CN1250951C - 具有长期稳定性的高灵敏度压力传感器 - Google Patents

具有长期稳定性的高灵敏度压力传感器 Download PDF

Info

Publication number
CN1250951C
CN1250951C CNB028106539A CN02810653A CN1250951C CN 1250951 C CN1250951 C CN 1250951C CN B028106539 A CNB028106539 A CN B028106539A CN 02810653 A CN02810653 A CN 02810653A CN 1250951 C CN1250951 C CN 1250951C
Authority
CN
China
Prior art keywords
diaphragm
electrode
capacitor
pressure transducer
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028106539A
Other languages
English (en)
Other versions
CN1511252A (zh
Inventor
Y·戈克费尔德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panametrics LLC
Original Assignee
Panametrics LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panametrics LLC filed Critical Panametrics LLC
Publication of CN1511252A publication Critical patent/CN1511252A/zh
Application granted granted Critical
Publication of CN1250951C publication Critical patent/CN1250951C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/02Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
    • G01L13/025Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements using diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/02Arrangements for preventing, or for compensating for, effects of inclination or acceleration of the measuring device; Zero-setting means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
    • G01L9/125Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor with temperature compensating means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

具有长期稳定性的高灵敏度压力传感器,包括带有第一和第二室的机架,分隔第一和第二室的膜片(20),位于第一室(16)内并和该膜片隔开从而与之形成第一电容器的第一电极,和位于第二室(18)内并和该膜片隔开从而与之形成第二电容器的第二电极。

