73和79。
除总噪声功率的倒数S63之外,由上述缓冲存储器75读出的符号Ix也被输入到乘法器73,乘法器73把符号Ix的共轭值乘以总噪声功率的倒数S63,并把乘积作为加权系数S64输出到乘法器80。乘法器80把缓冲存储器71输出的信息符I′乘以加权系数S64以便消除信息符I′的相位转动,因此,把发送线路的可靠性反映到信息符I′上。另外,乘法器80把消除了相位转动并反映了可靠性的信息符I′作为接收信息符组S34输出到随后的解调电路45。
后面,对通过乘法运算消除上述情况的相位转动以及反映发送线路可靠性的原理说明如下。首先,由缓冲存储器75输出的符号Ix的相位值表示相应的信息符I′相位转动的相位值。把符号Ix输入到计算符号Ix的共轭值的乘法器73,因为提供给乘法器80的加权系数S64是把符号Ix的共轭值乘以总噪声功率的倒数S63得到的因数,所以,加权系数S64的相位值与信息符I′的相位转动值相反。因此,信息符I′乘以加权系数S64就从信息符I′中除掉了相位转动。
另外,由缓冲存储器75输出的符号Ix的幅值表示相应的带有幅度波动的信息符I′的幅值。因为加权系数S64是把符号Ix乘以总噪声功率的倒数S63得到的因数,所以,加权系数S64的幅值等于把信息符I′的幅值除以总噪声功率得到的值。因此,乘以加权系数S64之后信息符号Ix的幅值等于把信息符I′的乘运算前的幅值平方并把它除以总噪声功率得到的值,即:把信号功率除以总噪声功率得到的值。结果,相乘之后的信息符I′的信号电平等于相应于表示发送线路的可靠性(质量)的信号/噪声功率比S/N的值,因此,就反映发送线路的可靠性。
同时,在加权电路44中,由缓冲存储器75输出的符号Ix还被输入到平方电路81,平方电路81把每个送来的符号Ix的幅值连续地平方,由此来计算除各个符号的信号功率S65,并把信号功率S65输出到乘法器79。乘法器79把每个符号的信号功率S65乘以总噪声功率的倒数S63来计算每个符号的信号/噪声功率比S/N,并把信号/噪声功率比S/N作为加权系数S35送到随后的解调电路45。按照这种连接关系,加权系数S35作为解调的决定阈值被用于解调电路45。在采用基于相位调制的解调电路(如:QPSK或8PSK电路)作为解调电路45的情况下,因为在QPSK或8PSK中不用决定阈值,所以,可以省略平方电路81和乘法器79。
这样,加权电路44根据噪声功率S62和参考符号序列S33计算加权系数S64并对接收符号组S32进行加权,由此就能够通过计算基于接收符号组S32和参考符号序列S33之间的幅度差的噪声功率S62来以相当简单的结构消除接收符号组S32中的符号的相位转动并把发送线路的可靠性反映在接收符号组S32的符号上。
(7)解调电路的结构
本节描述上述解调电路45,解调电路45的结构随发射方采用的调制方法不同而异,因此,将分别描述采用每种调制方法的结构。
(7-1)对应于QPSK的解调电路的结构
在发射方采用QPSK时,解调电路45的结构如图21所示。解调电路45分别得到作为接收信息符号组S34接收的直接作为第一和第二软决定位b1和b2的每个符号的分量I和Q,并把第一和第二软决定位b1和b2作为被复原的经编码的比特组S36输出。
(7-2)对应于8PSK的解调电路的结构
在发射方采用8PSK时,解调电路45的结构如图22所示。解调电路45分别得到作为接收信息符号组S34接收的直接作为第一和第二软决定位b1和b2的每个符号的分量I和Q,并对分量I和Q进行规定的运算,进一步得到第三软决定位b3,然后把第一、第二和第三软决定位b1、b2和b3作为被复原的经编码的比特组S36输出。
为了得到第三软决定位b3,解调电路45首先把分量I和Q分别输入到绝对值电路90和91,绝对值电路90和91分别得到输入分量I和Q的绝对值S70和S71,并把绝对值S70和S71输入到减法器92。减法器92从分量I的绝对值S70中减去分量Q的绝对值S71,并把差值S72输出到运算电路93。运算电路93把分量I和Q之间的差值S72乘以
Figure C9810327400211
,并把运算结果作为第三软决定位b3输出。因此,按照上述的过程,解调电路45就用简单的结构容易地得到了第一、第二和第三软决定位b1、b2和b3。
