CN1249406C - 热式空气流量计 - Google Patents

热式空气流量计 Download PDF

Info

Publication number
CN1249406C
CN1249406C CNB008193231A CN00819323A CN1249406C CN 1249406 C CN1249406 C CN 1249406C CN B008193231 A CNB008193231 A CN B008193231A CN 00819323 A CN00819323 A CN 00819323A CN 1249406 C CN1249406 C CN 1249406C
Authority
CN
China
Prior art keywords
temperature
output
adjustment
circuit
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB008193231A
Other languages
English (en)
Other versions
CN1451093A (zh
Inventor
半泽惠二
五十岚信弥
松本昌大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Publication of CN1451093A publication Critical patent/CN1451093A/zh
Application granted granted Critical
Publication of CN1249406C publication Critical patent/CN1249406C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/6965Circuits therefor, e.g. constant-current flow meters comprising means to store calibration data for flow signal calculation or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

热式空气流量计在空气通道中设置具有温度依赖性的加热电阻元件并从具有加热电阻元件的仪表电路的输出V2中测量空气流量。此外,热式空气流量计具有通过高于二次表达式的多项表达式校正输出特性的计算电路。通过应用这种计算电路,通过不采用激光微调并且具有小型的电路构成的方法实现热式空气流量计的高精度。