Description

具有长期稳定性的高灵敏度压力传感器
技术领域
本发明涉及在各种仪器领域中以及在光声和磁声分析仪系统中应用的具有长期稳定性和高灵敏度的压力传感器,各种仪器领域包括气体分析和Luft型红外线气体分析仪。
该申请要求保护于2001年5月25日提出的美国临时申请系列号60/293,581,名为“仪器压力传感器”的优先权。
背景技术
长期稳定并高灵敏度地测量低级别的气体压力的任务在各种仪器领域中,特别是那些涉及气体分析的仪器中是非常重要的。多种分类的仪器取决于在气体样本中引起小的压力变化,而该变化又是通过将气体暴露在受控的激励或环境下,如受光,磁场或电场激励的影响而产生的。例如,Luft型红外线分析仪以及光声和磁声分析仪依靠于在例如几分之一赫兹到几千赫兹的频率下、具有低压变化可低至约10-6Pa(帕斯卡)的探测阈值的差压测量。能够探测如此小的压力变化的压力传感器在这种环境下极其有用。一般而言,需要长期(几个月到几年)在达到几十摄氏度的温度范围内,在正负1%的精度下进行动态压力测量。在一些情况下,还需要抗化学品。
作为例子,顺磁性氧气传感器是一个具体应用。在一个单元内的气体样本受到随时间变化的磁场作用,该磁场对气体中存在的顺磁性成分(如氧气)起作用以产生可由压力传感器探测的压力变化。该随时间变化的磁场产生从几分之一赫兹到10kHz范围内的压力变化。由压力传感器输出的信号幅度提供了样本中氧气浓度的测量,该测量具有大约10±ppm氧气灵敏度所需的优于10-5Pa的典型压力灵敏度。可是传统的压力传感器设计不适于探测如此低幅度的压力变化。
用于测量接近真空应用上的压力的一个公共设计包含一个典型由塑料制成的振动膜,在显著张力作用下附在一个环上,形成密封的差压传感器装置。可是,该振动膜的张力由于受化学品(蒸气),机架(housing)中的热应力,老化效应和其它的漂移源的影响而变化,所有这些都对该振动膜在压力下的位移产生很大的影响。该振动膜需要有相对较大的张力来合理地弥补这些影响,这限制了灵敏度。当将要测量低至10-6Pa的压力变化时,这一点尤其正确。另外,在现有技术设计中,该传感器输出中的间接变化需要经常重新校准,或者需要在精细的温度控制下工作,还需要信号补偿或其它纠正。
发明内容
因此,本发明的一个目的在于提供一种差压传感器,该传感器有足够的灵敏度,可用于测量仪器,如灵敏气体分析仪等等。
本发明的另一个目的在于提供这样一种具有长期稳定性的高灵敏度压力传感器。
本发明的另一个目的在于提供一种精确的差压传感器,该传感器在高达几千赫兹的频率下具有高级别的共态抑制。
本发明的另一个目的在于提供一种压力传感器,该传感器可用来测量低级别的气体压力,因此在ppm范围内的顺磁性氧气传感器和其它设备中很有用。
本发明的另一个目的在于提供这样一种压力传感器,该传感器对温度变化或者腐蚀性的化学蒸气和溶剂,碳氢化合物等等不敏感。
本发明的另一个目的在于提供这样一种压力传感器,该传感器不需要经常重新校准。
本发明的另一个目的在于提供这样一种压力传感器,该传感器自动补偿由于缓慢作用引起的变化,如由温度梯度引起的尺寸或其它(如张力)变化。
通过包含一个补偿电路,使用一个机架和结合一个对称设计,可以实现一种更加精确、稳定和更高灵敏度的压力传感器,该补偿电路用来对该传感器的固体(如金属)膜片施加电场,因此产生一个作用力来补偿由于长期或缓慢作用而产生的变化,如尺寸或张力变化;该机架具有与该固体材料膜片的热膨胀系数相同或相似的热膨胀系数;该对称设计使得该膜片的位移和电压线性相关。本发明正是从该实现得来的。
本发明的特征是一种具有长期稳定性的高灵敏度压力传感器,该传感器包括具有第一室和第二室的外壳,分隔第一室和第二室的膜片,位于第一室内并与该膜片的一面隔开从而与之形成第一电容器的第一电极,和位于第二室内并与该膜片的相对面隔开从而与之形成第二电容器的第二电极。测量电路连接第一和第二电容器,通过检测第一和第二电容器之间的电容差来测量膜片位移,而补偿电路通过降低第一电极和该膜片之间的电压差并同时增加第二电极和该膜片之间的电压差或者反之亦然,对该膜片施加一个电场作为补偿作用力来提供长期稳定性。
典型地,该膜片用金属制造,并且在两室之间不存在差压的情况下该金属膜片不受显著张力的作用。在优选实施例中,该膜片上的张力小于0.36N/m。在优选实施例中,因为该膜片的弯曲力引起的膜片位移和压力之比是Ybend,而因为张力引起的膜片位移和压力之比是Ytens,Ybend<<Ytens。优选地,该机架由具有与该膜片材料的热膨胀系数相同或基本相同的热膨胀系数的材料制成,例如,该机架由钛制成,该膜片也由钛制成。
在一个例子中,该机架包括第一和第二基板,每个基板有一个内室,该膜片置于该两个基板之间以分隔其中的内室,该两个基板在压力下保证在一起,然后释放该基板以轻微拉紧该膜片,以便防止负张力。该第一电极可连在附在第一基板上并位于其内室上方的第一支架上,第二电极则连在附在第二基板上并位于其内室上方的第二支架上。还包括在第一支架和第一基板之间的绝缘体及在第二支架和第二基板之间的绝缘体。在一个典型实施例中,第一密封圈置于第一电极周围,将该第一电极相对该第一基板内室密封,第二密封圈置于第二电极周围,将该第二电极相对第二基板内室密封。该第一基板可包括与其中内室相通的管道,第二基板则也包括与其中内室相通的管道。
在该优选实施例中,该膜片的厚度为5-15微米,第一室的体积与第二室的体积相同或基本相同,第一电极和该膜片之间的间隔与第二电极和该膜片之间的间隔相同或基本相同。该间隔可以在10到30微米之间。还有,第一电极典型地具有基本上平坦的面向该膜片的表面,第二电极也具有基本上平坦的面向该膜片的表面。
在该优选实施例中,补偿电路包括连接到第一和第二电极的分压器,和连接到该分压器中点的用于监控该中点电压的放大器。还有,该测量电路包括连接到第一和第二电极的并反馈到补偿电路的桥电路。该桥电路可以包括高频电压源,即变压器的次级线圈,该变压器的初级线圈连接到高频电压发生器。该补偿电路可进一步包括连接在放大器和测量电路之间的锁定放大器,该锁定放大器包括连接到高频电压源的相移器和连接到该放大器的相位检测器。在一个例子中,在相位检测器和放大器之间放置一个低通滤波器。
根据本发明的一个示范性的具有长期稳定性的高灵敏度压力传感器特征在于:机架,该机架包括第一室和第二室,分隔第一室和第二室的金属膜片,在两室之间不存在差压的情况下该金属膜片不受显著张力的作用,位于第一室内并与该金属膜片的一面隔开从而与之形成第一电容器的第一电极,和位于第二室内并与该膜的相对面隔开从而与之形成第二电容器的第二电极,通过检测第一和第二电容器之间的电容差来测量膜片位移的测量电路,和包括一个分压器的补偿电路,该分压器连接到第一和第二电极并且有一个中点,当不平衡时,该中点向该膜片的一面施加比另一面更强的静电场。
