CN1118948C - 一种接收机,无线通信系统、通信方法和接收方法 - Google Patents

一种接收机,无线通信系统、通信方法和接收方法 Download PDF

Info

Publication number
CN1118948C
CN1118948C CN98119903A CN98119903A CN1118948C CN 1118948 C CN1118948 C CN 1118948C CN 98119903 A CN98119903 A CN 98119903A CN 98119903 A CN98119903 A CN 98119903A CN 1118948 C CN1118948 C CN 1118948C
Authority
CN
China
Prior art keywords
symbol
bit
reception
information
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN98119903A
Other languages
English (en)
Other versions
CN1218337A (zh
Inventor
迫田和之
铃木三博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN1218337A publication Critical patent/CN1218337A/zh
Application granted granted Critical
Publication of CN1118948C publication Critical patent/CN1118948C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0857Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0851Joint weighting using training sequences or error signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/265Fourier transform demodulators, e.g. fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Noise Elimination (AREA)
  • Radio Transmission System (AREA)
  • Error Detection And Correction (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明涉及一种通过除去干扰波的影响能够精确地恢复发射信息比特的接收机。在发射端插入的引导符号从接收的信号(S48-S51)中抽取,根据抽取的引导符号(S52-S55)最小化干扰波分量的加权系数(S61-S64)被计算出来,以通过用加权系数乘以从接收的信号抽取的信息符号,从信息符号(S56-S59)除去干扰波分量。从而,即使干扰波被接收了,也可以容易地从接收的信号中除去干扰波分量,和因此通过除去干扰波的影响,精确地恢复发射的信息比特(S72)。