Description

热式空气流量计
技术领域
本发明涉及应用具有温度依赖性加热电阻元件(温度敏感电阻元件)检测空气流量的热式空气流量计。
背景技术
热式空气流量计例如用于测量空气流量比如汽车发动机控制。常规的输出调整例如是通过激光微调电阻的零间距调整,该电阻是空气流量计的电路(IC芯片)的调整对象(例如,日本专利申请公开出版物特开平No.8-247815)。例如在日本专利申请公开出版物特开平No.5-72225中进一步描述了激光微调调整方法。
此外,对于除了空气流量计以外的传感器也进行输出调整,例如在日本专利申请公开出版物特开平No.11-153503所描述了压力传感器中,通过计算来校正输出特性和机器差值的变化,而不是采用激光微调调整。这种常规的实例具有微型计算机以执行用于校正的计算表达式并事先校验和存储在计算表达式过程中使用的校正系数(常数a至f)。在这种已有技术中,通过六个系数(例如温度系数)校正传感器的变化系数,这六个系数都是基本的系数。
空气流量计的输出表示非线性(曲线)特征。作为当前的调整方法的零间距调整方法(电阻激光微调)是一种线性二点调整,因此产生了这样的误差:由于在除了调整点以外的特征弯曲引起的误差(相对于目标输出特性的误差)。
这种误差是一种几乎满足当前的汽车发动机的废气再循环的误差。然而,考虑到在将来对废气再循环要求越来越严格,因此希望使输出特性更接近目标特性,改善热式空气流量计的精度,并且也要改善空气-燃油比的控制。
本发明的目的是通过不采用激光微调并以小型电阻构成的方法实现热式空气流量计的高精度。
发明内容
为实现上述目的,本发明如下构造。
(1)本发明的一方面是一种热式空气流量计,具有温度依赖性的加热电阻元件设置在气流通道中,从具有加热电阻元件的仪表电路的输出中测量空气流量,通过高于二次表达式的多项表达式(例如三次表达式到五次表达式中的一个多维多项表达式)应用计算电路校正输出特性。
此外,对于前述的计算电路,提出了这样的一种计算电路,该计算电路由通过计算表达式顺序地或同时地执行零点调整、间距调整和非线性调整或者在执行零点调整之后同时执行间距调整和非线性调整的电路组成,并具有存储在上述的每次调整之后所确定的校正系数的装置。
(2)在本发明的另一方面,提出了一种热式空气流量计的方法,该热式空气流量计具有关于空气流量(输出特性)的映射数据,划分映射数据的区段,并准备对于每个空气流量区段要改变的输出特性校正表达式,由此计算了空气流量。
附图说明
图1为关于本发明的热式空气流量计的第一实施例的电路方块图,
图2为在图1所示的电路中执行输出调整和输出校正的计算电路的功能方块图,
图3为关于第一实施例的输出调整的流程图,
图4为在第一实施例中使用的空气流量计的分解透视图,
图5为在输出调整之前和之后第一实施例的输出特性的曲线图,
图6为在通过常规的激光微调方法输出之前和之后的输出特性的曲线图,
图7为与本发明的另一实施例相关的执行输出调整和输出校正的计算电路的功能方块图,
图8为本发明的输出调整的原理说明图,
图9为关于本发明的另一实施例的输出调整方法(输出校正方法)的映射数据的附图,
图10为在图9中所示的输出调整的流程图,
图11为常规的热式空气流量计的输出特性图,
图12为说明串联输出调整的特性的附图,
图13为说明并联输出调整的特性的附图。
具体实施方式
参考附图解释本发明的实施例。
在图1中所示的空气流量计的仪表电路1具有由加热电阻元件2、用于进气温度校正的温度测量电阻元件3和电阻元件4至6组成的桥路。此外,电路1具有运算放大器7和用于电流控制的晶体管8。
加热电阻元件2和温度测量电阻元件3由具有所谓的随着温度改变电阻的温度依赖性的温敏电阻元件组成,这些电阻元件具有各种类型的金属丝、薄膜和半导体。加热电阻元件2具有低于温度测量电阻元件3的电阻的电阻以使加热电流流动。
通过固定的固定的电阻元件5检测加热电阻元件2的输出并输入到运算放大器7的+(正)端,而通过固定的电阻元件6检测温度测量电阻元件3的输出,并输入到运算放大器7的-(负)端。运算放大器7的输出输入到晶体管8的基极。通过使用这种电路构成,控制在加热电阻元件2中流动的加热电流以使在加热电阻元件2和温度测量电阻元件3之间的温差(电阻差)保持恒定。
在发动机的进气通道中设置加热电阻元件2,因此经过进气通道的空气吸收热量,检测与随空气流量变化的加热电流作为电信号,因此可以测量了空气流量。
通过电阻元件5将加热电流的电信号转换为V2的输出值。例如,通过由King’表达式得出的表达式(1)表示检测信号V2。
V 2 = R 1 Ih = R 1 1 Rh ( A + B Q ) ΔTh - - - ( 1 )