根据本发明,包括第一和第二电容器以及这两个电容器共同膜片的差压传感器的控制电路,其包括测量电路和补偿电路,该测量电路连接第一和第二电容器,通过检测第一和第二电容器之间的电容差来测量膜片位移,该补偿电路对该膜片施加一个静电场,通过降低第一电极和该膜片之间的电压差并同时增加第二电极和该膜片之间的电压差或者反之亦然,从而产生补偿作用力来提供长期稳定性。
根据本发明,制造和使用具有长期稳定性的高灵敏度压力传感器的方法特征在于形成一个机架以包括第一室和第二室,放置分隔第一室和第二室的膜片,在第一室内放置与该膜片的一面隔开从而与之形成第一电容器的第一电极,在第二室内放置与该膜片的相对面隔开从而与之形成第二电容器的第二电极,将高频测量电路和第一和第二电容器连接,通过检测第一和第二电容器之间的电容差来动态测量膜片位移,并向该膜片施加静电场,产生补偿作用力以降低第一电极和该膜片之间的电压差并同时增加第二电极和该膜片之间的电压差,或者反之亦然,以便提供长期稳定性。
根据本发明,操作高灵敏度的压力传感器以具有长期稳定性的方法包括通过检测第一和第二电容器之间的电容差来测量膜片位移,和通过降低第一电极和该膜片之间的电压差并同时增加第二电极和该膜片之间的电压差或者反之亦然,对该膜片施加一个电场作为补偿作用力。
附图说明
从以下对优选实施例和附图的描述中,本领域的技术人员可以了解本发明的其它目的、特征和优点,其中:
图1是示出和该主题发明的压力传感器有关的主要机械部件的示意性的横截面图;
图2是图1中示出的压力传感器的顶视图;
图3是示出和该主题发明的压力传感器有关的测量电路和补偿电路的优选实施例的示意性电路图;
图4是表示图3中示出的桥电路的等效电路的电路图;
图5-7是说明在膜片相对于它的电容器形成电极的不同位置处,图4的桥电路中的电压之间的最佳相位关系的向量图;和
图8是示出和顺磁性气体探测器有关的主要部件的方框图,该顺磁性气体探测器结合了该主题发明的压力传感器。
具体实施方式
除了以下公开的优选实施例或多个实施例外,本发明还能用于其它实施例并以各种方式实行或执行。因此应当了解,本发明的应用不限于在以下描述或附图中阐明的详细结构和部件布置。
本发明的图1-2的压力传感器10优选包括一个有两个基板12和14的机架,这两个基板定义了体积相同的第一室16和第二室18。膜片20分隔并横跨室16和18,并且在基板12和14之间被夹紧。第一电极22位于第一室16中,与膜片20的一面很近地隔开从而与之形成第一电容器。第二电极24位于第二室18中,与膜片20的相对面很近地隔开从而与之形成第二电容器。
优选地,膜片20由厚度在5-15微米之间的金属如钛,不锈钢或硅或陶瓷材料制成,并且不在显著张力作用下。因此膜片20上的张力典型地小于0.36N/m。膜片20的厚度被选择为使得因为该膜片的弯曲力引起的膜片位移和压力之比是Ybend,而因为张力引起的膜片位移和压力之比是Ytens。优选地,Ybend远小于Ytens。在本发明中,膜片20的最佳化基于以下公式,其中因为弯曲力引起平均膜片位移和压力P之比是:
Ybend=0.056*P*(R4/E*h3),                            (1)
因为张力T引起平均膜片位移和压力之比是:
Ytens=0.125*P*(R2/T),                                (2)
因为温度系数失配,张力和温度(t-t0)的关系是:
T=T0+α*(t-t0)*E*h,                                  (3)
根据膜片位移的灵敏度和压力之比是:
Y/P=[(Ybend*Ytens)/(Ybend+Ytens)]*(1/P)            (4)
R是横跨两室16和18的膜片20的半径,E是杨氏模数,h是膜片20的厚度,t是当前温度,t0是基准温度,在该基准温度下张力T等于T0(基准张力),α是膜片20和基板12和14的材料的温度系数差(即失配)。典型地,R的值可从1/16英寸到1/2英寸。
为了提高位移对压力的灵敏度和减少温度误差,Ytens应该最大化,这意味着在整个工作温度范围内,例如在正负30℃之间,将膜片的张力T减到最小。张力T不应变成负的(意味着压力),导致膜片“间歇振荡”。当Ybend温度系数是每摄氏度百分比的一个非常小的分数时,Ytens温度系数可以大许多,高达几个百分比每度。例如,R=4mm,h=6μm,E=1011Pa(假定是钛材料),α大约是10-7每℃或更小(所有部分由99.9%的纯钛制成),(t-t0)最大=±30℃,在t=t0时最佳预拉伸张力是0.18N/m。在1Pa时相应的Ytens(最小)是11μ,这超过Ybend=0.66μ/Pa大约17倍。因此,在该例中满足了条件Ybend<<Ytens
膜片20最初固定在基板12和14之间,并轻微地预拉伸以防由于温度系数失配引起“间歇振荡”,即当该压力传感器机架的尺寸随温度变化时,防止膜片在拉伸和受压状态之间转换。应避免过度拉伸,因为过度拉伸将导致灵敏度的丧失,并显著增加上述的温度误差。Ytens比Ybend更依赖于温度。原因在于张力优选为正的,但是尽可能小。实际上,期望的膜片拉伸程度通常小到0.2N/m,可以通过在该压力传感器的装配过程中压紧基板12和14同时保持该膜片的松弛来得到。在基板12和14的侧面的典型1cm2的面积上,所需的压力仅大约3N。在基板12和14边缘中心向内施加压力,同时膜片20松弛地驻留于两个基板之间的热平衡中。然后,拧紧基板螺丝30,使得膜片20在基板12和14之间处于不受压的状态,解除压力。通过展开基板12和14,基板12和14的反弹精确拉伸膜片20。
如上所述,为减少热失配引起的误差,基板12和14的材料具有和膜片20的材料的热膨胀系数相同或基本相同的热膨胀系数。在一个例子中,图1中的压力传感器10的金属元件部分由99.9%纯钛制成。在另外的例子中,使用了钛合金。如图所示,第一支架32附在基板12上,位于基板12的内室上方,第二支架34附在基板14上,位于基板14的内室上方。第一电极22通过固定器40连接到第一支架32上,第二电极24通过固定器42连接到第二支架34上。如图所示,典型地在支架32和基板12之间有电绝缘体42,在支架34和基板14之间有电绝缘体44。密封圈48置于电极22周围,将它相对于基板12的内室密封,类似的密封圈50将第二电极24相对于基板14的内室密封。基板12可包括与其内室16连接的管道60,基板14也包括与其内室18连接的管道62。在优选的对称设计中,第一电极22和膜片20之间的间隔与第二电极24和膜片20之间的间隔相同或基本相同。在一个例子中,该间隔在10-30微米之间。优选地,两个电极都有基本上平坦的面向该膜片的表面。