(7-3)对应于16QAM的解调电路的结构
在发射方采用16QAM时,解调电路45的结构如图23所示。解调电路45分别得到作为接收信息符号组S34接收的直接作为第一和第二软决定位b1和b2的每个符号的分量I和Q,并对分量I和Q进行规定的运算,进一步得到第三和第四软决定位b3和b4,然后把第一、第二、第三和第四软决定位b1、b2、b3和b4作为被复原的经编码的比特组S36输出。
为了得到第三和第四软决定位b3和b4,解调电路45首先把分量I和Q分别输入到绝对值电路95和96,绝对值电路95和96分别得到输入分量I和Q的绝对值S75和S76,并把绝对值S75和S76分别输入到减法器97和98。信号电平决定阈值S77分别被输入到减法器97和98,经运算电路99把加权电路44提供的加权系数S35乘以
Figure C9810327400221
来产生决定阈值S77。
按照这种连接关系,如上所述,根据加权系数S35来产生决定阈值S77的原因是通过相应于发送线路的可靠性进行加权处理来改变接收信息符号组S34的信号电平。因此,解调电路45首先根据由加权电路44得到的加权系数S35产生决定阈值S77,然后,相应于加权电路44进行的加权处理来改变决定阈值S77的信号电平。
减法器97从分量I的绝对值S75中减去决定阈值S77,并把运算结果作为第三软决定位b3输出。同样,减法器98从分量Q的绝对值S76中减去决定阈值S77,并把运算结果作为第四软决定位b4输出。
这样,用分量I和Q的值直接作为第一和第二软决定位b1和b2;从分量I的绝对值S75中减去决定阈值S77得到第三软决定位b3;从分量Q的绝对值S76中减去决定阈值S77得到第四软决定位b4;解调电路45就能够以简单的结构容易地得到第一、第二、第三和第四软决定位b1、b2、b3和b4。另外,即使前级加权电路44相应于发送线路的可靠性改变了接收信息符号组S34的信号电平,按照加权系数S35来产生决定阈值S77也能够相应于信号电平的变化精确地复原软决定位b1、b2、b3和b4。
(74)对应于64QAM的解调电路的结构
在发射方采用64QAM时,解调电路45的结构如图24所示。解调电路45得到作为接收信息符号组S34接收的每个符号的分量I和Q,分别直接作为第一和弟二软决定位b1和b2,并对分量I和Q进行规定的运算,进一步得到第三、第四、第五和第六软决定位b3、b4、b5和b6,然后把第一到第六软决定位b1到b6作为被复原的经编码的比特组S36输出。
为了得到第三到第六软决定位b1到b6,解调电路45首先把分量I和Q分别输入到绝对值电路100和101,绝对值电路100和101分别得到输入分量I和Q的绝对值S80和S81,并把绝对值S80和S81分别输入到减法器102和103。信号电平第一决定阈值S82分别输入到减法器102和103,运算电路104把加权电路44提供的加权系数S35乘以
Figure C9810327400231
来产生第一决定阈值S82。
减法器102从分量I的绝对值S80中减去第一决定阈值S82,把运算结果作为第三软决定位b3输出,并把该运算结果输出到绝对值电路105。同样,减法器103从分量Q的绝对值S81中减去第一决定阈值S82,把运算结果作为第四软决定位b4输出,并把该运算结果输出到绝对值电路106。
绝对值电路105和绝对值电路106分别得到输入的第三软决定位b3和第四软决定位b4的绝对值S83和S84,并把分别输出到减法器107和减法器108。信号电平第二决定阈值S85输入到减法器107和108,运算电路109也把加权电路44提供的加权系数S35乘以
Figure C9810327400232
来基于加权系数S35产生第二决定阈值S85。按照这种连接关系,基于加权系数S35产生第一和第二决定阈值S82和S85的原因与上述16QAM的情况是一样的。
减法器107从第三软决定位b3的绝对值S83中减去第二决定阈值S85,并把运算结果作为第五软决定位b5输出。同样,减法器108从第四软决定位b4的绝对值S84中减去第二决定阈值S85,并把运算结果作为第六软决定位b6输出。