Description

一种接收机,无线通信系统、通信方法和接收方法
本发明涉及优选应用到诸如便携式电话系统中的一种接收机,无线通信系统和通信方法。
一些这种类型的通常的无线通信系统的构成以至通过在接收机中和执行分集接收中设置多个天线可以消除通过传输线造成的接收衰减的影响。以后,通过所述的具体的示例介绍这种类型的无线通信系统。通过下面的示例介绍使用时分多址(TDMA)方法的传输或接收数字数据的同步检测无线通信系统。
如图1中所示,这种类型的无线通信系统1包括发射机2和接收机3,和通过接收机3的天线3A和3B分集接收发送信号,由接收信号处理部分4对通过两个天线3A和3B接收的信号进行信号处理,得到发送信号由发射机2的天线2A发送的消除了衰减影响的接收的比特流S1。
图2和3是表示构成无线通信系统1的发射机2和接收机3的具体结构。如图2所示,发射机2主要包括卷积编码电路5,交织缓冲器6,时隙处理电路7,调制电路8,引导符加法电路9,发射电路10和天线2A,以便给卷积编码电路5第一次输入作为发送数据的信息比特串S2。
卷积编码电路5包括移位寄存器和异或OR电路的预定数目的级,将卷积编码应用到输入信息比特串S2,和输出获得的编码的比特串S3给交织缓冲器6。交织缓冲器6在它的内部存储区域按序存储编码的比特串S3。当编码的比特串S3存储在整个存储区域(当编码的比特串S3累加到希望的数量时)时,缓冲器6随机重新安排编码的比特串S3的序列(此后序列的重新安排称之为交织)和给时间段处理电路7输出获得的编码比特串S4。在这种方面,该交织缓冲器6具有多个时隙的存储容量,以至分配编码的比特串到多个发送时隙。
时隙处理电路7是根据TDMA方法给编码的比特串S4指定时分形成(time-division-formed)的传输时隙的电路,该方法将编码的比特串S4分类成每个预定的数目的比特,和按顺序地输出得到的编码比特组S5到调制电路8。该调制电路8将预定的调制处理(即诸如QPSK调制的同步检波调制处理)应用到每个提供的编码比特组S5,和输出由引导符加法电路9得到的信息符号组S6。
如图4所示,引导符加法电路9将引导符号P加到根据传输时隙(信息符号I的标题)分类的每个信息符号组S6作为标题,和输出得到的传输符号组S7到发射电路10。在这方面,这里加上的引导符号P是在接收端先前知道的图形的符号,接收端的构成以至通过使用引导符号P估算传输线的特性(衰减状态)。
传输电路10将滤波处理应用到由引导符号P按顺序分别提供的传输符号组S7,然后将数字-模拟转换处理应用到产生传输信号的传输符号组S7。还有,传输电路10通过将频率转换应用到传输信号产生预定频率信道的传输信号S8和将该信号放大到预定的功率,然后通过天线2A发射该信号。因此,由发射机2与TDMA-型传输时隙的定时同步地发射该传输信号S8。
还有,如图3所示,接收机3主要包括天线3A和3B,接收信号处理部分4和维特比解码电路20,通过天线3A和3B接收由发射机2发射的传输信号S8,和输入得到的接收的信号S10和S1到接收信号处理部分4。该接收信号处理部分4将接收的信号S10。提供给它的内部接收电路21和将该接收的信号S11提供给它的内部接收电路22。
该接收电路21放大该输入的接收信号S10,和然后通过将频率变换应用到接收的信号S10和将滤波处理应用到基带信号取出基带信号。于是,所说的接收电路21通过将模-数转换处理应用到基带信号而取出对应上述传输符号组S7的接收的符号组S12,和分别输出该接收的符号组S12给传输线估算电路23和接收功率测量电路24。在这方面,由于受到传输线衰减的影响使接收的符号组S12的幅度分量和相位分量起伏,符号组S12不总是与传输符号组S7相符合。
传输线估算电路23是一个检查传输线的特性和执行对应检查的结果的均衡处理的电路。该传输线估算电路23通过参照包括在接收的符号组S12中的引导符P估算传输线的特性和根据该估算结果计算传输线的反向特性。还有该传输线估算电路23通过使用包含均衡器的等效电路,通过传输线给每个接收符号组S12卷积乘以在时间域中所示的传输线的反向特性的值以消除接收衰减的影响。通过这个处理,传输线估算电路23产生对应信息符号组S6的接收的信息符号组S13,和输出该组S13给乘法器25。
接收功率测量电路24根据输入的接收符号组S12测量输入的接收符号组S12的功率,和给乘法器25输出该组S12的接收功率值S14。该乘法器25产生接收信息符号组S15,通过将由接收功率测量电路24提供的接收功率值S14乘以组S13,使得接收的信息符号组S13的可靠性在符号组S15上反映为表示组S13的可靠性的加权系数,和给加法器26输出该组S15。在这方面,接收信息符号组S13的可靠性正比于接收的功率值S14。因此,接收功率值S14增加,该可靠性也变高。
用该相同的方法,接收电路22放大输入的接收信号S11,通过将频率转换应用到接收信号S11取出基带信号对该基带信号作滤波处理,然后通过对基带信号作模数转换处理取出对应上述的传输符号组S7的接收符号组S16,和分别输出组S16给传输线估算电路27和接收功率测量电路28。在这方面,由于组S16受到衰减的影响,接收的符号组S16的幅度分量和相位分量也起伏。因此,组S16不总是与传输符号组S7相符合。还有,由于组S16和S7在完全相同的情况下不受衰减的影响,组S16不总是与接收的符号组S12相同。
传输线估算电路27还是一个检查传输线特性和执行对该检查结果的均衡处理的电路,和通过参照包括在接收的符号组S16中的引导符P估算传输线的特性和进一步根据估算结果计算传输线反向特性。还有传输线估算电路27使用包括均衡器的等效电路通过将表示在时间域中的传输线的反向特性的值卷积乘以每个接收的符号组S16的信息符I消除通过传输线接收衰减的影响。通过这个处理,传输线估算电路27产生对应传输信息符号组S6的接收信息符号组S17,和输出该组S17给放大器29。
接收功率测量电路28根据输入接收符号组S16测量接收的符号组S16的功率,和输出接收的功率值S18给乘法器29。乘法器29产生接收的信息符号组S19,由于用接收功率测量电路28提供的接收功率值S18乘以接收信息符号组S17,接收信息符号组S17的可靠性在符号组S19上反映为表示接收信息符号组S17的可靠性的加权系数,和给加法器26输出该组S19。
加法器26产生同步接收的信息符号组S20,从该S20由于衰减产生的起伏通过接收信息符号组S15和S19的同步符号而消除,在该S15和S19上反映出可靠性,和将组S15和S19加在一起。因此,加权通过天线3A和3B接收的信息符号组S13和S17和将它们加在一起的处理一般地称为最大比率同步方法,它是我们知道的克服噪声和衰减的最强的信号处理方法,与选择的同步方法等其它的方法比较它是比较复杂的。
产生的同步接收信息符号组20输入到在后级的解调电路30。该解调电路30通过应用对同步接收信息符号组S20作预定的解调处理,在发射端恢复对应编码的比特组S5的编码的比特组S21,和输出恢复的组S21给时隙联接处理电路31。在这方面,编码的比特组S21的每个比特不是具有″0″或″1″的值的二进制信号,由于噪声分量通过传输线加到每个比特,它是多值信号。时隙联接处理电路31是联接在时隙中零散得到的编码比特组S21的电路,以至它们作为连续的信号。在组S21累加到后级的去交织缓冲器32的存储容量的等效值以后,编码的比特组S21联接到一起。于是,时隙连接处理电路31输出得到的编码的比特串S22到去交织缓冲器32。
去交织缓冲器32有按顺序在它的内部存储区存储提供的编码比特串S22的多个时隙的存储容量,和此后通过根据在发射机2的交织缓冲器6中执行的重新安排程序的反向程序重新安排编码比特串S22的序列将编码比特串S22的安排序列返回到它的原来的安排序列,和输出维特比解码电路20得到的编码比特串作为前述的接收的比特串S(此后,安排的序列返回到原来的安排序列称为去交织)。该维特比解码电路20包括软-判断维特比解码电路,通过根据输入编码比特串S1确定卷积编码的格子结构恢复和输出传输的信息比特串S23和估算识别为可能的数据的每个状态的跃迁的最可能的状态(所谓的最大的可能的串估算)。因此接收机3避免了通过传输线接收衰减的影响,和恢复由发射机2发射的信息比特串S23。
在通常的接收机3的情况下,通过响应接收的功率值S14和S18加权通过天线3A和3B接收的信息符号组S13和S17,将它们加在一起,和从而执行最大比率合成处理消除衰减的影响。还有,当强的相同的信道干扰波出现在每个时隙时,由于识别干扰波的功率为接收的功率,不可能得到原来的最大比率合成的特性。因此,衰减的影响不可能满意地避免,和不能精确地恢复该信息比特串S23。
另外,虽然分集接收基本具有防止由于衰减造成所需波的接收功率的减少的功能,但是,它没有能力消除干扰波。因此通常的接机3不能基本上消除干扰波的影响。因此在接收干扰波的情况下,接收机3不可能精确地恢复信息比特串S23。因此,在通常的接收机3的情况下,克服干扰波的作用仍不足够,和不可能精确地恢复信息比特串S23。
鉴于前述,本发明的目的是提供能够消除干扰波的影响和精确恢复发射的信息比特的接收机,无线通信系统和通信方法。
当结合说明书附图阅读下面详细描述的说明书时,本发明的实质,原理和实用性将变得更加显而易见。在附图中相同的数字和字符表示相同的部分。
图1是通常的无线通信系统的结构的方框图;
图2是通常的发射机的结构的方框图;
图3是通常的接收机的结构的方框图;
图4是解释通常的引导符方案的示意图;
图5是表示应用本发明的无线通信系统的结构的方框图;
图6是表示应用本发明的发射的结构的方框图;
图7是解释QPSK调制理论的信号-点布局图;
图8是解释8PSK调制理论的信号-点布局图;
图9是解释16QAM理论的信号-点布局图;
图10是解释64QAM理论的信号-点布局图;
图11是解释引导符号方案的示意图;
图12是解释反向-富氏-变换后的传输符号的示意图;
图13是表示应用本发明的接收机的结构的方框图;
图14是表示加权-系数计算部分的结构的方框图;
图15是表示加权-系数计算部分的加权系数计算程序流程图;
图16是表示对应QPSK调制的解调电路的结构的方框图;
图17是表示对应8PSK调制的解调电路的结构的方框图;
图18是表示对应16QAM调制的解调电路的结构的方框图;
图19是表示对应64QAM调制的解调电路的结构的方框图;
图20是表示第二实施例的解调电路的结构的方框图;
图21是表示可靠性计算电路的结构的方框图;
图22是表示另一个实施例的发射机的结构的方框图;
图23是表示另一个实施例的接收机的结构的方框图;
图24是表示差分解调电路的结构的方框图。
结合说明书附图描述本发明的优选实施例:
(1)第一实施例
(1-1)无线通信系统的一般结构
在图5中,字符40表示应用本发明的整个的无线通信系统。该无线通信系统40是由发射机41和接收机42构成的。通过发射机41的天线43发射的发射信号S30由接收机42的四个天线44A-44D接收。另外,在与发射机41的发射信号S30相同的频率信道发射信号S31的另一个发射机46在该无线通信系统40的附近。由发射机46发射的信号S31通过天线44A-44D接收作为干扰波。接收机42输入通过天线44A-44D接收的每个信号到它的内部接收信号处理部分45,和产生接收比特流S32,来自S32的干扰波的影响通过从每个接收信号中消除干扰波分量而被清除。
在这方面,接收机42消除了由根据发射信号S30的频率以大于1/2波长的间隔设置的天线44A-44D接收的四接收信号间的衰减相关。因此,接收机42通过消除四接收信号间的衰减相关有效地执行分集接收。还有,一般地说,分集接收是一种消除由多个天线用预定的方法接收的合成信号的衰减影响的技术。因此,当每个信号包括衰减相关时,分集接收的效果理论上是恶化了。因此如上所述,在接收机42的情况下,描述了四个天线44A-44B的方案。
还有,在无线通信系统40的情况下,一个频率信道是由例如24个副载波构成的。因此,对于发射,被发射的信息比特串按时间段分类,每个时间段的分类的信息比特串被分配和叠加在副载波上,以至使用多个载波在相同的时间执行传输信息比特的所谓的多载波通信。
(1-2)发射机的结构