其中,R1表示电阻元件5的电阻。Ih是在加热电阻元件2中流动的加热电流,Rh是加热电阻元件2的电阻,A和B是热常数,Q是空气流量,以及ΔTh是在加热电阻元件2和温度测量电阻元件3之间的温差。
检测信号V2是空气流量Q的四次方根并以在附图11中所示的特性曲线表示。
检测信号V2的特性随每个电路变化,因此需要调整它以使其接近目标输出特性。如上文已经描述,检测信号(输出)V2的特性是空气流量Q的四次方根,因此在要通过计算调整或校正该输出特性时,优选通过四次表达式或接近它的三次表达式或五次表达式的多项表达式调整输出特性的校正系数。通过计算多维多项表达式调整本实施例的输出特性,并在安装空气流量计之前执行它。输出调整是要获得校正输出的计算表达式的校正系数。
通过将在下文中描述的校正电路单元10的计算执行在本实施例中的检测信号V2的输出调整和校正。
此外,在调整时通过连接到外部计算机的校正电路单元10执行这种调整(即,设定校正系数)。
校正电路单元10是一种具有计算功能的LSI电路,该电路具有驱动整个电路的振荡器11、检测电路芯片的温度的温度传感器12、有选择性地获取温度传感器12的信号和在上游侧上的加热电阻元件1的电压V1(在晶体管8的发射极和加热电阻元件1之间的电压)的多路器13、从模拟到数字转换多路器13的输出的A-D转换器14、从模拟到数字转换空气流量检测信号(输出)V2的转换器、用于调整和校正输出V2的计算电路(数字信号处理器,在下文中称为DSP)16、将通过DSP16计算的数字输出值Vout转换为频率的自由振荡计数器(在下文中称为FRC)17、从数字到模拟转换数字输出值的D-A转换器18、选择频率转换信号或D-A信号的多路器19、与外部计算机相连接以执行输出调整(计算空气流量的校正系数)的调整数据写通信电路(串行通信接口,在下文中称为SCI)20以及写调整数据(校正系数)的存储电路(例如,PROM)21。校正电路单元10的驱动电源是一种恒压源22。
在本实施例中的DSP16具有如在图2中所示的输出调整功能。
在图2中所示的输出调整功能基本是一种在零点调整之后同时执行间距调整和非线性调整的计算电路,它获取热式空气流量计的模块温度(校正电路单元10的温度)和进气温度作为输出特性的调整要素(模块温度的零调整和模块温度的间距调整)。获取这些温度作为调整要素的原因在于空气流量计的输出特性受到这些温度的不利影响。
在本实施例中的输出调整意味着获得在用于校正输出的计算表达式中使用的校正系数。
接着,参考图8描述本发明所采用的热式空气流量计的调整计算表达式(校正计算表达式)的基本原理。
图8(a)所示为顺序地执行零点调整、间距调整和非线性调整的串型附图,图8(b)所示为同时执行这些调整的并型图,以及图8(c)是在零点调整之后同时执行间距调整和非线性调整的串并型附图。在图2中所示的实施例基本采用串并型。
在图8(a)中所示的串型通过首先执行从来自仪表电路的输出值V2的零点调整获得Vout1,接着通过执行间距调整(输出的斜度调整)获得Vout2,然后通过执行非线性调整(NL调整)获得最后的Vout。这可以通过如下的计算式(2)表示。
Vout1=V2+k1
Vout2=k2*Vout1
Vout=Vout2+k3*Vout2*Vout2+k4*Vout2*Vout2*Vout2 ......(2)
其中,K1表示零点调整的系数(校正系数),K2表示间距调整的系数(校正系数),K3和K4表示非线性调整的系数(校正系数)。这种计算采用三维多项表达式。在计算表达式中的符号*表示相乘。
在图8(b)中所示的并型同时执行零点调整、间距调整和非线性调整,因此通过表达式3的三维多项表达式表示在调整之后的输出值。
Vout=k1+k2*V2+k3*V2*V2+k4*V2*V2*V2 ................(3)
在图8(c)中所示的串并型首先通过执行输出值V2的零点调整获得Vout1,然后从间距调整和非线性调整的计算表达式中获得Vout。以表达式(4)的三维多项表达式表示在这种情况下调整之后的输出值Vout。
Vout1=V2+k1
Vout=k2*Vout1+k3*Vout1*Vout1+k4*Vout1*Vout1*Vout1....(4)
在参考附图3解释输出特性的调整方法之后描述这些调整方法的特性。
在调整输出V2的特性时,计算表达式的系数(例如,在表达式(2)至(4)中的系数K1至K4)仍然没有确定,并且目前存在这些系数的初始值(初始系数)。