这样,用分量I和Q直接作为第一和第二软决定位b1和b2;从分量I的绝对值S80中减去第一决定阈值S82得到第三软决定位b3;从分量Q的绝对值S81中减去第一决定阈值S82得到第四软决定位b4;从第三软决定位b3的绝对值S83中减去第二决定阈值S85得到第五软决定位b5;从第四软决定位b4的绝对值S84中减去第二决定阈值S85得到第六软决定位b6;解调电路45就能够以简单的结构容易地得到第一到第六软决定位b1到b6。另外,即使相应于发送线路的可靠性改变了接收信息符号组S34的信号电平,按照加权系数S35来产生第一和第二决定阈值S82和S85也能够跟随信号电平的变化精确地复原软决定位b1到b6。
(8)运作和效果
按照上述的结构,无线通信系统20首先把引导符P插入到信息符I之间来产生发送符号组S20,并把发送符号组S20的各个符号叠加到24个副载波的每个副载波上,并传送符号组S20。在接收方,按照规定的接收方法得到的接收符号组S32被输入到发送线路预测电路43,以便从接收符号组S32提取接收到的引导符P′。根据引导符P′的幅度和相位信息进行规定的运作来产生表示接收符号组S32中的幅度波动和相位转动的参考符号序列S33,在这种情况下,在发射方把引导符P插入到信息符I之间就能够让接收方预测发送时引起的衰减对所有时隙的影响,并能够精确地产生参考符号序列S33。
按照这种方法所产生的参考符号序列S33被输入到随后的加权电路44,加权电路44把引导符P′从接收符号组S32中提取出来,并从参考符号序列S33中把相应于引导符P′的符号Px提取出来,以便根据引导符P′和符号Px之间的幅度差来计算噪声功率S62。另外,加权电路44从参考符号序列S33中把相应于信息符I′的符号Ix提取出来,并把符号Ix的共轭值乘以噪声功率S62的倒数,以得到加权系数S64,并把接收到的信息符I′乘以加权系数S64。
这种情况下,符号Ix表示信息符I′的相位转动,符号Ix的共轭值表示相位转动的反特性。因此,把信息符I′乘以具有符号Ix的共轭值的加权系数S64,就能够消除发送时引起的信息符I′的相位转动。另外,符号Ix表示信息符I′的幅值,因此,符号Ix乘以噪声功率S62的倒数所产生的加权系数S64乘信息符I′之后,相乘之后所得到的信息符I′的幅值等于相乘之前幅值的平方并把幅值的平方乘以噪声功率的倒数得到值。即:相乘之后所得到的信息符I′的幅值等于相应于表示发送线路的可靠性(质量)的信/噪功率比S/N的值,这样,发送线路的可靠性就被反映到符号中。
这里,在上述的情况下,并不对信息符I′的幅度波动进行校正,以便在符号中能够进行加权处理来除掉发送线路内实际引起的幅度波动。即:在上述的情况下,具有大的幅度波动的信息符可以被确认为具有低的发送线路可靠性的符号,而具有小的幅度波动的信息符则被确认为具有高的发送线路可靠性的符号。另外,因为乘以加权系数S64后的信息符I′正比于幅度的平方,所以发送线路的可靠性能够更精确地进行确认。
消除相位转动并反映发送线路的可靠性之后,就把得到的信息符I(=S34)输入到随后的解调电路45。解调电路45对这种信息符S34进行解调来复原经编码的比特组S36,然后,在被作为经编码的比特序列S38输入到维特比译码电路17之前,把经编码的比特组S36在时隙连接电路15和去交错缓冲存储器16经受规定的处理。维特比译码电路17对经编码的比特序列S38进行最大似然序列预测,以便复原被发送的信息比特序列S39,这时,发送线路的可靠性就被反映到经编码的比特序列S38中的各个符号的信号电平上。这就能让维特比译码电路17考虑发送线路的可靠性而在符号中进行最大似然序列预测,即:高精确度地进行预测,结果能够更精确地复原信息比特序列S39。
因此,在无线通信系统20中,发送符号组S20的符号被离散地叠加在24个副载波上并进行发送,即:被安排在频率轴上进行发射。这就能够不用时域内进行卷积乘法的均衡器,依旧可以对每个符号进行乘法运算而在接收方消除发送时所引起的相位转动。因此,能够简化接收机的结构。
另外,在无线通信系统20中,因为用来消除相位转动的乘法运算和用来反映发送线路的可靠性是由同一个加权电路44同时进行的,所以,这样也能够简化接收机的结构。