这样,振动膜20的相对的两面就经由通道60和62受到需要检测的压力的影响。振动膜20将机架分成两个子室16和18,这两个子室通过通道60和62分别和未调整的和压力已调整的气体环境相通,因此形成了差压传感器。可是,如上所述,金属膜片20除了形成张力膜片之外,基本上不受力。因为本发明的压力传感器的部件都由基本相同的材料制成,因此其热系数是相同的,当温度变化时膜片20上的张力不改变。对膜片20的小级别的预张力不足以给位移施加张力的恢复力或者显著抗力。同时,该预张力超出了任何期望的热张力变化的幅度,因此膜片20不会在温度变化时转变状态或间歇振荡。两个基板12和14都有中心孔,膜片20紧紧地固定在基板12和14之间,悬挂在两个基板中空口上。
电容电极22和24典型地安装在支架32和34上,橡皮垫圈48和50由空气作用密封第一和第二室16和18。使用电介质隔离物42和44以及电介质螺丝30将支架32和34安装在基板12和14上,由此使电极22和24与膜片20电绝缘,并和膜片20一起形成两个电容器。在基板12和14中形成通道或凹槽60和62,该凹槽60和62的一端分别和室16和18相通。通道60和62允许对膜片20施加由气动的(有差别的)气体压力。例如,该通道60和62可以是V型的,并且被放置成易于用作传感器入口。通道60和62的另一端可延伸到各自的(如带刺的)配件或用于直接安装在支管上。
在优选实施例中,基板12和14以及电极22和24被放置成在膜片20的两面提供相同的几何体积,这些的体积以及气体通道60和62的气流阻力使得该压力传感器不易受来回变化的压力变化(共模噪声)的影响。为了使该压力传感器防漏,基板12和14之间的边缘可以在装配后进行激光焊接,或者可选地,使用橡皮垫圈,将它放在外围槽中(未示出)。
如以下进一步讨论的,电极22和24离振动膜片20很近,以便提供静电场感应力和提供容性检测功能。为了这个目的,该膜片到电极的间隔优选精确定义并很好地对准。作为例子,10-30微米的间隔是合适的。精确的对准是这样获得的:将主结构的每个基板12或14和相应的电极结构22,24进行严格装配,然后将基板/电极组件的端面抛光成共同平板。然后将两个基板与膜片装配在一起,在每个基板和膜片之间放置另一个10-30微米的孔径的导电垫片或垫圈,用来限定每个基板和膜片20之间的间隔和膜片电极的间隙。
图3描述了和本发明的压力传感器相连使用的一个优选电路。该电路完成两个主要任务。该电路的一部分,即补偿电路,用于补偿例如由于“老化”或温度变化引起的不需要的低频膜片位移(零漂移)。相同电路也可补偿施加在膜片20上的任何较高频率的差动力,例如测量的差动气压或由于振动引起的惯性力。在本发明中,该补偿电路被配置成向该膜片施加一个电场作为补偿作用力,以降低电极22和膜片20之间的电压差并提高电极24和膜片20之间的电压差,或者反之亦然。这样,图1的膜片20的位置受静电作用力控制,该静电作用力是由近距离放置在膜片20相对两面上的电极22和24产生的,这样在电极22和24上加上一个电势,该电势将膜片20移到电平零位,使用低通滤波的反馈信号可以补偿由于缓慢作用引起的变化,如尺寸或张力变化。通过使用带通反馈,图3的电路也可产生直接代表检测到的压力的控制信号。
通过向膜片20施加电场“张力”作为补偿作用力,可以取得补偿。可以安全地施加大约高达2×106V/m的电场而不会打火花或电击穿,用该电场可取得的最终张力可以高达30帕斯卡。对于0.66μm/Pa的平均位移灵敏度,膜片20和电容电极22及24之间的平均距离大约为30μm的量级上,电容量变化的动态储备足够大以补偿温度变化和特别是所有其它不平衡源。
这样,可以检测到将要被测量的动态压力,该动态压力具有从几分之一赫兹到10kHz的频率范围,同时可以补偿长期漂移。通过所示的反馈电路或等效电路集中图表的平均位置,以便提供长期稳定性。通过以下描述的测量电路来测量由于动态微压力引起的膜片位移。
被测电容量的变化(和声压成比例)可以大约只是本身电容量的~10-8。测量如此小的变化的两个方法是抵消“基座(pedestal)”,通常通过使用桥电路或者低/高频滤波器。在本主题发明设计中,使用桥电路,在无线电频率工作,如120kHz。该方法希望首先克服“热”噪声极限,该“热”噪声极限和频率的平方成反比(在基于滤波器的设计中,该频率仅仅是被测的声频,如10Hz)。
每个频率(“低”或“高”)应该参考被测的声音信号频率(通常在取决于应用的固定频率)。1Hz到10kHz是适合的。桥电路上被称为载体(“无线电”)频率可以是从10kHz到10MHz的任意频率,但是通常比被测的压力信号的(固定)频率高出至少10倍。
高频桥电路使用一些非传统的东西,即也称为低频桥电路补偿。在一个大的动态范围内,信号压力可以变得比实际可以取得的最大补偿压力更大。相反,在低端压力,桥电路尽可能保持平衡。主要的不平衡源是温度变化,特别是温度梯度。温度引起的桥电路的飘移相对很小,能够用反馈压力来处理。温度引起的飘移的特征频率是很小的几分之一赫兹,即远远小于被测的声频范围内的最小频率。对于低通滤波器的合适的低截止频率,只有很低的频率(“热”)示平衡将要被补偿。在补偿作用力不足以完全补偿不平衡的情况下,仍然利用不平衡桥电路测量压力。
如上所述,该补偿作用力和电压成比例,而不是电压的平方。第二,DC电压被施加到分压器上,但不是膜片上。理想地,该电压尽可能高,但不超过在该膜片和电极之间能够发生电击穿时的值(如在空气中每微米大约3伏,2V/μ是安全的)。该膜片上的补偿电压的频率可以从DC到反馈装置的截止频率(在理论上可以是任何频率,尽管补偿远远高于声音信号的固定频率(第一选项),或者高于几分之一赫兹(第二选项)是不合理的)。