上述的无线通信系统的发射机41结合图6具体地描述。如图6所示,在图中对应图2中的部分用相同的符号表示,发射机41主要包括卷积编码电路5,交织缓冲器6,时间段处理电路7,调制电路8,引导符加法电路50,反向快速富氏变换电路(IFFT)51,发射电路52,和天线43。除了反向快速富氏变换电路51被加入和引导符加法电路50和发射电路52的处理内容变化了以外,发射机41具有几乎和图2所示的发射机2完全相同的结构。
首先,在发射机41的情况下,由时隙处理电路7分类的编码的比特组S5输入给调制电路8。还是在发射机41的情况下,该调制电路8将同步-检测解调处理应用到输入的编码比特组S5。该调制处理包括各种调制方法。例如,正交移相键控调制(QSPK调制:所谓的4-相位调制),8移相键控调制(8PSK调制:所谓的8-相位调制),16正交幅度调制(16QAM:所谓的16-值正交幅度调制)64正交幅度调制(64QAM:所谓的64-值正交幅度调制)是典型的调制方法。
上述的调制方法描述如下。QPSK调制,如其名字所示,是相位调制方法,其中出现四相位状态,和如图7所示,2比特的信息由出现在相位值π/4,3π/4,5π/4,和7π/4的4信号点(符号)所示。还有,8QPSK调制,如其名字所示,是相位调制方法,其中出现8相位状态,和如图9所示,3比特的信息由8信号点示出,这些点出现在具有幅度为1的同心圆上,和彼此间隔π/4。另外,16QAM如其名字所示,是一个调制方法,其中出现的16个信号点在幅度上是彼此不同,和如图9所示,4比特信息由彼此间隔阈值 的I分量(相位分量)和Q分量(正交分量)的大小产生的16信号点表示。另外,64QAM,如其名字所示,是一种调制方法,其中出现了幅度上彼此不同的64个信号点,和如图10所示,6比特的信息由彼此间隔阈值±
Figure C9811990300122
Figure C9811990300124
的I分量和Q分量的大小产生的64信号点表示。在这方面,附在图7至10中的信号点的数值表示由信号点表示的比特信息。
调制电路8将上述的任何一个调制处理应用到每个编码的比特组S5,和输出得到的信息符号组S6给引导符加法电路50。引导符加法电路50是一个将引导符P加到每一个信息符组S6的电路。发射机41不将引导符P加到每个符号组的标题部分,但是它以相等的间隙在构成符号组的信息符I间插入引导符P。
在这方面,如上述由于一个时间段的符号分配给24个副载波,一个时间段是由包括引导符P和信息符I的24个符号构成。引导符P是一个在接收机端先前已知的图形的符号,它的幅度值是″1″,和它的相位值是随机的。然而,相位值随机化,以至与其它的通信不同,因此在每个通信中引导符P做得不同。也就是,由于干扰波分量根据在接收机端的引导符P被检测,如果引导符P相位值与其它的通信的相同,因此不可能区别信号分量与通信对方发送的当地办公室的干扰波分量。
通过加入引导符P产生的发射符号组835输出给后面的反向快速富氏变换电路51。由于反向快速富氏变换电路51,通过分配它们给副载波,在前述的24副载波上叠加构成发射符号组S35的符号(由于电路51通过安排它们在频率轴上发射发射符号组S35的符号),该电路51将反向快速富氏变换应用到每个发射符号组S35。因此,在其中在时基上安排的输入符号组安排在频率轴上的信号被产生。在图12中示出了应用反向快速富氏变换产生的发射符号组S36的状态。图12示出了在频率基线上的发射符号组S36的状态。从图12可以发现由引导符P和信息符I构成的24个符号安排在频率轴上,和指定24个副载波给每一个。
另外,在执行反向快速富氏变换处理以前反向快速富氏变换电路51将窗口应用到发射符号组S35,和从而控制不必要的带外寄生。通过在时基上应用余弦滑离滤波器于发射符号组S35,实现了开窗的具体方法。因此,通过反向快速富氏变换电路51处理产生的发射符号组S36输出给随后的发射电路52。
发射电路52将滤波处理应用到发射符号组S36,和以后将数-模转换处理应用到发射符号组S36以产生发射信号。另外,发射电路52通过对发射信号作频率转换产生预定频率信道的发射信号S30,放大该信号S30到预定的功率,和然后通过天线43发射该信号S30。
因此,发射机41通过在多个副载波上分配划分成时间段的编码的比特组和将它们叠加在多个副载波上,执行在相同的时间用多个副载波发射的发射信息比特串的多副载波通信。
(1-3)接收机的结构
如图13所示其中对应图3中的部分用相同的符号表示,接收机42主要包括四天线44A-44D,接收信号处理部分45,和维特比解码电路20。接收机42接收由发射机41通过天线44A-44D独立发射的发射信号S30,和输入由接收信号处理部分45得到的接收信号S40-S43。在这种情况下,假设由另一个发射机46发射的发射信号S31作为干扰波接收,和该干扰波分量叠加在接收的信号S40-S43上。接收信号处理部分45给它的内部接收电路60-63提供该接收的信号S40-S43。
在接收电路60放大了该接收的信号S40以后,通过将频率转换应用到接收信号S40,它取出基带信号,和将滤波处理应用到该基带信号,和然后它通过将模-数转换处理应用到基带信号,取出接收的符号组S44,和输出该组S44给快速富氏变换电路(FFT)64。
另外,接收电路61-63放大输入的接收信号S41-S43,然后通过应用频率转换到接收信号S41-S43,取出基带信号,应用滤波处理到基带信号,此后,通过应用模-数转换处理到基带信号,取出接收的符号组S45-S47,和输出该组S45-S47到快速富氏变换电路(FFT)65-67。
该快速富氏变换电路64通过应用开窗处理到输入的接收符号组S44,取出一个时间段的信号分量,和应用富氏变换到取出的信号分量。因此,安排在频率轴上的取出的符号组可以取出安排在时基上。因此,通过由快速富氏变换电路64执行的富氏变换取出的接收的符号组S48输出到选择器开关68。在这方面,快速富氏变换电路64通过对在时基上的接收符号组S44应用余弦滑离开窗执行开窗处理,和因此使得有可能控制在一个时间段中的符号间的干扰。
另外,通过对输入接收符号组S45-S47应用开窗处理该快速富氏变换电路65-67取出一个时间段的信号分量,通过对取出的信号分量应用富氏变换在时基上安排符号的接收符号组S49-S51被取出,和输出该组S49-S51给选择器开关69-71。
选择器开关68是将包括在接收符号组S48中的引导符P与包括在该组S48中的信息符号I分离开来的开关。该选择器开关68通过对在引导符P的定时上的加权-系数计算部分72转换联接状态,抽取仅由引导符号P构成的符号组S52,输出该组S52给加权系数计算部分72,通过对在信息符I的定时上的缓冲器74转换联接状态,抽取仅由信息符I构成的符号组S56,和给缓冲器74输出该组S56。
另外,选择器开关69-71是用来将包括在接收符号组S49-S51中的引导符P与包括在组S49-S51中的信息符I分离开的开关。选择器开关69-71通过转换联接状态抽取仅包括引导符P的符号组S53-S55,以输出S53-S55给加权系数计算部分72,和抽取仅由信息符上构成的符号组S57-S59,以输出它们给缓冲器75-77。
缓冲器74-77用先入先出缓冲器分别构成。缓冲器74-77在它的内部存储区域按顺序存储输入符号组S56-S59的符号,根据后面要述及的加权系数计算部分72的信号输出定时读取存储的符号组S56-S59,和按顺序输出该组S56-S59给乘法器78-81。
加权系数计算部分72接收用等于由引导符产生电路73在发射端信息符号组S6插入的引导符P的符号构成的符号组S60。于是,加权系数计算部分72通过根据分别由引导符号P构成的符号组S60和输入符号组S52-S55执行预定的运算来计算使符号组S56-S59的信号-干扰波功率比CIR最大化的加权系数S64(最小化干扰波分量),和给乘法器78-81输出系数S64。在这方面,由加权系数计算部分72计算的加权系数S61-S64是分别由复数构成的系数。还有,加权系数计算部分72计算每个符号组的加权系数S61-S64。
通过用与缓冲器74-77来的加权系数S61-S64的输出定时同步输出的符号组S56-S59复乘加权系数S61-S64,乘法器78-81从符号组S56-S59中除去干扰波分量。于是,乘法器78-81输出得到的符号组S65-S68给加法器82。
加法器82通过加上与每个符号同步计算的符号组S65-S68合成通过天线44A-44D分集接收的信号分量,和输出得到的接收的信息符号组S69给解调电路83。
该解调电路83通过应用预定的解调处理(对应在发射端执行的调制方法和对应QPSK调制,8PSK调制,16QAM,或64QAM的解调处理)从接收的信息符号组S69取出编码的比特组S70给接收的信息符号组S69,和输出该组S70给在后级的时隙连接处理电路31。
该时隙连接处理电路31是连接在时隙分段得到的编码的比特组S70以至成为连续的信号的电路31。当组S70叠加至等于后级的去交织缓冲器32的存储容量时,时隙连接处理电路31连接编码的比特组S70,和输出得到的编码的比特串S71给去交织缓冲器32。
该去交织缓冲器32具有多个时隙的存储容量,在它的内部存储区域按顺序存储提供的编码的比特串S71,和根据在发射机41的交织缓冲器6中执行的重新安排的反向序列重新安排串S71以返回编码的比特串S71的安排序列到它的原来的安排序列,和输出得到的编码比特串给维特比解码电路20作为上述的接收的比特流S32。
该维特比解码电路20包括软判断维特比解码电路,它通过应用最大-相似串估算于输入的编码的比特串S32来恢复发射的信息比特串S72。在这种情况下,通过在前级的乘法器78-81中用加权系数S61-S64乘以符号组S56-S59从符号组S56-S59中除去干扰波分量,和于是通过合成符号组S56-S59产生了除去了干扰波分量的接收信息符号组S69。因此,还从输入给维特比解码电路20的编码比特串S32中除去干扰波分量。因此,通过给维特比解码电路20输入编码的比特串S32,可以使维特比解码电路20在不受干扰波的影响下精确地执行最大-相似串的估算,和更精确地恢复信息比特串S72。
(1-4)加权-系数计算部分的结构
(1-4-1)电路结构
如图14所示,加权系数计算部分72包括根据分别由接收引导符P构成的符号组S52-S55和由实际的发射的引导符P构成的符号组S60计算内音-符号-组期望值d0-d3和e00-e33的期望值计算部分90。该加权系数计算部分72还包括通过根据由期望值计算部分90计算的期望值d0-d3和e00-e33执行预定的处理计算加权系数S61-S64的计算部分91。
该期望值计算部分90首先输入接收的符号组S52给乘法器92A-92E。符号组S60,S52,S53,S54或S55输入到乘法器92A-92E作为复数乘法的对象,以至乘法器92A-92E执行在符号组S52的共轭值与符号组S60,S52,S53,S54或S55间的复数乘法(在图14中的″*″表示共轭值)。
也就是,乘法器92A在每个符号处按顺序执行符号组S52的每个符号的共轭值与符号组S60的每个符号间的复数乘法,乘法器92B在每个符号处按顺序执行符号组S52的每个符号的共轭值与符号组S52的每个符号间的复数乘法,乘法器92C在每个符号处按顺序执行符号组S52的每个符号的共轭值与符号组S53的每个符号间的复数乘法,乘法器92D在每个符号处按顺序执行符号组S52的每个符号的共轭值与符号组S54的每个符号间的复数乘法,和乘法器92E在每个符号处按顺序执行符号组S52的每个符号的共轭值与符号组S55的每个符号间的复数乘法。
乘法器92A-92E的乘法结果输入给累积加法器93A-93E,在这里,累积加每个系数,从而被积分。在累积加(积分)构成一个符号组的每个符号的乘法结果以后,累积加法电路93A-93E给计算部分91输出每个积分结果作为期望值d0,e00,e10,e20或e30。
还有期望值计算部分90输入接收的符号组S53给乘法器94A-94E。符号组S60,S52,S53,S54或S55输入乘法器94A-94E作为复数乘法的对象,和乘法器94A-94E执行符号组S53的共轭值与符号组S60,S52,S53,S54或S55间的复数乘法。