另外,在无线通信系统20中,随机地改变发射时用于各个时隙的频道,即:所谓跳频,并在多个时隙上交替地进行,这就能够在某些时隙遭受干扰波干扰的情况下把干扰波的功率进行平均,从而检查干扰波的影响。
按照这种连接关系,因为加权电路44把干扰波的功率确认为噪声分量,所以,当接收到干扰波时,加权系数就变小,结果,受干扰波干扰的经编码的比特的信号电平降低。因此,干扰波的出现导致受干扰的经编码的低信号电平,并能使维特比译码电路17精确地进行最大似然序列预测,以便精确地复原被发射的信息位。
按照上述的结构,从接收符号中提取出引导符,根据该引导符的幅度和相位产生表示发送线路特性的参考符号,根据该参考符号和接收符号来计算符号中的加权系数,并且把接收符号中的信息符乘以加权系数,这样就能够以简单的结构来消除发送线路中由信息符接收到的相位转动,把发送线路的可靠性反映到每个信息符上,并且能够高精度地进行最大似然预测来精确地复原被发送的信息位。
(9)其他实施例
对于上述的实施例,已经说明了把引导符P等间隔地插入到信息符I中的情况,然而,本发明并不局限于上述的情况,也可以按任意间隔插入引导符P。简而言之,适当分散地把引导符P插入到信息符I之间也能够得到上述同样的优点。
另外,上述实施例是按照公知的码型来随机地改变频道,即:进行已经描述的所谓跳频。但是,本发明并不局限于上述的情况,也可以固定频道,除非发生干扰波的影响。
另外,对于上述的实施例,已经描述了由加权电路44来得到总的噪声功率S61,并根据得到的总的噪声功率S62来产生加权系数S64。然而,本发明并不局限于上述的情况,也可以得到包括在符号内的噪声功率的平均值,并根据平均噪声功率来计算加权系数S64。
另外,对于上述的实施例,已经描述了由加权电路44产生的加权系数S35仅提供到解调电路45的情况。然而,本发明并不局限于上述的情况,也可以把加权系数S35输出到控制器28,并由控制器28用加权系数S35来控制发射功率。
另外,对于上述的实施例,已经描述了得到相位函数θn的初始系数φθ来产生参考符号S33的情况。然而,本发明并不局限于上述的情况,也可以把初始系数φθ送到控制器28,并根据该初始系数φθ控制由快速傅立叶变换电路41进行的开窗处理。
另外,对于上述的实施例,已经描述了采用卷积编码电路2作为编码电路,采用维特比译码电路17作为译码电路的情况。但是,本发明并不局限于上述的情况,也可以采用编码和译码电路来进行像透平编码那样的其他类型的编码。简单地说,在发射方采用增加序列之间的距离类型的编码、在接收方采用根据最大似然序列预测对编码的比特序列进行译码的编码/译码方法也能够得到与上述情况同样的优点。
另外,对于上述的实施例,已经描述了按照携带电话系统的方式把本发明用于无线通信系统20的情况。但是,本发明并不局限于上述的情况,也可以把本发明用于其他无线通信系统,如:无绳电话系统。
另外,在上述的实施例中已经描述了接收机27包括下列装置和电路的情况,即:包括具有接收电路40和快速傅立叶变换电路41的接收装置、用来根据接收符号组S32预测发送线路特性的发送线路预测电路43、用来根据发送线路预测电路43的预测结果和接收符号组S32,并把用来发送线路的可靠性反映到所接收的信息符I′上来计算加权系数的加权电路44、用来从反映发送线路的可靠性的信息符I′(=S34)复原经编码的比特组S36的解调电路45以及用来从经编码的比特组S36复原被发射的信息比特序列S39的维特比译码电路17。然而,本发明并不局限于此,对接收机提供如下的装置也能够得到与上述情况相同的优点,即:接收装置、发送线路预测装置、加权装置、解调装置和译码装置;接收装置首先划分对每个规定的信息单元的信息比特序列进行编码得到的经编码的比特序列,并由此产生经编码的比特组,再对每个经编码的比特组进行规定的调制,并由此产生信息符号组,然后把幅度和相位都是已知的引导符插入到每个信息符号组内,并由此产生发送符号组,再接收把发送符号组的符号分散叠加在形成频道的多个副载波上所产生的发送信号,最后输出接收符号组;发送线路预测装置用来从每个接收符号组中提取出引导符,并根据引导符的幅度和相位对每个符号预测发送线路的特性;加权装置用来从每个接收符号组中提取出信息符号组,并根据由发送线路预测装置进行的预测结果和接收符号组计算符号中表示发送线路的可靠性的加权系数,然后把所提取出的信息符号组乘以加权系数,并由此把发送线路的可靠性反映在符号中;解调装置用来对由加权装置得到的反映发送线路的可靠性的信息符号组进行规定的解调处理,并由此来复原经编码的比特组;译码装置用来对解调装置得到的每个经编码的比特组进行最大似然序列预测,由此复原信息比特序列。