图3中所示的由膜片20和电极22及24形成的电容器和微调电容器90,92并联,但是微调电容器90,92是可选择的。补偿电路如下操作。将一个来自电压源(未示出)的DC电压施加到分压器96上,该分压器包括每一个阻值都可以为100kΩ的电阻器100,102,104和106。连接放大器110,使得在112所示的其输出监视分压器96的中点114的电势。当点114保持零电势(对地)时,相等的电压(因此静电场强度基本相等)就被施加在膜片20的两面。由于该电场,相对的“张力”作用实际上相互抵消,施加到膜片20上的净作用力几乎为零。可以看出,由放大器110施加的在点114处的对零的电压偏差ΔU将导致施加到膜片20上的净作用力不为零。根据描述的布局,该作用力的方向和幅度将取决于电压ΔU的符号和幅度。因此,根据本发明,膜片位移和电压线性相关。
图3电路的另一部分是测量电路,该测量电路连接由电极22和24和膜片20形成的电容器。该测量电路的工作是实际测量由于动态压力差引起的膜片20相对于电极22和24的动态位移。如图所示,由膜片20和电极22及24形成的电容器连接到桥电路120,该桥电路包括可选择的微调电容器92和90,微调电阻器126和128,和隔直流电容器122和124(例如,可以是约20pF电容器)和高频变压器140的线圈130和132,其中该微调电容器92和90特别适于具有较低的压力灵敏度的较厚的膜片。电容器122和124和电阻器126和128(大约1MΩ)一起被主要用于“低”和“高”频电压分离。桥电路120的输出信号在150点和152点之间测量。因为实际的原因,把膜片20和基板12和14按如图中152点那样接地是很方便但不是必要的。前置放大器170放大来自桥电路120的正常的小信号。图3中示出的其它部件包括高频电压发生器172(频率f1=120kHz,5伏),带有移相器器178和相位检测器180的120kHz锁定放大器174,和具有如下所述的截止频率f2的低通滤波器176。
图4表示了桥电路120的等效电路。图4中,C1,C2分别是膜片20和电极22及24中的每一个之间的电容器;C0是膜片位于电极22和24之间的中点的电容器C1和C2的值;ΔC是由于膜片位移引起的对C0的偏差。
图5-7示出了在膜片20相对于电极22和24的不同位置处,表示图4的桥电路中电压之间最佳关系的向量图。假如电阻不相等,点a和b之间的电压向量不为零,如图5所示。向量X表示相位检测器180的一个输出。
通过调整图3的移相器178,在保持向量(ab)的长度接近最小的同时,将来自桥电路的放大的输出向量(ab)设置成与图5的向量X垂直。因为放大器的输出电压被用作负反馈信号,那么该反馈将自动保持点B,至少为平均位置,这样向量(ab)将保持与图5的向量X垂直。图3中的线圈130和132和微调电容器192和190的设置相等,那么当膜片20基本上位于电极22和24之间的中点位置时,该桥电路将平衡。
在实践中,假如电阻远小于:
1/(2π*f1*C0)                                (5)
和向量(e-b)和(b-f)相比,向量(c-e)和(d-f)小到可以忽略不计。
在这种情况下,将与(e-f)垂直的(a-b)的上述设置条件等于在桥电路的相对对角线两端的电压差向量,即(a-b)和(c-d)之间的90°相移。用于最初调整微调电容器90,92的便利条件是将来自前置放大器170的信号的电压幅度减到最小,如使用示波器。
如果被测差压的频率假定是固定频率f3,如20Hz,那么低通滤波器178的截止频率f2可设置为小于f3(如fx~1Hz)或大于f3(如f2~200Hz)。F2应小于f1。在第一种情况中,从滤波器178提供至放大器110的负反馈信号将只补偿不平衡的缓慢源,如温度“漂移”或“老化”。典型地,从锁定放大器74的X输出中取出来自压力传感器的被测信号输出。该输出在C1=C2=C0(图5)时将为零,该输出将表示电容量的变化ΔC(图6,7)。另外,当变化压力相对较低(如几分之一帕斯卡)时,ΔC的符号和幅度与膜片20位移的方向和幅度成正比。
另一种选择是设置f2>>f3。在这种情况下,该反馈也将足够快以补偿20Hz测量信号。结果,锁定放大器174的X通道输出将变得接近零,向量(a-b)将保持和向量X垂直,如图5所示。现在在放大器110的补偿电压输出上可以获得放大的测量信号。
该第二选择有几个优点。施加的电压和电场(而不是膜片的机械特性)将确定膜片的“刚度”,即对压力的反应。能够基本提高压力灵敏度的长期稳定性。气动分析显示在一些实际应用中也可以减少气体粘度对灵敏度的影响。
图8说明了结合了本发明的压力传感器的许多可能的设备中的一种。这里压力传感器10检测光声气体探测器的压力信号。在该设备中,在室200中的气体样本受周期性的激励照射,如利用光学封闭器210或遮光器(chopper)或快门装置的帮助。例如,光学封闭器210可以对样本施加20Hz的信号。气体室200,或其中相应的受激区域和非受激区域与装置10的膜片20的两面相通,参照图3讨论的传感器系统电子装置提供了输出信号x,如在216所示。例如通过轴或其它角度编码器机构218检测该光学封闭器旋转频率和相位,该编码器机构提供在线220上的同步信号。该同步信号被施加到同样接收传感器信号x的低频锁定放大器174,由此显著增加可获得的信噪比。对于大约十秒的锁定平均时间,可以获得低到大约10-6Pa的传感器压力的灵敏度的信号鉴别。
这样,通过使用带有负反馈的膜片不平衡信号以便利用来自控制电极22和24的电场力实现补偿膜片位移,在压力很低的工作情况下,得到了没有漂移的灵敏设备。带有不平衡的高频取样的桥电路的不同实际应用,可以和本领域的普通技术人员熟知的其它电路一起使用,以提供具有增强稳定性、精确度或灵敏度或这些因素的组合的增强型传感器。另外,本发明的传感器可应用到工业仪器中的低级别的声音分析上。根据设计,本发明的差压传感器对共模的背压(back pressure)变化不敏感。可以取消振动“噪声”,例如通过使用第二个一样的传感器,将两个传感器的输入X交叉连接到信号压力。
本发明的新型补偿电路被配置成最初在传感器的薄的金属膜片两面施加等量的静电场作为补偿作用力来补偿因为缓慢作用因起的变化,如尺寸或张力变化。优选地,为避免温度引发的效应,图1-2中示出的传感器的金属机架具有和金属膜片的热膨胀系数相同或类似的热膨胀系数。并且,通过结合对称设计,膜片位移和电压线性相关。
尽管在一些附图中示出了本发明的具体特征,而其它附图中没有示出,但是这只是为了方便,因为根据本发明每个特征都可以和任意或所有的其它特征混合。这里使用的词语“包括”,“包含”,“具有”,“带有”是为了广泛和理解地说明,并不限于任何实体的相互联系。另外,在该主体申请中公开的任何实施例并不认为是唯一可能的实施例。
本领域的技术人员在以下权利要求的范围内可以设计其它的实施例。