因此,基于计算表达式应用初始系数热式空气流量计的输出V2变成输出Vout(在图1中,DSP16执行计算),并且将输出Vout输入到外部计算机(在附图中没有示出)以通过FRC17或DA18和多路器19进行输出调整(用于校正系数的计算)。
仅仅在输出调整时外部计算机连接到热式空气流量计的电路。在调整时,在四个点上使空气以已知的空气流量流过,并采样在四个点上的输出V2(采样在四个点上的数据的原因在于校正计算表达式是三维多项表达式),外部计算机基于采样数据(下文中可以称为最初特性输出)获得最接近目标输出特性的校正系数(在图8中所示的实例中,校正系数K1至K4)。
在本实施例中,如图3所示,首先在步骤(1)中设定正常温度,DSP16计算在四个点(Q1,Vout1),(Q2,Vout2),(Q3,Vout3)和(Q4,Vout4)上的空气流量计的输出V2的初始特征输出Vout,然后考虑在电路温度和进气温度变化时的输出特性的变化,DSP16计算输出V2′的最初特性输出Vout′,在步骤(2)中与前述相同的方式在四个点上设定较高的温度时,按照要求执行步骤(3),DSP16计算输出V2″的最初特性输出Vout″,在四个点上设定较低的温度时,外部计算机基于所计算的值(采样数据)计算最接近目标特性的最适合的校正系数。通过SCI20将所计算的最适合的校正系数数据存储在外部计算机的EPROM21中。此后,分开外部计算机,并且在空气流量计的安装过程中,基于存储在EPROM21中的校正数据,通过在图8和2中所示的调整功能的计算表达式校正输出V2。
在多个温度条件下基于最初特性输出Vout、Vout′和Vout″(采样数据)类似地调整输出,在图8(a)中所示的串型首先执行零点调整,因此,如在图12中所示,一个优点是将相应的最初特性输出Vout、Vout′和Vout″很难钳位在该电路的最大输出极限上。然而,串型计算的优点在于获得校正系数的计算很难收敛。
在另一方面,在图8(b)中所示的并型并不首先执行零点调整,因此相应的最初特性输出Vout、Vout′和Vout″如图13所示地发散,因此,一个优点是他们容易钳位在该电路的最大输出极限上。然而,并型计算的优点在于获得校正系数的计算容易收敛。
在图8(c)中所示的串并型具有的优点在于它应用串型和并型的优点,因此很难钳位在最大极限上,但容易收敛。
在本实施例中,应用串并型作为基础并进一步实现热式空气流量计的较高精度的调整和输出特性的校正,如图2所示,增加电路温度(模块温度)和进气温度作为调整要素。如上文已经描述通过温度传感器12检测电路温度Tm并通过多路器13和A-D14输入到DSP16中。应用加热电阻元件2的两端的输出值V1和V2作为变量应用计算表达式(例如,表达式(5))通过DSP16计算进气温度Ta。
Ta={(V1-V2)/V2*R1/Rh0-1}/α-ΔTh..............(5)
其中α表示加热电阻元件的温度系数,并Th表示在加热电阻元件和温度测量电阻元件之间的温度差值,Rh0表示在0℃时加热电阻元件的电阻。
在图2中,首先执行输出V2的零点调整和模块温度的零点调整(假设这种调整输出为Vout1),此后执行模块温度的间距调整(假设这种调整输出为Vout2),然后同时执行输出间距调整、进气温度调整和非线性调整。通过下式(6)表示执行这种调整功能的计算表达式。
Vout1=V2+(k1+k2*Tm+k3*Tm*Tm)
Vout2=(1+k4*Tm+k5*Tm*Tm)*Vout1
Vout=k6*Ta+(k7*Ta+k8)*Vout2+(k9)*Vout2*Vout2
      +(k10)*Vout2*Vout2*Vout2..................(6)
其中,k1表示零点调整的校正系数,K2和K3表示用于零点调整的模块温度的校正系数,K4和K5表示用于间距调整的模块温度的校正系数,K6和K7表示用于间距调整和非线性调整的进气温度的校正系数,K8和K10表示用于非线性调整的校正系数。
在输出调整之后,K1至K10的校正系数都存储在PROM21中。在进行输出调整之后将空气流量计安装在汽车中。在校正空气流量计的输出V2时,将存储在PROM21中的校正系数K1至K10应用到在图2中所示的调整函数(表达式(6)的计算表达式)并执行校正。
将在这种校正之后的输出通过D-A电路18、多路器19和在附图中没有示出的A-D电路输入到发动机控制单元中,并用作燃油喷射率的计算表达式的参数。