另外,在上述的实施例中已经描述了基站系统21或携带电话22设置有下列部分的情况,即:具有卷积编码电路2、时隙划分电路4、调制电路5、引导符附加电路31、逆快速傅立叶变换电路32和发射电路33的发射机和具有接收电路40、快速傅立叶变换电路41、发送线路预测电路43、加权电路44、解调电路45和维特比译码电路17的接收机。但是,本发明并不局限于上述的情况,对发射机-接收机设置如下装置也能够得到与上述情况一样的优点,即:发送装置、接收装置、发送线路预测装置、加权装置、解调装置和译码装置;发送装置首先划分对每个规定的信息单元的信息比特序列进行编码得到的经编码的比特序列,并由此产生经编码的比特组,再对每个经编码的比特组进行规定的调制,并由此产生信息符号组,然后把幅度和相位都是已知的引导符插入到每个信息符号组内,并由此产生发送符号组,再把发送符号组的每个符号分散叠加在形成频道的多个副载波上,由此产生发送信号,并把该发送信号发送到通信对方;接收装置用来从通信对方接收发送信号,并输出接收符号组;发送线路预测装置用来从每个接收符号组中提取出引导符,并根据引导符的幅度和相位对每个符号预测发送线路的特性;加权装置用来从每个接收符号组中提取出信息符号组,并根据由发送线路预测装置进行的预测结果和接收符号组计算符号中表示发送线路的可靠性的加权系数,然后把所提取出的信息符号组乘以加权系数,并由此把发送线路的可靠性反映在符号中;解调装置用来对由加权装置得到的信息符号组进行规定的解调处理,并由此来复原经编码的比特组;译码装置用来对解调装置得到的每个经编码的比特组进行最大似然序列预测,由此复原信息比特序列。
另外,对于上述的实施例,已经描述的情况是在发送方把引导符P插入到信息符I之间,并用多个副载波发送发送符号组S20;在接收方把引导符P′从接收符号组S32中提取出来,并根据引导符P′预测发送线路的特性,再根据发送线路的预测结果S33和接收符号组S32计算发送线路的可靠性,然后把发送线路的可靠性反映在接收到的信息符I′上。然而,本发明并不局限于上述的情况,按照如下的运作,也能够得到与上述一样的优点,即:首先划分对每个规定的信息单元的信息比特序列进行编码得到的经编码的比特序列,并由此产生经编码的比特组;再对每个经编码的比特组进行规定的调制,并由此产生信息符号组;然后把幅度和相位都是已知的引导符插入到每个信息符号组内,以便产生发送符号组;再把发送符号组的每个符号分散叠加在形成频道的多个副载波上,由此产生发送信号,并把该发送信号发送到通信对方;然后从通信对方接收发送信号,以得到接收符号组;再根据从接收符号组中提取的引导符的幅度和相位对每个符号预测发送线路的特性;根据预测结果和接收符号组计算符号中表示发送线路的可靠性的加权系数;然后把从接收符号组中所提取出的信息符号组的每个符号乘以加权系数,由此把发送线路的可靠性反映在符号中;再对反映发送线路的可靠性的信息符号组进行规定的解调处理而复原的每个经编码的比特组进行最大似然序列预测,由此复原信息比特序列。
如上所述,按照本发明,根据从接收符号组中提取的引导符的幅度和相位对每个符号预测发送线路的特性,根据预测结果和接收符号组计算符号中表示发送线路的可靠性的加权系数,然后把从接收符号组中所提取出的信息符号组的各个符号乘以加权系数,由此把发送线路的可靠性反映在符号中,再对反映发送线路的可靠性的信息符号组复原的每个经编码的比特组进行最大似然序列预测,从而复原信息比特序列,这样就能够以简单的结构来消除发送线路中引起的相位转动,并把发送线路的特性反映在符号中,而且能够通过精确地进行最大似然序列预测来精确地复原所传送的信息比特序列。
上面已经结合优选实施例进行了描述,显然,所属领域的技术人员能依此作出各种变化和改型,因此,落入本发明的宗旨和范围内的所有这些变化和改型都被覆盖在所附的权利要求书内。