Claims (9)

1.一种具有长期稳定性的高灵敏度压力传感器,包含:
包括第一和第二室的机架;
分隔第一和第二室的膜片;
第一电极,位于第一室内,并和该膜片的一面隔开从而与之形成第一电容器;
第二电极,位于第二室内,并和该膜片的另一面隔开从而与之形成第二电容器;
测量电路,连接该第一和第二电容器,通过检测该第一和第二电容器之间的电容量差来测量膜片位移;和
补偿电路,用来对该膜片施加电场作为补偿作用力,减少该第一电极和该膜片之间的电压差并增加该第二电极和该膜片之间的电压差,从而提供长期稳定性。
2.权利要求1的压力传感器,其中该补偿电路包括连接到第一和第二电极的分压器,和连接到分压器中点用于监控该中点电势的放大器。
3.权利要求2的压力传感器,其中该补偿电路进一步包括连接在放大器和测量电路之间的锁定放大器。
4.权利要求3的压力传感器,其中该锁定放大器包括连接到高频电压源的移相器和连接到放大器的相位检测器。
5.权利要求4的压力传感器,进一步包括位于相位检测器的输出和放大器之间的低通滤波器。
6.一种制造具有长期稳定性的高灵敏度压力传感器的方法,该方法包含:
形成包括第一和第二室的机架;
放置一膜片以分隔第一和第二室;
在第一室内放置第一电极,使其和该膜片的一面隔开从而与之形成第一电容器;
在第二室内放置第二电极,使其和该膜片的另一面隔开从而与之形成第二电容器;
将测量电路与第一和第二电容器连接,通过检测该第一和第二电容器之间的电容量差来测量膜片位移;和
最初向该膜片的每一面施加相等强度的电场,并通过减少该第一电极和该膜片之间的电压差并同时增加该第二电极和该膜片之间的电压差或者反之亦然来施加补偿作用力,从而提供长期稳定性。
7.权利要求6的方法,其中该膜片由金属制成。
8.权利要求7的方法,其中在两室之间不存在差压的情况下,该金属膜片不受显著张力。
9.一种通过补偿高灵敏度压力传感器膜片的位移使该高灵敏度压力传感器具有长期稳定性的方法,其中压力传感器包括带有第一和第二室的机架,分隔第一和第二室的金属膜片,位于第一室内并和该膜片的一面隔开从而与之形成第一电容器的第一电极,位于第二室内并和该膜片的另一面隔开从而与之形成第二电容器的第二电极,该方法包含:
通过检测第一和第二电容器之间的电容量差来测量膜片位移;和
最初向该膜片的每一面施加等量电场,通过减少第一电极和该膜片之间的电压差并同时增加第二电极和该膜片之间的电压差或反之亦然来施加补偿作用力。
CNB028106539A 2001-05-25 2002-05-24 具有长期稳定性的高灵敏度压力传感器 Expired - Fee Related CN1250951C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29358101P 2001-05-25 2001-05-25
US60/293,581 2001-05-25