也就是,乘法器94A在每个符号处按顺序执行符号组S53的每个符号的共轭值与符号组S60的每个符号间的复数乘法,乘法器94B在每个符号处按顺序执行符号组S53的每个符号的共轭值与符号组S52的每个符号间的复数乘法,乘法器94C在每个符号处按顺序执行符号组S53的每个符号的共轭值与符号组S53的每个符号间的复数乘法,乘法器94D在每个符号处按顺序执行符号组S53的每个符号的共轭值与符号组S54的每个符号间的复数乘法,和乘法器94E在每个符号处按顺序执行符号组S53的每个符号的共轭值与符号组S55的每个符号间的复数乘法。
乘法器94A-94E的乘法结果输入给累积加法器95A-95E,在这里,累积加每个系数,从而被积分。在累积加(积分)构成一个符号组的每个符号的乘法结果以后,累积加法电路95A-95E给计算部分91输出每个积分结果作为期望值d1,e01,e11,e21或e31。
此后,用这种方法,在加权-系数计算部分72中,乘法器94A-96E执行在符号组S54的共轭值与符号组S60,S52,S53,S54和S55的每一个间的复数乘法,用累积加法电路97A-97E通过累积加乘法结果计算期望值d2,e02,e12,e22或e32,和输入期望值d2,e02,e12,e22或e32给计算部分91。还有,在加权-系数计算部分72中,乘法器98A-98E执行符号组S55的共轭值与符号组S60,S52,S53,S54和S55的每一个间的复数乘法,通过用累积加法电路99A-99E累加乘法结果来计算期望值d3,e03,e13,e23或e33,和输出期望值d3,e03,e13,e23或e33给计算部分91。
通过根据由期望值计算部分90计算的期望值d0-d3和e00-e33,计算部分91计算加权系数S61-S64。具体地说,计算部分91代换在下面的方程(1)中所示的行列式的期望值d0-d3和e00-e33以使用诸如高斯方法,LU方法,或高斯-约旦方法的数学方法解该行列式,和计算复变量W0-W3。 e 00 e 01 e 02 e 03 e 10 e 11 e 12 e 13 e 20 e 21 e 22 e 23 e 30 e 31 e 32 e 33 W 0 W 1 W 2 W 3 = d 0 d 1 d 2 d 3 · · · · · · ( 1 )
还有,计算部分91输出计算的复变量W0-W3,作为加权系数S61-S64。(1-4-2)由加权系数计算部分用的加权-系数计算程序
此后,结合在图15中所示的流程图描述具有上述结构的加权-系数计算部分72的加权-系数计算程序。在这种情况下,假设接收的符号组S52的符号是P0,符号组S53的符号是P1,符号组S54的符号是P2,符号组S55的符号是P3和对应发射的引导符号的符号组S60的符号是Pd。
首先,加权-系数计算部分72在开始于步骤SP1的步骤SP2中得到接收的每个符号的符号P0,P1,P2和P3间的乘数值Xij,还有得到在一方面接收的符号P0-P3和另一方面每个符号的发射符号Pd间的乘数值Yj。在乘的情况下,通过得到一个符号的共轭值和用该共轭值乘以其它的符号,加权-系数计算部分72得到乘数值Xij和Yj。也就是通过按顺序执行下面的方程(2)所示的运算,加权-系数计算部分72计算在每个组合中的乘数值Xij,假设变量i和j是i=0,...,3和j=0,...,3。
Xij=Pi·Pj*          ……(2)
Where,i,j=0,…,3
另外,部分72通过按顺序执行由下面方程(3)所示的运算,计算每个组合中的乘数值Yj
                Yi=Pi·Pj*           ……(3)
                Where,i,j=0,…,3
符号″*″在方程(2)和(3)中表示共轭值。在下一个步骤SP3中,假设符号组的符号的数目为k,(假设包括在一个时间段中的引导符号的数目是k)加权-系数计算部分72通过为每个系数加k乘数值Xij,计算期望值eij和还有通过为每个系数加k乘数值Yj计算期望值dj。也就是,通过根据下面的方程(4)为每个系数加乘数值Xij,加权-系数计算部分72得到期望值eij。 eij = Σ n = 0 k Xij ( n ) · · · · · · ( 4 ) 其中,i,j,=0,…,3
还有,根据下面的方程(5)为每个系数加乘数值Yj,部分72得到期望值dj。 dj = Σ n = 0 k Yj ( n ) · · · · · · ( 5 ) 其中,i,j,=0,…,3
  因此,在一方面的符号组S52-S55和另一方面的符号组S60间的组合的期望值d0-d3和e00-e33被计算出来。
  在下一步骤SP4中,加权-系数计算部分72用计算的期望值d0-d3和e00-e33代换上面的方程式(1)所示的行列式,和通过解该行列式计算该加权系数W0-W3。另外,加权-系数计算部分72输出计算的加权系数W0-W3,作为加权系数S61-S64。当完成上述的处理时,加权-系数计算部分72开始下个步骤SP5,以完成整个处理。在这方面,加权-系数计算部分72通过得到对应无论何时符号组S52-S55输入的一个时间段的接收信号,执行如图15所示的加权-系数计算程序和为每个时间段计算加权系数W0-W3
(1-4-3)加权系数计算理论
于是,该理论被描述,其中能够使包含在符号组S56-S59中的干扰波分量最小化的加权系数W0-W3通过将上述的期望值d0-d3和e00-e33代换方程(1)所示的行列式和解该行列式而能计算出来。
首先,假设天线单元的数目是k。还有假定(M+1)信号波Skm(t)到达每个天线单元,(M+1)信号波的信号波Sk0(t)是希望的波和剩余的信号波Sk1(t)-Skm(t)是干扰波。另外,假定白噪声加到通过每个天线单元接收的信号。在上述的状态下,通过合成由每个天线单元接收的信号得到的接收信号的电压Y(t)可以如下所述表示出来。
首先,假设在到达第k个天线单元的(M+1)信号波中的第m个信号波是Skm(t),和加到该第k个天线单元上的白噪声是nk(t),由第k个天线单元接收的信号Xk(t)由下面的方程(6)表示。 x x ( t ) = Σ m = 0 M S km ( t ) + n x ( t ) · · · · · · ( 6 )
另外,用加权系数Wk乘以每个信号Xk(t)得到的值加起来,得到接收的信号Y(t)。因此,接收的信号Y(t)用下面的方程(7)表示。 y ( t ) = Σ k = 0 K - 1 W k x k ( t ) · · · · · · ( 7 )
在这种情况下,当假设理想的信号是原来接收的如d(t)时,理想信号d(t)与实际接收的信号Y(t)间的均方误差MSE由下面的方程(8)表示。
              MSE=E[|d(t)-y(t)|2]  ……(8)
在这种情况下,在该方程(8)中示出的E[x]表示x(时间平均值)的期望值。另外,变量d(t),Y(t)和Wk是复数。
在方程(8)中,发现当均方误差MSE减少时接收的信号Y(t)更接近理想信号d(t)。还有通过设定加权系数Wk,以至均方误差MSE最小化,它可能最小化干扰波分量。为了得到最小化均方误差MSE的加权系数Wk,必须用加权系数Wk首先部分电微分均方误差MSE,和寻找减少部分地微分均方误差MSE的值为″0″的加权系数Wk,也就是最小化均方误差MSE的加权系数Wk
加权系数Wk是一个复数。因此,当表示加权系数Wk为下面的方程(9)时,用加权系数Wk部分地微分均方误差MSE的结果可以用下面的方程(10)表示。
            Wk=Wk Re+jWk Im           ……(9) ∂ MSE ∂ W k = ( ∂ ∂ W k Re + j ∂ ∂ W k Im ) MSE = ∂ MSE ∂ W k Re + j ∂ MSE ∂ W k Im · · · · · · ( 10 )
为了得到最小化均方误差MSE的加权系数Wk,必须得到满足下面的方程(11)的部分微分值的加权系数Wk ∂ MSE ∂ W k Re + j ∂ MSE ∂ W k Im = 0 · · · · · · ( 11 )
因此,得到加权系数Wk作为最小化干扰波分量的加权系数Wk
在这种情况下,假定天线单元的数目是″4″,变量k=0,...3。因此,得到了用下面方程(12)至(15)表示的四联立方程。 ∂ MSE ∂ W 0 = ∂ MSE ∂ W k Re + j ∂ MSE ∂ W k Im = 0 · · · · · · ( 12 ) ∂ MSE ∂ W 1 = ∂ MSE ∂ W k Re + j ∂ MSE ∂ W k Im = 0 · · · · · · ( 13 ) ∂ MSE ∂ W 2 = ∂ MSE ∂ W k Re + j ∂ MSE ∂ W k Im = 0 · · · · · · ( 14 ) ∂ MSE ∂ W 3 = ∂ MSE ∂ W k Re + j ∂ MSE ∂ W k Im = 0 · · · · · · ( 15 )
通过使用预定的数学方法用方程(12)至(15)展开方程,它们可以转变成下面的方程(16)至(19)。 ∂ MSE ∂ W 0 = Σ i = 0 3 E [ 2 W 0 x 0 ( t ) x 1 * ( t ) ] - E [ 2 d ( t ) x 0 * ( t ) ] = 0 · · · · · · ( 16 ) ∂ MSE ∂ W 1 = Σ i = 0 3 E [ 2 W 1 x 1 ( t ) x i * ( t ) ] - E [ 2 d ( t ) x 1 * ( t ) ] = 0 · · · · · · ( 17 ) ∂ MSE ∂ W 2 = Σ i = 0 3 E [ 2 W 2 x 2 ( t ) x i * ( t ) ] - E [ 2 d ( t ) x 2 * ( t ) ] = 0 · · · · · · ( 18 ) ∂ MSE ∂ W 3 = Σ i = 0 3 E [ 2 W 3 x 3 ( t ) x i * ( t ) ] - E [ 2 d ( t ) x 3 * ( t ) ] = 0 · · · · · · ( 19 )
用方程(16)至(19)表示的方程可以用下面的方程(20)表示的行列式表示之。 ∂ MSE ∂ W 0 ∂ MSE ∂ W 1 ∂ MSE ∂ W 2 ∂ MSE ∂ W 3 = 2 x E [ x 0 ( t ) x 0 * ( t ) ] E [ x 0 ( t ) x 1 * ( t ) ] E [ x 0 ( t ) x 2 * ( t ) ] E [ x 0 ( t ) x 3 * ( t ) ] E [ x 1 ( t ) x 0 * ( t ) ] E [ x 1 ( t ) x 1 * ( t ) ] E [ x 1 ( t ) x 2 * ( t ) ] E [ x 1 ( t ) x 3 * ( t ) ] E [ x 2 ( t ) x 0 * ( t ) ] E [ x 2 ( t ) x 1 * ( t ) ] E [ x 2 ( t ) x 2 * ( t ) ] E [ x 2 ( t ) x 3 * ( t ) ] E [ x 3 ( t ) x 0 * ( t ) ] E [ x 3 ( t ) x 1 * ( t ) ] E [ x 3 ( t ) x 2 * ( t ) ] E [ x 3 ( t ) x 3 * ( t ) ] W 0 W 1 W 2 W 3 - 2 × E [ d ( t ) x 0 * ( t ) ] E [ d ( t ) x 1 * ( t ) ] E [ d ( t ) x 2 * ( t ) ] E [ d ( t ) x 3 * ( t ) ] = 0 0 0 0 · · · · · · ( 20 ) 因此,由下面的方程(21)表示的行列式可以从方程(20)得到。 E [ x 0 ( t ) x 0 * ( t ) ] E [ x 0 ( t ) x 1 * ( t ) ] E [ x 0 ( t ) x 2 * ( t ) ] E [ x 0 ( t ) x 3 * ( t ) ] E [ x 1 ( t ) x 0 * ( t ) ] E [ x 1 ( t ) x 1 * ( t ) ] E [ x 1 ( t ) x 2 * ( t ) ] E [ x 1 ( t ) x 3 * ( t ) ] E [ x 2 ( t ) x 0 * ( t ) ] E [ x 2 ( t ) x 1 * ( t ) ] E [ x 2 ( t ) x 2 * ( t ) ] E [ x 2 ( t ) x 3 * ( t ) ] E [ x 3 ( t ) x 0 * ( t ) ] E [ x 3 ( t ) x 1 * ( t ) ] E [ x 3 ( t ) x 2 * ( t ) ] E [ x 3 ( t ) x 3 * ( t ) ] W 0 W 1 W 2 W 3 = E [ d ( t ) x 0 * ( t ) ] E [ d ( t ) x 1 * ( t ) ] E [ d ( t ) x 2 * ( t ) ] E [ d ( t ) x 3 * ( t ) ] · · · · · · ( 21 )