Claims (13)

1.一种接收机,包括:接收装置、发送线路预测装置、加权装置、解调装置和译码装置;
接收装置用来接收发送信号,并输出接收符号组,其中发送信号按如下运作步骤来产生:
首先划分对每个信息单元的信息比特序列进行编码得到的经编码的比特序列,以产生经编码的比特组;
再对每个经编码的比特组进行调制,以产生信息符号组;
然后把幅度和相位都是已知的引导符插入到每个所述信息符号组内,以产生发送符号组;
再把发送符号组的每个符号分散叠加在形成频道的多个副载波上;
发送线路预测装置用来从每个接收符号组中提取出引导符,并根据引导符的幅度和相位对每个符号预测发送线路的特性;
加权装置用来从每个接收符号组中提取出信息符号组,并根据由发送线路预测装置进行的预测结果和接收符号组计算各个符号中表示发送线路的可靠性的加权系数,然后把所提取出的信息符号组乘以加权系数,以便把发送线路的可靠性反映在各个符号上;
解调装置用来对由加权装置得到的反映发送线路的可靠性的信息符号组进行解调处理,从而复原经编码比特组;
译码装置用来对解调装置得到的每个经编码的比特组进行最大似然序列预测,以便复原信息比特序列。
2.根据权利要求1的接收机,其特征在于在发送方采用8相移键控调制的情况下,所述解调装置先得到所述信息符号组的分别作为第一和第二软决定位的分量I和Q;再从所述分量I的绝对值中减去所述分量Q的绝对值;然后把得到的差值乘以规定数而得到第三软决定位;并把所得的第一、第二和第三软决定位作为所述经编码的比特组输出。
3.根据权利要求1的接收机,其特征在于在发送方采用16正交幅度调制的情况下,所述解调装置先得到所述信息符号组的分别作为第一和第二软决定位的分量I和Q;再分别从所述分量I和Q的绝对值中减去决定阈值而得到第三和第四软决定位;并把所得的第一、第二、第三和第四软决定位作为所述经编码的比特组输出。
4.根据权利要求3的接收机,其特征在于所述解调装置根据加权装置计算的加权系数来产生所述决定阈值。
5.根据权利要求1的接收机,其特征在于在发送方采用64正交幅度调制的情况下,所述解调装置先得到所述信息符号组的分别作为第一和第二软决定位的分量I和Q;再分别从所述分量I和Q的绝对值中减去第一决定阈值而得到第三和第四软决定位;再分别从所述第三和第四软决定位的绝对值中减去第二决定阈值而得到第五和第六软决定位;并把所得的第一、第二、第三、第四、第五和第六软决定位作为所述经编码的比特组输出。
6.根据权利要求5的接收机,其特征在于所述解调装置根据加权装置计算的加权系数来产生所述第一和第二决定阈值。
7.一种发射机-接收机,包括发送装置、接收装置、发送线路预测装置、加权装置、解调装置和译码装置;
发送装置首先划分对每个信息单元的信息比特序列进行编码得到的经编码的比特序列,以产生经编码的比特组;再对每个经编码的比特组进行调制,以产生信息符号组;然后把幅度和相位都是已知的引导符插入到每个所述信息符号组内,以产生发送符号组;再把发送符号组的符号分散叠加在形成频道的多个副载波上,以产生发送信号;并把该发送信号发送到通信对方;
接收装置用来从通信对方接收发送信号,并输出接收符号组;
发送线路预测装置用来从每个接收符号组中提取出引导符,并根据引导符的幅度和相位对每个符号预测发送线路的特性;
加权装置用来从接收符号组中提取出信息符号组;并根据由发送线路预测装置的预测结果和接收符号组计算各个符号中表示发送线路的可靠性的加权系数;然后把所提取出的信息符号组乘以加权系数,以便把发送线路的可靠性反映在各个符号上;
解调装置用来对由加权装置得到的反映发送线路的可靠性的信息符号组进行解调处理,以复原经编码的比特组;
译码装置用来对解调装置得到的每个经编码的比特组进行最大似然序列预测,以复原所述信息比特序列。
8.根据权利要求7的发射机-接收机,其特征在于在发送方采用8相移键控调制的情况下,所述解调装置先得到所述信息符号组的分别作为第一和第二软决定位的分量I和Q;再从所述分量I的绝对值中减去所述分量Q的绝对值;然后把得到的差值乘以规定数而得到第三软决定位;再把得到的第一、第二和第三软决定位作为所述经编码的比特组输出。
9.根据权利要求7的发射机-接收机,其特征在于在发送方采用16估值正交幅度调制的情况下,所述解调装置先得到所述信息符号组的分别作为第一和第二软决定位的分量I和Q;再分别从所述分量I和Q的绝对值中减去决定阈值而得到第三和第四软决定位;并把得到的第一、第二、第三和第四软决定位作为所述经编码的比特组输出。
10.根据权利要求9的发射机-接收机,其特征在于所述解调装置根据加权装置计算的加权系数来产生所述决定阈值。
11.根据权利要求7的发射机-接收机,其特征在于在发送方采用64估值正交幅度调制的情况下,所述解调装置先得到所述信息符号组的分别作为第一和第二软决定位的分量I和Q;再分别从所述分量I和Q的绝对值中减去第一决定阈值而得到第三和第四软决定位;再分别从所述第三和第四软决定位的绝对值中减去第二决定阈值而得到第五和第六软决定位;并把得到的第一、第二、第三、第四、第五和第六软决定位作为所述经编码的比特组输出。
12.根据权利要求11的发射机-接收机,其特征在于所述解调装置根据加权装置计算的加权系数来产生所述第一和第二决定阈值。
13.一种通信方法,包括如下步骤:
划分对每个信息单元的信息比特序列进行编码得到的经编码的比特序列,以产生经编码的比特组;
对每个经编码的比特组进行调制,以产生信息符号组;
把幅度和相位都是已知的引导符插入到每个所述信息符号组内,以产生发送符号组;
把发送符号组的每个符号分散叠加在形成频道的多个副载波上,以产生发送信号;
把该发送信号发送到通信对方;
在接收方,
从通信对方接收发送信号,以得到接收符号组;
根据从所述接收符号组中提取的引导符的幅度和相位对每个符号预测发送线路的特性;
根据所述预测结果和所述接收符号组计算各个符号中表示发送线路的可靠性的加权系数;
把从所述接收符号组提取出的信息符号组的各个符号乘以加权系数,以便把发送线路的可靠性反映在各个符号上;
对反映发送线路的可靠性的信息符号组进行解调处理,以复原所述经编码的比特组;
对每个经编码的比特组进行最大似然序列预测,以复原所述信息比特序列。
CNB981032745A 1997-06-24 1998-06-24 接收机、发射机-接收机和通信方法 Expired - Fee Related CN1252938C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP167757/97 1997-06-24
JP16775797A JP3745502B2 (ja) 1997-06-24 1997-06-24 受信装置及び送受信装置並びに通信方法