Publications (2)

Publication Number Publication Date
CN1511252A CN1511252A (zh) 2004-07-07
CN1250951C true CN1250951C (zh) 2006-04-12

Family

ID=23129651

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028106539A Expired - Fee Related CN1250951C (zh) 2001-05-25 2002-05-24 具有长期稳定性的高灵敏度压力传感器

Country Status (7)

Country Link
US (1) US6813954B2 (zh)
EP (1) EP1395802B1 (zh)
JP (1) JP2004528576A (zh)
KR (1) KR20040004650A (zh)
CN (1) CN1250951C (zh)
DE (1) DE60228245D1 (zh)
WO (1) WO2002097387A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768093A (zh) * 2011-05-04 2012-11-07 Nxp股份有限公司 Mems电容性压力传感器、操作方法和制造方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4082901B2 (ja) * 2001-12-28 2008-04-30 忠弘 大見 圧力センサ、圧力制御装置及び圧力式流量制御装置の温度ドリフト補正装置
DE50313527D1 (de) * 2003-07-03 2011-04-21 Grundfos As Differenzdrucksensor
US7543604B2 (en) * 2006-09-11 2009-06-09 Honeywell International Inc. Control valve
US7644731B2 (en) 2006-11-30 2010-01-12 Honeywell International Inc. Gas valve with resilient seat
US20080164598A1 (en) * 2007-01-08 2008-07-10 Horst Theuss Semiconductor module
US7860668B2 (en) * 2008-06-18 2010-12-28 Qualcomm Mems Technologies, Inc. Pressure measurement using a MEMS device
FR2947629B1 (fr) * 2009-07-06 2012-03-30 Tronic S Microsystems Dispositif de mesure de pression et son procede de fabrication
US8132464B2 (en) * 2010-07-12 2012-03-13 Rosemount Inc. Differential pressure transmitter with complimentary dual absolute pressure sensors
US8402835B2 (en) * 2011-02-16 2013-03-26 Silicon Microstructures, Inc. Compensation of stress effects on pressure sensor components
CN102252788B (zh) * 2011-04-06 2013-04-17 沈怡茹 一种压力传感器的补偿电路
US9835265B2 (en) 2011-12-15 2017-12-05 Honeywell International Inc. Valve with actuator diagnostics
US9846440B2 (en) 2011-12-15 2017-12-19 Honeywell International Inc. Valve controller configured to estimate fuel comsumption
US8839815B2 (en) 2011-12-15 2014-09-23 Honeywell International Inc. Gas valve with electronic cycle counter
US9995486B2 (en) 2011-12-15 2018-06-12 Honeywell International Inc. Gas valve with high/low gas pressure detection
US8947242B2 (en) 2011-12-15 2015-02-03 Honeywell International Inc. Gas valve with valve leakage test
US9851103B2 (en) 2011-12-15 2017-12-26 Honeywell International Inc. Gas valve with overpressure diagnostics
US8899264B2 (en) 2011-12-15 2014-12-02 Honeywell International Inc. Gas valve with electronic proof of closure system
US9557059B2 (en) 2011-12-15 2017-01-31 Honeywell International Inc Gas valve with communication link
US9074770B2 (en) 2011-12-15 2015-07-07 Honeywell International Inc. Gas valve with electronic valve proving system
US8905063B2 (en) 2011-12-15 2014-12-09 Honeywell International Inc. Gas valve with fuel rate monitor
US9234661B2 (en) 2012-09-15 2016-01-12 Honeywell International Inc. Burner control system
US10422531B2 (en) 2012-09-15 2019-09-24 Honeywell International Inc. System and approach for controlling a combustion chamber
EP2868970B1 (en) 2013-10-29 2020-04-22 Honeywell Technologies Sarl Regulating device
US10024439B2 (en) 2013-12-16 2018-07-17 Honeywell International Inc. Valve over-travel mechanism
US9841122B2 (en) 2014-09-09 2017-12-12 Honeywell International Inc. Gas valve with electronic valve proving system
US9645584B2 (en) 2014-09-17 2017-05-09 Honeywell International Inc. Gas valve with electronic health monitoring
DE102014119400A1 (de) * 2014-12-22 2016-06-23 Endress + Hauser Gmbh + Co. Kg Druckwandler und Verfahren zum Betreiben eines solchen
US10503181B2 (en) 2016-01-13 2019-12-10 Honeywell International Inc. Pressure regulator
US10564062B2 (en) 2016-10-19 2020-02-18 Honeywell International Inc. Human-machine interface for gas valve
JP7143056B2 (ja) * 2016-12-08 2022-09-28 Mmiセミコンダクター株式会社 静電容量型トランスデューサシステム、静電容量型トランスデューサ及び、音響センサ
CN108072477B (zh) * 2017-12-05 2020-09-18 北京遥测技术研究所 一种mems气压传感器以及提高其长期稳定性的方法
US11073281B2 (en) 2017-12-29 2021-07-27 Honeywell International Inc. Closed-loop programming and control of a combustion appliance
US10697815B2 (en) 2018-06-09 2020-06-30 Honeywell International Inc. System and methods for mitigating condensation in a sensor module
CN115077779B (zh) * 2022-06-13 2024-04-12 广东瑞莱斯精密电测技术有限公司 一种用于多通道压力传感器的运行测试模块
CN116448290B (zh) * 2023-06-13 2023-09-01 无锡芯感智半导体有限公司 一种高频动态mems压阻式压力传感器及其制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE956173C (de) * 1952-11-04 1957-01-17 Atlas Werke Ag Vorrichtung zum Messen von Druckdifferenzen
US3557621A (en) * 1969-07-07 1971-01-26 C G S Scient Corp Inc Variable capacitance detecting devices
US4289035A (en) 1978-02-15 1981-09-15 The Bendix Corporation Compensated capacitive transducer demodulator circuit
DE3128032A1 (de) 1981-07-16 1983-02-03 Robert Bosch Gmbh, 7000 Stuttgart Anordnung zur erfassung eines druckes
US4465075A (en) * 1982-03-29 1984-08-14 Motorola, Inc. On-chip pressure transducer and temperature compensation circuit therefor
US4459856A (en) 1982-11-10 1984-07-17 Case Western Reserve University CMOS Bridge for capacitive pressure transducers
JPS59195115A (ja) * 1983-04-20 1984-11-06 Sanyo Electric Co Ltd 半導体圧力センサの出力補償回路
JPS61251714A (ja) * 1985-04-30 1986-11-08 Yokogawa Electric Corp 容量式変位変換器
US4977480A (en) * 1988-09-14 1990-12-11 Fuji Koki Mfg. Co., Ltd. Variable-capacitance type sensor and variable-capacitance type sensor system using the same
US5237285A (en) 1991-10-18 1993-08-17 Rosemount Inc. Method and apparatus for capacitance temperature compensation and manufacturability in a dual plate capacitive pressure transmitter
FI93579C (fi) * 1993-08-20 1995-04-25 Vaisala Oy Sähköstaattisen voiman avulla takaisinkytketty kapasitiivinen anturi ja menetelmä sen aktiivisen elementin muodon ohjaamiseksi
US5442962A (en) * 1993-08-20 1995-08-22 Setra Systems, Inc. Capacitive pressure sensor having a pedestal supported electrode
DE19527919C2 (de) * 1995-07-29 2000-01-13 Beck Gmbh Druckmeselemente Druck-Meßeinrichtung
DE19648048C2 (de) * 1995-11-21 2001-11-29 Fuji Electric Co Ltd Detektorvorrichtung zur Druckmessung basierend auf gemessenen Kapazitätswerten
US6568274B1 (en) * 1998-02-04 2003-05-27 Mks Instruments, Inc. Capacitive based pressure sensor design
US6205861B1 (en) * 1999-01-22 2001-03-27 Setra Systems, Inc. Transducer having temperature compensation
US6295875B1 (en) * 1999-05-14 2001-10-02 Rosemount Inc. Process pressure measurement devices with improved error compensation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768093A (zh) * 2011-05-04 2012-11-07 Nxp股份有限公司 Mems电容性压力传感器、操作方法和制造方法
US9383282B2 (en) 2011-05-04 2016-07-05 Ams International Ag MEMS capacitive pressure sensor, operating method and manufacturing method
CN102768093B (zh) * 2011-05-04 2016-08-17 ams国际有限公司 Mems电容性压力传感器、操作方法和制造方法