因此,根据方程(21)解加权系数W0-W3,可以得到最小化干扰波分量的加权系数W0-W3
在方程(21)的左端的期望值E[Xi(t)Xj*(t)]是接收信号的期望值,和对应在上述的方程(1)中述及的期望值e00-e33。有相同的方法,在方程(21)右端的E[Xi(t)Xj*(t)]是被接收的信号和实际接收的信号的期望值,和对应在上面的方程(1)中的期望值d0-d3。还有加权系数W0-W3对应由方程(1)得到的加权系数W0-W3。因此,结果通过用加权系数计算部分72,根据由方程(1)表示的行列式得到加权系数W0-W3,它可以最小化干扰波分量。也就是可以得到能够最小化干扰波分量的加权系数W0-W3。(1-5)解调电路的结构
在这方面,描述了解调电路83的结构。解调电路83通过执行与在发射端根据预定的调制方法给一些编码的比特指定符号的处理相反的处理恢复编码的比特。解调电路83的结构对应在发射端执行的调制方法而变化。因此,电路83的结构为每一种调制方法而描述。(1-5-1)对应QPSK调制的解调电路的结构
当在发射端执行的调制方法使用QPSK调制时,如图16所示构成解调电路83,直接取出作为接收的符号组S69的每个接收的符号的I和Q分量,作为第一和第二软判断比特b1和b2,和输出该比特b1和b2作为恢复的编码比特组S70。(1-5-2)对应8PSK调制的解调电路的结构
当在发射端执行的调制方法使用8PSK调制时,解调电路83如图17所示被构成。解调电路83直接取出作为接收的符号组S69的每个接收的符号的I和Q分量,作为第一和第二软判断比特b1和b2。它还应用对I和Q分量作预定的处理取出第三个软判断比特b3,和输出取出的第一,第二和第三软判断比特b1,b2和b3作为恢复的编码比特组S70。
当解调电路83取出第三软判断比特b3时,它首先输入分量I和Q给绝对值电路100和101。绝对值电路100得到分量I的绝对值S80,和绝对值电路101得到分量Q的绝对值S81。电路100和101输出绝对值S80和S81给减法器102。减法器102从分量I的绝对值S80减去分量Q的绝对值S81和给运算电路103输出绝对值S80和S81间的差S82。运算电路103将 乘以分量I和Q间的差S82,和输出运算结果作为第三软判断比特b3。因此,解调电路83使得根据上述的处理用简单的结构获得第一,第二和第三软判断比特b1,b2和b3成为可能。(1-5-3)对应16QAM的解调电路的结构
当在发射端执行的调制方法使用16QAM时,解调电路83如图18所示构成。解调电路83直接地取出作为接收的信息符号组S69的每个接收的符号的I和Q的分量,作为第一和第二软判断比特b1和b2。还通过将预定的处理应用到分量I和Q,取出第三和第四软判断比特b3和b4,和输出取出的第一,第二,第三和第四软判断比特b1-b4作为恢复编码的比特组S70。
当解调电路83取出第三和第四软判断比特b3和b4时,它首先输入分量I给绝对值电路105和输入分量Q给绝对值电路106。绝对值电路105得到分量I的绝对值S85和绝对值电路106得到分量Q的绝对值S86。于是,电路105输出绝对值S85给减法器107,和电路106输出绝对值S86给减法器108。例如,值 输入到减法器107作为信号-电平判断阈值S87。减法器107从分量I的绝对值S85中减去判断阈值S87,和输出减法结果作为第三软判断比特b3。由于信号-电平判断阈值S87还输入到减法器108,减法器108从分量Q的绝对值S86中减去该判断阈值S87,和输出该计算结果作为第四软判断比特b4。
因此,解调制电路83直接使用分量I和Q的值用作第一和第二软判断比特b1和b2,通过从分量I的绝对值S85中减去判断阈值S87得到第三软判断比特b3,和通过从分量Q的绝对值S86中减去判断阈值S87得到第四软判断比特b4。因此,用简单的结构就可能容易地得到第一,第二,第三和第四软判断比特b1-b4。
(1-5-4)对应64QAM的解调电路的结构
当在发射端执行的调制方法使用64QAM时,解调电路83如图19所示构成。解调电路83直接地取出作为接收的信息符号组S69的每个接收的符号的I和Q的分量,作为第一和第二软判断比特b1和b2。还通过将预定的处理应用到分量I和Q,取出第三,第四,第五和第六软判断比特b3-b6,和输出取出的第一至第六软判断比特b1-b6作为恢复的编码比特组S70。
当解调电路83取出第三至第六软判断比特b3-b6时,它首先输入分量I和Q给绝对值电路110和绝对值电路111。绝对值电路110得到分量I的绝对值S90和绝对值电路111得到分量Q的绝对值S91。于是,电路110输出绝对值S90给减法器112,和电路111输出绝对值S91给减法器113。例如,值″√8/21″,输入到减法器112作为第一信号-电平判断阈值S92。减法器112从分量I的绝对值S90中减去第一判断阈值S92,和输出计算结果作为第三软判断比特b3,和输出该计算结果给绝对值电路114。还有第一判断阈值S92输入到减法器113。减法器113从分量Q的绝对值S91中减去第一判断阈值S92,输出计算结果作为第四软判断比特b4,和输出该计算结果到绝对值电路115。
绝对值电路114得到第三软判断比特b3的绝对值S93,和绝对值电路115得到第四软判断比特b4的绝对值S94。电路114输出值S93到减法器116和电路115输出值S94到减法器117。例如,值″√2/21″,输入到减法器116作为第二信号-电平判断阈值S95。减法器116从第三软判断比特b3的绝对值S93中减去第二判断阈值S95,和输出该计算结果作为第五软判断比特b5。另外,第二判断阈值S95输入到减法器117。减法器117从第四软判断比特b4的绝对值S94中减去第二判断阈值S95,和输出该计算结果作为第六软判断比特b6。
因此,解调电路83直接使用分量I和Q的值用作第一和第二软判断比特b1和b2,通过从分量I的绝对值S90中减去第一判断阈值S92得到第三软判断比特b3,通过从分量Q的绝对值S91中减去第一判断阈值S92得到第四软判断比特b4,通过从第三软判断比特b3的绝对值S93中减去第二判断阈值S95得到第五软判断比特b5,通过从第四软判断比特b4的绝对值S94中减去第二判断阈值S95得到第六软判断比特b6。因此,用简单的结构就可能容易地得到第一至第六软判断比特b1-b6。
(1-6)操作和优点
根据上述的结构,接收机42独立地接收由发射机41通过天线44A-44D发射的信号S30,和输入从而得到接收信号S40-S43到接收信号处理部分45。接收信号处理部分45通过对接收的信号S40-S43应用预定的接收处理,从接收的信号S40-S43取出接收符号组S44-S47,和此后取出接收符号组S48-S51,在该组中,通过对接收的符号组S44-S47应用快速富氏变换,符号安排在时基上。
另外,接收信号处理部分45从分别包括信息符号I和引导符号P的接收符号组S48-S51中取出信息符号I,和通过用加法器82把分别仅包括信息符号I的符号组S65-S68相加和合成它们,得到接收的信息符号组S69。于是,该接收信号处理部分45对接收信息符号组S69应用解调处理和解码处理恢复信息比特串S72。因比,接收机42使得避免由于衰减造成的接收功率的减少成为可能,和最好通过把由天线44A-44D接收的信号分量加起来执行通信,和从而执行分集接收。
当通过使用与通信对方的发射信号S30相同的频率信道发射的发射信号S31出现时,天线44A-44D还接收作为干扰波的发射信号S31。该干扰波的干扰波的分量加到信息符号I的信号分量上。通常的接收机由于干扰波分量,不可能顺利地恢复信息比特串。
然而,接收机42获得根据从接收的符号组S48-S51中抽取的引导符号P除去干扰波分量的加权系数S61-S64,用加权系数S61-S64乘以包括信息符号I的符号组S56-S59,从而从信息符号I的符号组S56-S59中除去干扰波分量。因此,即使是干扰波被接收,接收机42也能除去干扰波的干扰波分量,和因此,可以精确地恢复信息比特串S72。
为了计算加权系数S61-S64,从通过天线44A-44D接收的符号组S48-S51抽取引导符号P,和分别仅包括引导符号P的符号组S52-S55输入到加权系数计算部分72。除了接收的引导符号P外,加权系数计算部分72接收如同在发射端插入来自引导符号发生电路73的相同的引导符号P,和计算在每个组合中的这些引导符号P的期望值。也就是,加权系数计算部分72计算接收的引导符号P的期望值e00-e33,和计算接收的引导符号P和实际发射的引导符号P(被接收的理想的引导符号)的期望值d0-d3。另外,加权系数计算部分72通过根据期望值e00-e33和d0-d3解方程(1)所示的联立方程,计算加权系数W0-W3,和输出加权系数W0-W3,作为加权系数S61-S64。
因此,期望值e00-e33和d0-d3是从插入在信息符号I间的引导符号P计算得来的,和根据期望值e00-e33和d0-d3通过计算处理计算出加权系数S61-S64。因此,通过用简单的结构进行例如运算处理那样的简单处理,接收机42能容易计算出加权系数S61-S64。
另外,通过上述所理解的,加权系数计算的理论是确认干扰波分量叠加在具有称之为期望值参数的引导符号P上。因此,在发射的时候,无线通信系统40在信息符号I间插入引导符号,而不是附加引导符号P在信息符号I的标题。因此,在接收端,可以一致地确认在整个时间段上干扰波的影响,和更精确地计算消除干扰波的加权系数S61-S64。
根据上述的结构,发射端发射通过在信息符号I间插入引导符号P得到的发射符号S35。接收端从每个通过天线44A-44D接收的符号S48-S51抽取引导符号P,根据引导符号P计算最小化干扰波分量的加权系数S61-S64,用加权系数S61-S64乘以接收的信息符号S56-S59。从而,即使干扰波被接收到,也可以从接收的信息符号S56-S59中除去干扰波分量,和精确地恢复发射的信息比特串S72。
(2)第二实施例
在上述第一实施例的情况下,只描述了从接收的信息符号组S69恢复编码的比特组S70的结构。在第二实施例的情况下,然而,具有反映在恢复编码的比特组S70的传输线的可靠性的结构的解调电路被叙及。
在图20中,符号120表示作为整个第二实施例的解调部分,除了在上述的第一实施例叙及的解调电路83以外,它新提供了可靠性计算电路121,缓冲器122,和乘法器123。该解调部分120首先输入由加法器82输出的接收的信息符号组S69到解调电路83和可靠性计算电路121。
该解调电路83与第一实施例叙述的电路是一样的,它通过对组S69应用预定的解调处理,从输入接收的信息符号组S69恢复编码的比特组S70,和输出恢复的编码的比特组S70到后级缓冲器122。该缓冲器122包括先入先出缓冲器,它按顺序在它的内部存储区域存储输入的编码比特组S70的软判断比特,按顺序与后面要述及的可靠性计算电路121的信号输出定时同步读取存储的软判断比特,和输出软判断比特到后级的乘法器123。