Publications (2)

Publication Number Publication Date
CN1216419A CN1216419A (zh) 1999-05-12
CN1252938C true CN1252938C (zh) 2006-04-19

Family

ID=15855536

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB981032745A Expired - Fee Related CN1252938C (zh) 1997-06-24 1998-06-24 接收机、发射机-接收机和通信方法

Country Status (9)

Country Link
US (1) US6243423B1 (zh)
EP (1) EP0887976B1 (zh)
JP (1) JP3745502B2 (zh)
KR (1) KR100526821B1 (zh)
CN (1) CN1252938C (zh)
AU (1) AU748411B2 (zh)
DE (1) DE69831449T2 (zh)
ID (1) ID20460A (zh)
MY (1) MY124580A (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4310920B2 (ja) * 1998-07-13 2009-08-12 ソニー株式会社 送信機、送信方法、受信機及び受信方法
JP4147438B2 (ja) * 1998-09-04 2008-09-10 富士通株式会社 復調器
KR100531357B1 (ko) * 1999-02-05 2005-11-28 엘지전자 주식회사 이동무선 통신 시스템의 수신기에 있어서 오류 정정 복호화 장치 및 방법
GB2346776B (en) * 1999-02-13 2001-09-12 Motorola Ltd Synchronisation lock detector and method
US6925067B2 (en) * 1999-04-23 2005-08-02 Qualcomm, Incorporated Configuration of overhead channels in a mixed bandwidth system
JP4531734B2 (ja) * 1999-05-10 2010-08-25 株式会社エヌ・ティ・ティ・ドコモ インターリーブ方法及び送信装置
US6542475B1 (en) * 1999-08-09 2003-04-01 At&T Corp. Method and system for providing enhanced call service features at remote locations
JP4284774B2 (ja) * 1999-09-07 2009-06-24 ソニー株式会社 送信装置、受信装置、通信システム、送信方法及び通信方法
US7099413B2 (en) * 2000-02-07 2006-08-29 At&T Corp. Method for near optimal joint channel estimation and data detection for COFDM systems
JP3581294B2 (ja) * 2000-03-31 2004-10-27 株式会社東芝 受信装置
US6977972B1 (en) * 2000-07-12 2005-12-20 Sharp Laboratories Of America, Inc. Method of hybrid soft/hard decision demodulation of signals with multilevel modulation
JP3609355B2 (ja) * 2000-07-24 2005-01-12 シャープ株式会社 Ofdm復調装置
JP3419749B2 (ja) * 2000-10-10 2003-06-23 松下電器産業株式会社 受信装置および受信方法
SE0004403L (sv) * 2000-11-29 2002-05-30 Ericsson Telefon Ab L M Metoder och anordningar i ett telekommunikationssystem
JP2002185430A (ja) * 2000-12-13 2002-06-28 Sony Corp 受信装置及び方法
GB0126067D0 (en) * 2001-10-31 2001-12-19 Zarlink Semiconductor Ltd Method of and apparatus for detecting impulsive noise method of operating a demodulator demodulator and radio receiver
GB2388756A (en) * 2002-05-17 2003-11-19 Hewlett Packard Co Calculating an estimate of bit reliability in a OFDM receiver by multiplication of the channel state modulus
US7583760B2 (en) 2002-11-22 2009-09-01 Telefonaktiebolaget L M Ericsson (Publ) Calculation of soft decision values using reliability information of the amplitude
EP1422896A1 (en) * 2002-11-22 2004-05-26 Telefonaktiebolaget LM Ericsson (publ) Calculation of soft decision values using reliability information of the amplitude
KR20040068771A (ko) * 2003-01-27 2004-08-02 삼성전자주식회사 소프트 복조 방법 및 소프트 복조 장치
US7822150B2 (en) * 2003-03-15 2010-10-26 Alcatel-Lucent Usa Inc. Spherical decoder for wireless communications
US7154966B2 (en) * 2003-06-30 2006-12-26 Telefonaktiebolaget L M Ericsson (Publ) Method and system for M-QAM detection in communication systems
AU2004212605A1 (en) * 2003-09-26 2005-04-14 Nec Australia Pty Ltd Computation of soft bits for a turbo decoder in a communication receiver
US7315578B2 (en) * 2003-12-24 2008-01-01 Telefonaktiebolaget Lm Ericsson (Publ) Fast soft value computation methods for gray-mapped QAM
US7512185B2 (en) 2004-03-08 2009-03-31 Infineon Technologies Ag Dual carrier modulator for a multiband OFDM UWB transceiver
GB0419946D0 (en) * 2004-09-08 2004-10-13 British Telecomm High data rate demodulation system
JP4403974B2 (ja) * 2005-01-21 2010-01-27 株式会社日立製作所 適応変調方法並びに符号化率制御方法
US7379445B2 (en) * 2005-03-31 2008-05-27 Yongfang Guo Platform noise mitigation in OFDM receivers
US7386823B2 (en) * 2005-07-20 2008-06-10 Springsoft, Inc. Rule-based schematic diagram generator
BRPI0709188A2 (pt) 2006-03-29 2011-06-28 Thomson Licensing amplificador limitador de freqüência em um receptor fsk
GB0614836D0 (en) * 2006-07-26 2006-09-06 Ttp Communications Ltd Soft decision processing
JP5003147B2 (ja) * 2006-12-26 2012-08-15 ソニー株式会社 信号処理装置および信号処理方法、並びにプログラム
JP5336994B2 (ja) * 2009-10-19 2013-11-06 キヤノン株式会社 通信方法及び通信装置
US8340202B2 (en) 2010-03-11 2012-12-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for efficient soft modulation for gray-mapped QAM symbols
CN103250384B (zh) * 2010-12-24 2015-10-21 三菱电机株式会社 接收装置和方法
JPWO2015037342A1 (ja) * 2013-09-10 2017-03-02 ソニー株式会社 通信装置及び通信方法
CN110365583B (zh) * 2019-07-17 2020-05-22 南京航空航天大学 一种基于桥接域迁移学习的符号预测方法及系统
KR20230026138A (ko) 2021-08-17 2023-02-24 삼성전자주식회사 복수의 이전 신호들에 기초하여 dpsk를 수행하는 통신 장치 및 이의 동작 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191576A (en) * 1988-11-18 1993-03-02 L'Etat Francais and Telediffusion de France S.A. Method for broadcasting of digital data, notably for radio broadcasting at high throughput rate towards mobile receivers, with time frequency interlacing and analog synchronization
US5519730A (en) * 1990-06-12 1996-05-21 Jasper; Steven C. Communication signal having a time domain pilot component
US5278871A (en) * 1992-03-19 1994-01-11 Motorola, Inc. Method and apparatus for estimating signal weighting parameters in a receiver
US5412686A (en) * 1993-09-17 1995-05-02 Motorola Inc. Method and apparatus for power estimation in a communication system
US5533062A (en) * 1994-10-03 1996-07-02 Motorola, Inc. Method and apparatus for carrier tracking and demodulation
JP3582139B2 (ja) * 1995-03-31 2004-10-27 ソニー株式会社 データ復調装置およびデータ伝送方法
JPH1117760A (ja) * 1997-06-24 1999-01-22 Sony Corp 受信装置及び送受信装置並びに通信方法