在本实施例的空气流量计中,如在图4中所示,传感器壳体30和连接器外壳31都整体地形成,具有在图1中所示的电路元件(不包括加热电阻元件2和温度测量电阻元件3)的电路基片32安装在传感器壳体30内,并且传感器壳体30以封盖31覆盖。加热电阻元件2和温度测量电阻元件3由从传感器壳体30的底部突出的支架插销支撑并存放在构成进气通道的子通道的部件34中。标号35表示传感器壳体30的基底。具有这种构造的空气流量计本体通过与传感器壳体30形成在一起的法兰36安装在发动机的进气通道中,并对其进行设置以使传感器壳体30、子通道34、加热电阻元件2和温度测量电阻元件3都设置进气通道中。传感器壳体30可以设置在进气通道的外壁上,作为通过计算表达式获得进气温度Ta的替代,还可以应用传感器实际地检测进气温度Ta。在这种情况下,例如,将进气温度传感器设置在加热电阻元件2的上游侧上。
根据本实施例,作为激光微调方法的替代,基于多维多项表达式的计算表达式执行输出调整(校正系数的计算)和在调整之后的输出校正,因此如图5所示,可以使输出特性非常接近目标特性,可以实现比常规的输出特性(图6)更加精确的调整,因此可以改善空气流量计的测量精度。
此外,与模拟调整电路相比可以减少调整元件,并且可以简化电路构成。
此外,在前述的实施例中,如图2所示,给输出V2的调整函数中增加模块温度Tm和进气温度Ta。然而,在具有电路调整温度传感器12的校正电路单元10设置在进气通道中时,实际上模块温度Tm几乎等于进气温度,因此即使从输出调整元件中检测进气温度Ta,仍然可以实现较高精度的空气流量计。在这种情况下,可以如附图7所示地表示DSP16的输出调整功能。
通过表达式(7)表示在这种情况下的计算表达式。
Vout1=V2+(k1+k2*Tm+k3*Tm*Tm)
Vout2=(1+k4*Tm+k5*Tm*Tm)*Vout1
Vout=k6*Vout2+k7*Vout2*Vout2+k8*Vout2*Vout2*Vout2...(7)
其中,K1表示零点调整的校正系数,K2和K3表示用于零点调整的模块温度的校正系数,K4和K5表示用于间距调整的模块温度的校正系数,K6至K8表示用于非线性调整的校正系数。
此外,在前述的实施例中,通过多维多项表达式调整并校正空气流量计的输出特性。然而,如在图9中所示,作为它的替代,即使准备了关于空气流量的映射数据(输出特性),划分映射数据的区段,并准备对每个空气流量区段要改变输出特性的校正表达式,计算空气流量,因此可以实现比常规的流量计更精确的空气流量计。
图9所示为这种方法的原理图(区段划分方法),在附图中的实线表示目标输出特性,虚线表示初始输出特性。将空气流量区段划分为在X1和X2之间的区间、在X2和X3之间的区间、在X3和X4之间的区间和X4和X5之间的区间(区段数量并不限制到这些),例如,通过Vout=aV2+b的线性表达式表示在这种情况下的输出调整和校正计算表达式,a和b都是校正系数。a等于间距校正系数,b等于零点校正系数。
通过前述的计算表达式,根据在每个划分区段中的输出特性的趋势计算最适合的校正系数a和b,例如,在X1和X2之间的区段中,通过Vout1=a1V2+b1表示计算表达式,在X2和X3之间的区段中,通过Vout2=a2V2+b2表示计算表达式,在X3和X4之间的区段中,通过Vout3=a3V2+b3表示计算表达式,在X4和X5之间的区段中,通过Vout4=a4V2+b4表示计算表达式,并且将这些校正系数存储在如图1中所示的相同电路的PROM21中,在这种情况下,DSP16改变每个空气流量区段的输出特性校正表达式(校正系数a和b)并计算空气流量。
此外,关于输出调整(校正系数a和b),在与在图3中所示的流程图相同的方式中,首先,将在调整之前通过初始系数a和b所计算的初始输出数据作为在每个划分区段中的两个点之间的采样数据输入到外部计算机中,计算在每个划分的区段中最适合的校正系数(a1,b1)、(a2,b2)、(a3,b3)和(a4,b4),将这些校正系数作为与区段决定数据(Q1,Y1)、(Q2,Y2)、(Q3,Y3)和(Q4,Y4)...相关的映射数据存储在PROM21中。
此外,关于映射数据的区段划分,在低流量区段中的空气流量的输出特性的变化率高于在高流量区段中的变化率,因此,将低流量区段划分得比高流量区段更细以使输出特性的调整和校正更加细微。
在本实施例中的编排好的电路构造基本与在图1中所示的电路相同,但DSP16的计算方法不同。在图10中示出了在这种情况下通过DSP16所执行的校正操作。
关于在调整之后用于空气流量计的校正表达式中的校正系数,根据输出V2是否处于在Y1和Y2之间、在Y2和Y3之间、在Y3和Y4之间或者超过Y4的决定区段中,计算对应的校正系数(a1,b1)、(a2,b2)、(a3,b3)或(a4,b4)。
工业实用性
如上文所描述,根据本发明,通过替代激光微调的方法和小型电路构造,可以实现热式空气流量计的高精度。