可靠性计算电路121根据组S69计算输入接收的信息符号组S69的噪声功率,和输出噪声功率的倒数到乘法器123作为表示传输线的可靠性的可靠性系数S100,通过该传输线接收的信息符号组S69被发送。乘法器123用可靠性系数S100按比特乘以从缓冲器122读出的编码的比特组S70的每个软判断比特,和输出该得到的编码比特组S101到后级的时间段联接处理电路31。在这方面,由于可靠性系数S100是噪声功率的倒数,在由可靠性系数S100乘过以后,编码的比特组S101的信号电平变成对应传输线的信号-噪声功率比S/N的电平,通过该传输线接收的信息符号组S69被发送。
因此,解调电路120计算通过它接收的信息符号组S69被发送的传输线的可靠性,和用表示传输线的可靠性的可靠性系数S100乘以每个编码的比特组S70的软判断比特。因此,可以调整编码的比特组S70的每个比特的信号电平到对应传输线的可靠性的电平,和反映在编码的比特组S70上的传输线的可靠性。因此,通过输入编码的比特组S101到后级的维特比解码电路20,在组101中传输线的可靠性反映到信号电平上,和通过执行解码处理,它可以执行包括传输线可靠性的最大相似串估算和更精确地恢复信息比特串S72。
图21示出了可靠性计算电路121的结构。如图21所示,可靠性计算电路121输入由加法器82提供的接收信息符号组S69到减法器125和暂时判断电路124。该暂时判断电路124判断,作为接收信息符号组S69的每个符号输入的信号点位置被定位,和输出表示判断的位置的符号作为判断符号S102。例如,在发射端调制方法使用QPSK调制时,暂时判断电路124判断,接收的符号对应在图7中的信号点位置中的哪个信号点位置,和输出表示判断的位置的符号。另外,当调制方法在发射端使用8PSK,调制,16QAM,或64QAM时,暂时判断电路124判断,接收符号对应图8,9,或10中所示的信号点位置中的哪个信号点位置,和输出表示判断位置的符号。暂时判断电路124输出最接近接收的符号的符号作为判断符号S102。
该减法器125相继地从符号输入减去由暂时判断电路124输出的判断符号S102作为接收的信息符号组S69,和输出减法值S103到平方电路126。在这种情况下,由于判断符号S102是原先接收的符号,从减法电路125输出的减法值S103表示叠加在接收的符号上的噪声分量。
通过相继平方输入的减法值S103,平方电路126计算每个符号的噪声功率,和输出每个符号的噪声功率到累加电路127,作为每个符号的噪声功率S104。累加电路127用一个符号组的符号的号码累加噪声功率5104(累加一个时间段的噪声功率),和输出得到的一个时间段的噪声功率S105到倒数计算电路128。因此,通过用倒数计算电路128计算和输出噪声功率S105的倒数,可靠性计算电路121计算可靠性系数S100。
根据上述的结构,第二实施例的解调部分120从接收信息符号组计算叠加在接收信息符号组S69上的噪声分量的功率S105,和计算噪声功率S105的倒数作为表示通过它发送接收信息符号组S69的传输线的可靠性的系数。另外,解调部分120将表示传输线可靠性的可靠性系数乘以来自接收信息符号组S69的恢复的编码比特组S70每个比特,和从而调整编码的比特组S70的信号电平到对应传输线可靠性的电平。
因此,通过解码编码的比特组S101,它是调整到对应传输线的可靠性的信号电平,通过后级的维特比解码电路20,它可能执行包括传输线的可靠性在内的最大相似串估算,和更精确地恢复信息比特串S72。
根据上述的结构,通过计算来自接收的信息符号组S69的噪声功率,计算了表示传输线的可靠性的可靠性系数S100,和用该可靠性系数S100乘以接收的编码比特组S70。因此,可能调整编码的比特组S70的信号电平到对应传输线可靠性的电平,和因此执行包括传输线可靠性的最大相似串估算。因此,可以更精确地恢复信息比特串S72。
(3)其它实施例
(3-1)对于上述的实施例,一种情形被描述,其中,通过在信息符号I间插入引导符号P产生的发射符号组S35通过反向快速富氏变换电路51和发射电路52发射,和从通过在税收端的接收电路60-63和和快速富氏变换电路64-67得到的接收符号组S48-S51抽取信息符号组S56-S59。然而,本发明不限定于上述的情形。还可以通过对组S35应用差分调制和对在接收端的每个接收符号组S48-S51应用差分调制发射发射符号组S35,和此后从接收的符号组S48-S51抽取信息符号S56-S59。这一点在下面要具体地叙述。
在图22中对应图6中的相同部分的部分用相同的符号表示,符号130表示整个发射机。发射机130输入发射符号组S35,引导符号P被插入到该组S35,差分调制电路131应用差分调制,以发射符号组S35。差分调制电路131首先输入发射符号组S35给乘法器132。延时的符号S109一个符号前通过延时电路133输入到乘法器132。乘法器132通过一个符号前将输入发射符号组S35的符号复数乘以符号S109,对发射符号组S35应用差分调制,和输出因此得到的发射符号组S110到反向快速富氏变换电路51和延时电路133。在这种情况下,由于该符号一个符号前被输入的符号复数乘了,实际的符号叠加在作为发射符号组S110输出的该符号间的差。
因此,发射机130通过对应用差分调制的发射符号组S110应用反向富氏变换产生发射符号组S36,和通过对发射符号组S36应用预定发射处理产生发射信号S30以发射该信号S30。
如图23所示,在其中对应图13中的相同的部分用相同的符号表示,发射机140在快速富氏变换电路64-67的后级有差分解调电路141-144,用差分解调电路141-144对接收的符号组S48-S51应用差分解调,和从因此获得的接收符号组S115-S118抽取引导符号P和信息符号I。
如图24所示,差分解调电路141输入由快速富氏变换电路64提供的接收符号组S48到延时电路145和乘法器146。乘法器146通过在通过延时电路145延时一个符号以前的符号S120的共轭值与输入接收符号组S48的符号间执行复数乘法,对接收的符号组S48的符号应用差分解调,和输出因此得到的接收的符号组S115。在这种情况下,由于输入信号是由一个符号前该符号的共轭值复数乘的,输入符号与一个符号前的该符号间的差得到和作为结果,差分解调处理被执行。在这方面,差分解调电路142-144还有图24所示的差分解调电路141的相同的结构。
因此,接收机140通过对接收的符号组S48-S51用差分解调电路141-144应用差分解调而恢复发射的信息比特串S72,和还对接收的符号组S115-S118应用与第一实施例相同的处理。
因此,通过在发射端对发射符号应用差分调制,和在接收端对接收符号应用差分解调,可以得到相邻符号间的差。因此即使在传输线发生频率选择衰减,也可以通过得到符号间的差,减少由于频率选择衰减产生的接收的起伏。因此,由于在发射端执行差分调制,和在接收端执行差分解调,即使发生频率选择衰减,也可以减少衰减的影响,和精确地恢复信息比特串S72。
(3-2)还有,在上述的实施例的情况下,叙述了一种情况,其中,通过为接收机42提供四个天线44A-44D,执行分集接收。然而,本发明不限制在上述情况。使用至少两个天线就够了。在这方面,由于除去干扰波分量的加权系数根据在用每个天线接收的信号中包括的引导符号计算,随着天线数目的增加,估计到干扰波的分量可以更精确地除去。还有,当应用本发明到蜂窝无线通信系统时,最多使用六个天线就足够了,和估计到使用三到六个天线是有效的和实用的。蜂窝无线通信系统是一种将提供通信服务的区域划分成为需要的单元大小,在每个蜂窝单元中设置用作固定无线站的基站,用作移动无线站的通信终端执行与该终端所在的蜂窝单元中的基站的通信。
(3-3)另外,在上述的实施例中,在所叙的情形中引导符号P以相等的间隔插入在信息符号I之间。然而,本发明不限定于上述的情形。可以以随机的间隔将引导符号P插入在信息符号I之间。短言之,通过适当的分配和将引导符号P插入到信息符号I中间,可以得到与上述相同的优点。
(3-4)另外,在上述的实施例中,在所述的情况中,具有幅度″1″的和在每个通信中相位是随机的引导符号P插入在信息符号I中间。然而,本发明不限定于上述的情形。例如,只要使用仅具有小的传播延时和与其它的通信同步的环境(例如,本发明应用到蜂窝无线通信系统和基站彼此间暂时地同步的环境)插入每个通信彼此垂直的引导符号到预定的插入位置。通过如上述规定引导符号,与在每个通信中随机化引导符号的情形相比,它可以减少引导符号的数目。
(3-5)另外,在上述的实施例中,在上述的情形中使用24个副载波。然而,本发明不限定上述情形。它可以使用任何数目的副载波。
(3-6)另外,在上述实施例的情形中,在所述的情形中,卷积编码电路5用作编码电路,和维特比解码电路20用作解码电路。然而,本发明不限定于上面的情形。它可以使用其它的编码电路,如turbo码,或其它的解码电路。短言之,通过使用在发射端增加串间的距离的编码和在接收端使用根据最大-相似串估算解码编码的比特串的编码/解码方法得到上述的相同的优点。
(3-7)另外,在上述的实施例的情况下,在所述的情况中,使用包括多个副载波的频率信道发射传输符号S35。然而,本发明不限于上述情形。还可以以随机的方式改变用于每个时隙的频率信道,也就是执行所谓的跳频。因此,通过执行跳频,可以减少接收干扰波的概率。因此,更有效地避免干扰波的影响。
(3-8)另外,在上述的实施例的情形下,在所叙的情形中,本发明应用到所谓的在多个副载波上分散叠加被发射的信息和发射该副载波的多载波型无线通信系统。然而,本发明不限定于以上情形。甚至当使用诸如TDMA方法的另一个通信方法时,也可以通过根据上述的接收的引导符号计算最小化干扰波分量和除去干扰波分量的加权系数。
短言之,通过给接收机提供下面的装置,可以得到上述情况相同的优点:通过对由信息比特产生的编码比特应用预定的调制产生信息符号,还通过在接收端在信息符号间插入已知的引导符号产生传输符号,和对该发射符号通过应用预定的发射处理产生接收的传输信号的多个天线;从由天线接收的信号抽取引导符号,根据每个抽取的引导符号计算最小化干扰波分量的加权系数,通过将加权系数乘以从每个接收的信号抽取的信息符号从信息符号中除去干扰波分量,此后通过合成信息符号产生接收的信息符号和通过对接收的信息符号应用预定的解码处理恢复编码的比特的接收信号处理装置;和对由接收-信号处理装置输出的编码比特应用最大-相似串估算恢复信息比特的解码装置。
另外,通过为发射机提供下面的装置的无线通信系统可以得到上述情形的相同优点:通过对信息比特应用编码处理产生编码比特的编码装置;通过对编码的比特应用预定的调制处理,产生信息符号的调制装置;通过在接收端在信息符号间插入已知的引导符号产生发射符号的引导符号加法装置;和通过对发射符号应用预定的发射处理和发射该发射符号的产生发射信号的发射装置;和还有,为接收机提供下面的装置:接收发射信号的多个天线,从由天线接收的每个信号抽取引导符号,根据每个抽取的引导符号计算最小化干扰波分量的加权系数,通过将加权系数乘以由每个接收信号抽取的信息符号,从信息符号中除去干扰波分量,和此后通过合成信息符号产生接收的信息符号,和通过对接收的信息符号应用预定的解调制恢复编码的比特的接收信号处理装置;和通过对编码的比特应用最大-相似串估算恢复该信息比特的解码装置。
另外,从对由信息比特产生的编码比特应用预定的调制处理和因此产生的信息符号,通过在接收端在信息符号间插入已知的引导符号,产生发射符号,发射通过对发射符号应用预定的发射处理产生的发射信号,和在接收端通过多个天线接收发射信号,从每个接收信号抽取引导符号,根据每个抽取的引导符号计算最小化干扰波分量的加权系数,用加权系数乘以从每个接收的信号抽取的信息符号,和从而从信息符号中除去干扰波分量和此后合成信息符号和从而产生接收的信息符号,对接收的信息符号应用预定的解调处理和从而恢复该编码比持,对编码比特应用最大-相似串估算,和从而恢复该信息比特的通信方法可以得到上述情形的相同的优点。
如上所述,根据本发明,在发射端插入的引导符号从每个接收的信号抽取,计算出根据每个抽出的引导符号最小化干扰波分量的加权系数,从每个接收信号抽取的信息符号乘以加权系数,和因此干扰波分量能够容易从信息符号中除去。因此,即使干扰波已被接收,也容易从接收的信号中除去该干扰波分量。因此,通过除去干扰波的影响,能够精确地恢复发射的信息比特。
已经结合本发明的优选实施例进行了描述,任何变化和改进,对于本领域的普通技术人员是显而易见的,这些变化和改进都在本发明的实质和范围内,并为从属的权利要求所覆盖。