Also Published As

Publication number Publication date
MY124580A (en) 2006-06-30
DE69831449D1 (de) 2005-10-13
ID20460A (id) 1998-12-24
EP0887976B1 (en) 2005-09-07
AU748411B2 (en) 2002-06-06
CN1216419A (zh) 1999-05-12
US6243423B1 (en) 2001-06-05
JP3745502B2 (ja) 2006-02-15
KR19990007245A (ko) 1999-01-25
JPH1117761A (ja) 1999-01-22
DE69831449T2 (de) 2006-06-14
EP0887976A2 (en) 1998-12-30
AU7314698A (en) 1999-01-07
EP0887976A3 (en) 2001-05-16
KR100526821B1 (ko) 2006-01-27

Similar Documents

Publication Publication Date Title
CN1252938C (zh) 接收机、发射机-接收机和通信方法
CN114788319B (zh) 个性化定制空口
EP3472953B1 (en) Superposition coding of pdsch and pdcch
CN1269338C (zh) 发送设备、接收设备、发送方法和接收方法
US8265183B2 (en) Radio communication apparatus and communication method
US8107547B2 (en) Receivers for embedded ACK/NAK in CQI reference signals in wireless networks
EP2936755B1 (en) Method and apparatus for transmitting/receiving signal in a communication system
CN1187919C (zh) 正交频分复用通信装置及传播路径估计方法
CN1222130C (zh) Ofdm通信装置及检波方法
CN1212588A (zh) 接收装置、发射/接收装置和通信方法
CN1685647A (zh) 一个无线系统中的信标信令
WO2007015305A1 (ja) 移動局装置
US20160036619A1 (en) Transmitting Apparatus and Transmitting Method
CN1277765A (zh) 数字通信系统中为透明数据业务选择链路协议的方法
CN1473448A (zh) 基站装置、移动站装置、无线通信系统和无线通信方法
CN100340122C (zh) 移动通信系统中的传播路径推断方法
KR101403105B1 (ko) 귀환 데이터 전송 방법, 귀환 데이터 생성 방법 및 데이터스케줄링 방법
CN101048951A (zh) 无线发送装置和导频信号插入方法
US20180013526A1 (en) Simultaneous transmission and reception of an orthogonal multiplexed signal and a non-orthogonal multiplexed signal
CN1411179A (zh) Ofdm发送和接收设备
WO2004068758A1 (ja) マルチキャリア送信装置、マルチキャリア受信装置 及びマルチキャリア無線通信方法
CN1118948C (zh) 一种接收机,无线通信系统、通信方法和接收方法
US20100110914A1 (en) Method of transmitting channel quality indicator in wireless comunication system
JP4881939B2 (ja) マルチキャリア無線通信システム及びマルチキャリア無線通信方法
WO2006021227A1 (en) Apparatus and method for obtaining delay diversity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060419

Termination date: 20150624

EXPY Termination of patent right or utility model