Claims (8)

1.一种热式空气流量计,具有温度依赖性的加热电阻元件设置在气流通道中,从具有所述加热电阻元件的仪表电路的输出中测量空气流量,
其中,配有计算电路,该计算电路利用高于二次表达式的多项表达式近似算出目标特性和校正前的特性的差分,将该差分作为校正量,利用由上述高于二次表达式的多项表达式计算出的校正量对该输出特性进行校正。
2.如权利要求1所述的热式空气流量计,其中用于校正的所述多项表达式是三次表达式至五次表达式中的一种表达式的多维表达式。
3.如权利要求1或2所述的热式空气流量计,其中,所述计算电路由通过计算表达式顺序地或同时地执行零点调整、间距调整和非线性调整或者在执行零点调整之后同时执行间距调整和非线性调整的电路组成;所述计算电路具有存储在所述每次调整之后所确定的校正系数的装置。
4.如权利要求3所述的热式空气流量计,其中,所述计算电路获取所述热式空气流量计的模块温度和进气温度中的至少一个温度作为所述输出特性的调整要素。
5.如权利要求4所述的热式空气流量计,其中,检测芯片温度的温度传感器内置在所述计算电路的IC芯片中,应用所述的芯片温度执行所述电路的温度校正和空气温度校正。
6.如权利要求4所述的热式空气流量计,其中,当所述进气温度表示为Ta时,上述计算电路执行表达式Ta={(V1-V2)/V2×R1/Rh0-1}α-ΔTh,计算出上述进气温度Ta,前述表达式采用以下变量:上述加热电阻元件的温度系数α、检出流过该加热电阻元件的电流的电阻体的电阻值R1、上述加热电阻元件的加热温度ΔTh、上述加热电阻元件在温度为零时的电阻Rh0、上述加热电阻元件的两端的输出值V1、V2。
7.一种热式空气流量计,具有温度依赖性的加热电阻元件设置在气流通道中,从具有所述加热电阻元件的仪表电路的输出中测量空气流量,
其中,所述流量计包括:将上述输出值作为变量利用一次表达式计算出空气流量的计算电路、存储关于空气流量-输出特性的映射数据的存储装置,该映射数据被分成多个区域,在这些分成的区域中存储对应于所分成的各个区域的空气流量-输出特性的上述一次表达式的校正系数,上述计算电路对所分成的各个区域改变上述一次表达式的校正系数,计算出空气流量。
8.如权利要求7所述的热式空气流量计,其中,在所述映射数据区段划分中,比高流量区段更加细微地划分所述流量的低流量区段。
CNB008193231A 2000-09-04 2000-09-04 热式空气流量计 Expired - Fee Related CN1249406C (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/005990 WO2002021084A1 (fr) 2000-09-04 2000-09-04 Debitmetre a air thermique