Claims (22)

1.一种接收机包括:
用以接收通过在产生发射符号和对所说的发射符号应用预定的处理的信息符号间插入引导符号来产生发射的信号的多个天线;
用每个天线装置从接收的信号抽取引导符号,根据每个抽取的引导符号计算最小化干扰波分量的加权系数,通过将加权系数乘以从每个所说的接收信号抽取的信息符号,以从所说的信息符号除去干扰波分量,此后通过合成所说的信息符号产生接收的信息符号,和通过对所说的接收的信息符号应用预定的解调处理恢复所说的编码比特的接收信号处理装置;和通过对所说的由接收-信号处理装置输出的编码比特应用最大-相似串估算恢复所说的信息比特的解码装置。
2.根据权利要求1的一种接收机,其中
所说的接收信号处理装置根据从每个接收的信号和等于在发射端插入的引导符号的符号抽取的引导符号,计算符号的期望值,和根据所说的期望值计算最小化干扰波分量的加权系数。
3.根据权利要求1的接收机,其中
所说的接收-信号处理装置计算包括在接收的信息符号中的噪声功率,和通过根据噪声功率计算表示传输线的可靠性的可靠性系数,和用所说的可靠性系数乘以所说的编码的比特反映在所说编码比特的信号电平上的传输线的可靠性。
4.根据权利要求1的接收机,其中
当所说的发射的符号是差分-调制时,所说的接收-信号处理装置对从每个接收的信号中取出的接收符号应用差分解调处理,和然后从所说的每个接收符号抽取引导符号和信息符号。
5.一种无线通信系统包括:一种发射机具有;
通过对信息比特应用编码处理产生编码比特的编码装置,
通过对所说的编码的比特应用预定的调制处理,产生信息符号的调制装置,
通过在所说的信息符号间在接收端插入已知的引导符号,产生发射符号的引导符号加法装置,
通过对所说的发射符号应用预定的发射处理,产生和发射信号的发射装置,和一种接收机具有;
分别接收所说的发射信号的多个天线,
从由每个天线装置接收的信号抽取所说的引导符号,根据每个抽取的引导符号计算最小化干扰波分量的加权系数,通过用所说的加权系数乘以从每个接收的信号抽取的信息符号,从所说的信息符号中除去干扰波分量,此后通过合成所说的信息符号产生接收的信息符号,和通过对所说的接收的信息符号应用预定的解调处理恢复所说的编码比特的接收-信号处理装置,和
通过对从所说的接收-信号处理装置输出的编码比特应用最大-相似串估算恢复信息比特的解调装置。
6.根据权利要求5的无线通信系统,其中
所说的接收-信号处理装置根据从每个接收的信号和等于在发射端插入的引导符号的符号抽出的引导符号计算符号的期望值,和根据所说的期望值计算最小化干扰波分量的加权系数。
7.根据权利要求5的无线通信系统,其中
所说的接收-信号处理装置计算包括在接收的信息符号中的噪声功率,和通过根据噪声功率计算表示传输线的可靠性的可靠性系数和用所说的可靠性系数乘以所说的编码的比特,反映在所说编码比特的信号电平上的传输线的可靠性。
8.根据权利要求5的无线通信系统,其中
所说的发射机包括差分调制装置和发射由差分调制装置差分调制处理过的发射符号,和所说的接收机的接收-信号处理装置对从每个接收的信号取出的接收符号应用差分解调处理,和然后从每个接收的符号中抽取所说的引导符号和信息符号。
9.根据权利要求5的无线通信系统,其中
所说的引导符号是在每个通信中变化的符号。
10.根据权利要求5的无线通信系统,其中
所说的引导符号是在每一个通信中彼此垂直的一个符号,和它被插入到预定的插入位置。
11.一种通信方法包括如下的步骤:
对由信息比特产生的编码比特应用预定的调制处理,以产生信息符号,通过在信息符号间插入在接收端已知的引导符号产生发射符号,和发射对发射的符号应用预定的发射处理产生的发射信号;
和在接收端,用每个天线接收发射信号,从每个接收的信号抽取所说的引导符号,根据每个抽取的引导符号计算最小化干扰波分量的加权系数,通过用加权系数乘以从每个接收的信号中抽取的信息符号以从信息符号除去干扰波分量,此后通过合成所说的信息符号产生接收的信息符号,通过对所说的接收的信息符号应用预定的解调处理恢复所说的编码比特,和通过对所说的编码比特应用最大-相似串估算恢复所说的信息比特。
12.根据权利要求11的一种通信方法,其中
根据由每个接收的信号和等于在发射端插入的引导符号的符号抽取的引导符号计算符号的期望值,和根据所说的期望值计算最小化干扰波分量的加权系数。
13.根据权利要求11的一种通信方法,其中
包括在所说的接收信息符号中的噪声功率被计算,通过根据所说的噪声功率计算表示传输线可靠性的可靠系数,和用所说的可靠性系数乘以所说的编码的比特,传输线的可靠性被反映在所说的编码比特的信号电平上。
14.根据权利要求11的一种通信方法,其中
在发射端,通过对符号应用差分调制处理,所说的发射符号被发射,
在接收端,对从每个所说的接收信号取出的接收符号应用差分解调处理,和于是所说的引导符号和信息符号从每个所说的接收符号中抽取。
15.根据权利要求11的一种通信方法,其中
所说的引导符号是在每个通信中变化的符号。
16.根据权利要求11的一种通信方法,其中
所说的引导符号是在每一个通信中彼此垂直的一个符号,并被插入到预定的插入位置。
17.一种接收方法包括如下步骤:
用每个天线装置接收发射信号,其中发射信号是通过对由信息比特产生的编码比特应用预定的调制处理产生信息符号,在信息符号间插入在接收端已知的引导符号产生发射符号,和对所说的发射应用预定的发射处理而产生的;
从每个接收的信号抽取所说的引导符号;
根据每个抽取的引导符号计算最小化干扰波分量的加权系数;
通过用加权系数乘以从每个接收的信号抽取的信息符号,从所说的信息符号中除去干扰波分量;
此后通过合成所说的信息符号产生接收的信息符号;
通过对接收的信息符号应用预定的解调处理恢复所说的编码的比特;和
通过对所说的编码比特应用最大-相似串估算恢复所说的信息比特。
18.根据权利要求17的接收方法,其中
根据由每个接收的信号和等于在发射端插入的引导符号的符号抽取的引导符号计算符号的期望值,和根据所说的期望值计算最小化干扰波分量的加权系数。
19.根据权利要求17的接收方法,其中
包括在所说的接收信息符号中的噪声功率被计算,通过根据所说的噪声功率计算表示传输线可靠性的可靠性系数,和用所说的可靠性系数乘以所说的编码的比特,传输线的可靠性被反映在所说的编码比特的信号电平上。
20.根据权利要求17的接收方法,其中
对所说的发射符号应用差分调制处理而发射的信号被接收,
差分解调处理应用到从每个接收的信号取出的接收符号,和然后所说的引导符号和信息符号从每个所说的接收符号中抽取。
21.根据权利要求17的接收方法,其中
所说的引导符号是在每个通信中变化的符号。
22.根据权利要求17的接收方法,其中
所说的引导符号是在每一个通信中彼此垂直的一个符号,并被插入到预定的插入位置。
CN98119903A 1997-08-05 1998-08-05 一种接收机,无线通信系统、通信方法和接收方法 Expired - Fee Related CN1118948C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP211068/97 1997-08-05
JP21106897A JP3862111B2 (ja) 1997-08-05 1997-08-05 受信装置及び無線通信システム並びに通信方法
JP211068/1997 1997-08-05