Also Published As

Publication number Publication date
EP1395802B1 (en) 2008-08-13
EP1395802A4 (en) 2005-10-26
KR20040004650A (ko) 2004-01-13
DE60228245D1 (de) 2008-09-25
CN1511252A (zh) 2004-07-07
US20020174706A1 (en) 2002-11-28
JP2004528576A (ja) 2004-09-16
EP1395802A1 (en) 2004-03-10
US6813954B2 (en) 2004-11-09
WO2002097387A1 (en) 2002-12-05

Similar Documents

Publication Publication Date Title
CN1250951C (zh) 具有长期稳定性的高灵敏度压力传感器
US7765875B2 (en) High temperature capacitive static/dynamic pressure sensors
US9455126B2 (en) Arrangement for plasma processing system control based on RF voltage
US20060001509A1 (en) Systems and methods for automated resonant circuit tuning
KR101657714B1 (ko) 검출 수단으로서 정전기적 간섭을 이용한 모놀리식 진공 압력계
EP2075563A2 (en) High temperature capacitive static/dynamic pressure sensors
US20020014124A1 (en) Capacitive pressure sensor
CN107124179B (zh) 一种检测微弱光电流信号的锁相放大器
Baikie et al. Automatic Kelvin probe compatible with ultrahigh vacuum
CN113624397A (zh) 一种硅压阻式压力传感器校准补偿方法
CN2243656Y (zh) 新型红外二氧化碳分析仪
US6912910B2 (en) Capacitive pressure sensor
CN113340986B (zh) 一种参数激励与同步共振协同调控的高分辨率传感器及方法
CN109164004B (zh) 基于bet重量法的多孔颗粒比表面积表征传感器及方法
CN1877998A (zh) 电阻拾振式硅微机械谐振传感器的数字锁相闭环
RU2267757C2 (ru) Датчик и способ измерения давления
CN108168817B (zh) 一种基于底座激励方法的mems微结构三轴式激振装置
JPH05180826A (ja) 連続作動ガス分析装置
Krausz et al. Inexpensive high performance dichrograph control unit
JP2004212388A (ja) 静電容量型圧力センサ
CN108225702B (zh) 一种用于mems微结构动态特性测试的三轴式压电陶瓷激励装置
CN219391202U (zh) 压力传感探头与压力传感系统
Reay et al. Servo-Control Of Fabry-Perot Interferometers I-Technique
JPH085435A (ja) ガスメータ
CN108217582B (zh) 一种基于底座激励方法的mems微结构四轴式激振装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060412