Publications (2)

Publication Number Publication Date
CN1451093A CN1451093A (zh) 2003-10-22
CN1249406C true CN1249406C (zh) 2006-04-05

Family

ID=11736426

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008193231A Expired - Fee Related CN1249406C (zh) 2000-09-04 2000-09-04 热式空气流量计

Country Status (6)

Country Link
US (1) US6904379B1 (zh)
EP (1) EP1316781B1 (zh)
JP (1) JP3619230B2 (zh)
KR (1) KR20020081398A (zh)
CN (1) CN1249406C (zh)
WO (1) WO2002021084A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3817497B2 (ja) 2002-06-10 2006-09-06 株式会社日立製作所 熱式流量計測装置
US6974252B2 (en) * 2003-03-11 2005-12-13 Intel Corporation Failsafe mechanism for preventing an integrated circuit from overheating
JP4177183B2 (ja) * 2003-06-18 2008-11-05 株式会社日立製作所 熱式空気流量計
DE10351313A1 (de) * 2003-10-31 2005-05-25 Abb Patent Gmbh Verfahren zur Nullpunktkorrektur eines Messgerätes
AU2003284593A1 (en) 2003-11-20 2005-06-08 Hitachi Car Engineering Co., Ltd. Thermal flowmeter of fluid
JP4515828B2 (ja) * 2004-06-02 2010-08-04 日立オートモティブシステムズ株式会社 発熱抵抗体式空気流量計
JP2006258676A (ja) * 2005-03-18 2006-09-28 Hitachi Ltd 熱式流量計
JP4790405B2 (ja) * 2005-12-16 2011-10-12 三菱電機株式会社 熱式流量センサ
DE112008001865T5 (de) * 2007-09-03 2010-07-15 Mitsubishi Electric Corporation Sensorausgabekorrekturvorrichtung
JP2010216906A (ja) * 2009-03-16 2010-09-30 Hitachi Automotive Systems Ltd 自動車用流量計
CN101995279B (zh) * 2009-08-10 2012-07-18 上海捷程机电有限公司 热式流量传感器
JP5663447B2 (ja) 2011-09-30 2015-02-04 日立オートモティブシステムズ株式会社 気体流量測定装置
CN104412076B (zh) * 2012-06-27 2017-06-13 日立汽车系统株式会社 流体测量装置
US10018493B2 (en) * 2013-03-12 2018-07-10 General Electric Company Flow sensor circuit for monitoring a fluid flowpath
JP6549235B2 (ja) * 2015-08-31 2019-07-24 日立オートモティブシステムズ株式会社 空気流量計
DE112017004131B4 (de) * 2016-10-19 2023-05-04 Hitachi Astemo, Ltd. Strömungsvolumen-Erfassungsvorrichtung
WO2018116676A1 (ja) 2016-12-20 2018-06-28 日立オートモティブシステムズ株式会社 気体流量測定装置
JP2022184573A (ja) * 2021-06-01 2022-12-13 キヤノン株式会社 発光装置及びその制御方法、表示装置、光電変換装置、電子機器
CN117007144B (zh) * 2023-10-07 2023-12-15 成都睿宝电子科技有限公司 一种高精度热式气体质量流量计及其调零方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2849870A1 (de) * 1978-11-17 1980-05-29 Bosch Gmbh Robert Vorrichtung zur luftmassenmessung
JPH0332513U (zh) 1989-08-01 1991-03-29
JP2735416B2 (ja) 1991-09-12 1998-04-02 株式会社日立製作所 センサの出力信号特性調整装置と方法および出力信号の調整装置
WO1995034753A1 (fr) * 1994-06-13 1995-12-21 Hitachi, Ltd. Dispositif et procede de mesure d'un debit d'air
JPH0835869A (ja) 1994-07-25 1996-02-06 Hitachi Ltd 空気流量計
JP3141762B2 (ja) * 1995-12-13 2001-03-05 株式会社日立製作所 空気流量計測装置及び空気流量計測方法
JP2846613B2 (ja) 1996-02-28 1999-01-13 株式会社日立製作所 パルス出力型熱線式空気流量計
US5944048A (en) * 1996-10-04 1999-08-31 Emerson Electric Co. Method and apparatus for detecting and controlling mass flow
JP3941193B2 (ja) 1997-11-21 2007-07-04 株式会社デンソー 圧力センサ装置
DE19819855A1 (de) 1998-05-05 1999-11-11 Pierburg Ag Luftmassensensor

Also Published As

Publication number Publication date
CN1451093A (zh) 2003-10-22
EP1316781A4 (en) 2006-08-30
KR20020081398A (ko) 2002-10-26
US6904379B1 (en) 2005-06-07
EP1316781A1 (en) 2003-06-04
JP3619230B2 (ja) 2005-02-09
JPWO2002021084A1 (ja) 2004-01-15
WO2002021084A1 (fr) 2002-03-14
EP1316781B1 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
CN1249406C (zh) 热式空气流量计
CN1806159A (zh) 加热式空气流量计
CN1834592A (zh) 物理量传感器
CN1828231A (zh) 发热电阻器式空气流量测定装置及其计测误差校正方法
CN1658488A (zh) 电功率产生装置和电功率产生装置的控制方法
JP2003240620A (ja) 気体流量測定装置
CN100350223C (zh) 热式流量计
CN101057126A (zh) 热式流量测定装置
JP5304766B2 (ja) 流量測定装置
CN1561449A (zh) 流量测量装置
CN1704733A (zh) 发热电阻器式空气流量计
CN103080703A (zh) 气体流量测量装置
CN1222759C (zh) 热电型流量测定仪的流速测量误差的校正方法
CN1253695C (zh) 具有比率计频率输出的测试系统
JP2007071889A (ja) 熱式空気流量計
CN1184249A (zh) 空气流量计与应用该空气流量计的发动机控制系统
JP2010216906A (ja) 自動車用流量計
CN1955703A (zh) 通过平移转换参考电平以进行校正的温度测量电路
US10048240B2 (en) Control apparatus
CN114556092A (zh) 湿度传感器诊断装置
JP3980586B2 (ja) 熱式空気流量計
US20190186400A1 (en) Flow rate detector
WO2014024621A1 (ja) 熱式流量測定装置及びこれを用いた制御装置
JP2010190715A (ja) 空気流量測定装置
US20140287519A1 (en) Method, Control Device and Device for Analyzing a Gas

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060405

Termination date: 20180904

CF01 Termination of patent right due to non-payment of annual fee