Publications (2)

Publication Number Publication Date
CN1218337A CN1218337A (zh) 1999-06-02
CN1118948C true CN1118948C (zh) 2003-08-20

Family

ID=16599882

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98119903A Expired - Fee Related CN1118948C (zh) 1997-08-05 1998-08-05 一种接收机,无线通信系统、通信方法和接收方法

Country Status (6)

Country Link
EP (1) EP0896440A3 (zh)
JP (1) JP3862111B2 (zh)
KR (1) KR19990023276A (zh)
CN (1) CN1118948C (zh)
AU (1) AU739650B2 (zh)
ID (1) ID20669A (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9908675D0 (en) * 1999-04-15 1999-06-09 British Broadcasting Corp Diversity reception method and diversity receivers
JP4284773B2 (ja) * 1999-09-07 2009-06-24 ソニー株式会社 送信装置、受信装置、通信システム、送信方法及び通信方法
EP1484845B1 (en) 1999-09-14 2010-12-08 Fujitsu Limited CDMA receiver
WO2001022756A1 (fr) 1999-09-22 2001-03-29 Fujitsu Limited Regulateur de puissance d'emission
US6385435B1 (en) * 2000-04-20 2002-05-07 Jhong Sam Lee Coupled interference concellation system for wideband repeaters in a cellular system
JP3735015B2 (ja) * 2000-07-26 2006-01-11 松下電器産業株式会社 回線推定装置および回線推定方法
JP2002185430A (ja) * 2000-12-13 2002-06-28 Sony Corp 受信装置及び方法
KR100510434B1 (ko) * 2001-04-09 2005-08-26 니폰덴신뎅와 가부시키가이샤 Ofdm신호전달 시스템, ofdm신호 송신장치 및ofdm신호 수신장치
JP4496673B2 (ja) * 2001-06-07 2010-07-07 株式会社デンソー Ofdm方式の送受信機
US7170926B2 (en) * 2001-11-29 2007-01-30 Interdigital Technology Corporation Efficient multiple input multiple output system for multi-path fading channels
JP3759448B2 (ja) * 2001-12-06 2006-03-22 日本放送協会 Ofdm信号合成用受信装置
FI20012581A0 (fi) 2001-12-27 2001-12-27 Nokia Corp Häiriönpoistomenetelmä kommunikaatiojärjestelmässä
JP2005057497A (ja) * 2003-08-04 2005-03-03 Science Univ Of Tokyo 無線伝送制御方法並びに無線受信装置及び無線送信装置
JP4637502B2 (ja) 2004-04-30 2011-02-23 京セラ株式会社 無線通信端末およびアンテナ切替制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140615A (en) * 1990-06-12 1992-08-18 Motorola, Inc. Maximal ratio diversity combining technique
US5446763A (en) * 1991-07-02 1995-08-29 Motorola, Inc. Apparatus and method for converting soft symbols into soft bits
US5481570A (en) * 1993-10-20 1996-01-02 At&T Corp. Block radio and adaptive arrays for wireless systems
CA2174343C (en) * 1993-11-01 2003-10-14 Ephraim Zehavi Method and apparatus for the transmission of variable rate digital data
JPH07183821A (ja) * 1993-12-22 1995-07-21 Hitachi Denshi Ltd 復調器
DE69534987T2 (de) * 1994-06-23 2006-09-21 Ntt Docomo Inc. CDMA Demodulationsschaltung und Demodulationsverfahren
JP2590441B2 (ja) * 1994-08-16 1997-03-12 郵政省通信総合研究所長 干渉波検出方法
DE4431237A1 (de) * 1994-09-02 1996-03-07 Bosch Gmbh Robert Verfahren zur Gewinnung von bitspezifischen Zuverlässigkeitsinformationen
US6137840A (en) * 1995-03-31 2000-10-24 Qualcomm Incorporated Method and apparatus for performing fast power control in a mobile communication system
KR0162978B1 (ko) * 1996-02-06 1998-12-01 서정욱 코드 분할 다중 접속 시스템에서 수신 신호에 대한 신호 대 간섭비 측정 장치 및 그 방법
JP3681230B2 (ja) * 1996-07-30 2005-08-10 松下電器産業株式会社 スペクトル拡散通信装置

Also Published As

Publication number Publication date
EP0896440A3 (en) 2001-09-12
CN1218337A (zh) 1999-06-02
JP3862111B2 (ja) 2006-12-27
JPH1155166A (ja) 1999-02-26
EP0896440A2 (en) 1999-02-10
KR19990023276A (ko) 1999-03-25
ID20669A (id) 1999-02-11
AU739650B2 (en) 2001-10-18
AU7861498A (en) 1999-02-18

Similar Documents

Publication Publication Date Title
CN1118948C (zh) 一种接收机,无线通信系统、通信方法和接收方法
CN1252938C (zh) 接收机、发射机-接收机和通信方法
CN1078410C (zh) 用于多径时间离散信号的分集接收机
CN100499417C (zh) Ofdm传输系统中的接收装置
JP4405994B2 (ja) 広帯域無線通信システムにおける高速フィードバック情報の検波のための装置及び方法
CN1196275C (zh) 迭代地改善信道估计的方法和设备
CN1251461C (zh) 通过导频辅助相干解调的turbo编码信号解调系统及方法
CN1113482C (zh) 利用分集信号矩阵处理降低码元间干扰的方法和设备
CN1153420C (zh) 数字调制无线电信号的同时解调及译码
US6333953B1 (en) System and methods for selecting an appropriate detection technique in a radiocommunication system
CN1148922C (zh) 信道均衡器的优化
CN1136747C (zh) 通信方法、发送和接收装置及蜂窝无线电通信系统
CN1146141C (zh) 无线电通信中减少干扰的接收机和方法
CN1222130C (zh) Ofdm通信装置及检波方法
CN1084089C (zh) 通信系统中改进的信道估算方法
CN1144405C (zh) Cdma接收设备,cdma收发设备及cdma接收方法
CN1093847A (zh) 利用引示符号补偿多路干扰
CN1874332A (zh) 发送设备和发送方法
KR100878448B1 (ko) 광대역 무선 통신시스템에서 반송파대 간섭 및 잡음비를추정하기 위한 장치 및 방법
CN1579077A (zh) Mimo系统中的信道追踪和信号检测
EP2454836A2 (en) Interferer region identification using image processing
CN1128923A (zh) 包括有载波恢复电路的接收机的数字传输系统
JP2010523062A (ja) 改善された周波数オフセット推定機
CN114268352B (zh) 一种nr上行控制信道格式1的检测方法
US6246366B1 (en) Direction determination in cellular mobile communications network

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee