CN1229528A - 用于锂离子充电电池电极的氧氟化锂锰 - Google Patents

用于锂离子充电电池电极的氧氟化锂锰 Download PDF

Info

Publication number
CN1229528A
CN1229528A CN97197718A CN97197718A CN1229528A CN 1229528 A CN1229528 A CN 1229528A CN 97197718 A CN97197718 A CN 97197718A CN 97197718 A CN97197718 A CN 97197718A CN 1229528 A CN1229528 A CN 1229528A
Authority
CN
China
Prior art keywords
battery
compound
rechargeable battery
lithium manganese
ides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN97197718A
Other languages
English (en)
Inventor
G·G·阿玛图奇
J-M·特拉斯康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iconectiv LLC
Original Assignee
Bell Communications Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bell Communications Research Inc filed Critical Bell Communications Research Inc
Publication of CN1229528A publication Critical patent/CN1229528A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/54Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [Mn2O4]-, e.g. Li(CoxMn2-x)04, Li(MyCoxMn2-x-y)O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

用通式为Li1+xMyMn2-x-yO4-zFz的氧氟化物电极组分夹塞材料改善了Li离子可充电电池的循环稳定性和容量,通式中,M是例如Co、Cr或Fe的金属,且x≤0.4,y≤0.3,0.05≤z≤1.0。

Description

用于锂离子充电电池电极的氧氟化锂锰
                               发明背景
本发明涉及氧化锂锰夹塞化合物,可用作锂离子再充电电池内的电极活性材料,具体地说,本发明涉及此类复合氧氟化物及其改善这类电池循环稳定性和容量的用途。
氧化锂锰夹塞化合物,即LiMn2O4,越来越被证实是用于构造二次充电锂电解电池和复合电池的有效而经济的材料。美国专利5,296,318和5,460,904中说明了这类电池的成功例子。这类电池表现出相当高的储电容量和在较宽电压范围内的充电循环稳定性;但是,要满足现代电子设备及仪器日益严苛的要求,以上特性还不足以完全令人满意。
为了提高上述特性,人们进行了大量的研究,结果发现,尖晶石LiMn2O4结构参数的改变(例如化合物的a轴晶格尺寸)对最终的电池性能具有重大影响。随后又发现,所述结构参数很大程度上取决于夹塞化合物的组成及化合物的合成条件。就此而言,普遍认为,例如,a轴长度小于8.23埃能够提高人们所希望的多次循环的充电稳定性。
达到上述优选参数范围的方法包括严格控制合成条件(如美国专利5,425,932所述)以达到理想的即较小的a轴尺寸,这由较高的Mn价态表现出来;和阳离子取代(如Tarason等人于1991年10月在J.Electrochem Soc.第138卷,第10期,pp.2859-2864中所述),或者以Co、Cr或Fe置换部分Mn原子(如欧洲专利390,1 85所提出的)。其它的许多研究者建议,根据代表性结构式(Li)四面体[Mn2-xLi]八面体O4((Li)tet[Mn2-xLi]octO4),提高锂的嵌入量以达到与置换Mn类似的效果,以此作为提高循环稳定性的有效手段,但是,和早期Mn置换法中发现的一样,这种做法被发现会牺牲电池的容量。
与已实施的现有技术相反,本发明利用阴离子取代提供了一种同时改善循环稳定性和电池容量的方法,并且使得构造能够长期高效工作的电池成为可能。
                             发明概述
我们发现,以氟取代分子式LiMn2O4中的部分氧原子能够弥补现有技术中的缺陷。虽然早期单纯的所述取代被发现造成a轴尺寸放大以致超出优选范围(显然是由于Mn价态的降低),但是根据后来的研究,我们发现,同时提高Li对Mn的置换出人意料地使得a轴尺寸回复到优选的8.23埃以下。此后,包含这种氟取代电极材料的电解电池表现出相当大的容量和循环稳定性。
所述的优良的氧-氟化物尖晶石衍生物的制备可简单地按照常规操作进行,例如按Tarascon的美国专利5,425,932所述,即使合适前体化合物(典型的是Li2CO3,LiF和MnO2)的化学计量混合物在约800℃退火。这类衍生物还可以如上述EP390,185中提出的包括用于阳离子取代的前体。所以,可望有效用于改进现有电解电池的所得嵌入材料可由以下通式表示:Li1+xMyMn2-x-yO4-zFz,其中的M是某种金属,例如Co、Cr或Fe,x≤0.4,y≤0.3,0.05≤z≤1.0。
对一系列由通式组成x和z(即Li和Fe)不同的氧氟化物化合物制成的电池阳极组合物进行了X光衍射分析,以测定所得的a轴晶格参数,然后如前述专利所述以一般方式装入测试电池。对电池进行重复的充电/放电循环,以测定化合物组成对电池电容量(一般表现为mAhr/g电极化合物)和循环稳定性(即在多次循环后保持最初容量的能力)的影响。
                           附图简述
以下将参照附图对本发明进行说明:
图1本发明化合物之一,Li1+xMyMn2-x-yO4-zFz,的X射线衍射图,其中x=0.1,y=0且z=0.1;
图2是本发明化合物的晶格a轴尺寸与z值的关系,其中x=0.05,y=0且z≤0.5;
图3是阳极为图2中各材料的电池的电容量和循环稳定性与充电循环次数关系的比较;
图4是阳极材料为现有Li1+xMn2O4化合物和本发明化合物的电池的电容量与循环稳定性与充电循环次数关系的比较;
图5是本发明化合物Li1+xMyMn2-x-yO4-zFz的晶格a轴尺寸与v值关系的比较,其中x≤0.2,y=0且z≤0.4;
图6是包含本发明化合物Li1+xMyMn2-x-yO4-zFz的电池的电容量和循环稳定性与充电循环次数关系的比较,其中x=0,y=0且z≤0.4;
图7是包含本发明化合物Li1+xMyMn2-x-yO4-zFz的电池的电容量和循环稳定性与充电循环次数关系的比较,其中x=0.1,y=0且z≤0.4;
图8是包含本发明化合物Li1+xMyMn2-x-yO4-zFz的电池的电容量和循环稳定性与充电循环次数关系的比较,其中x=0.2,y=0且z≤0.4;
图9是包含本发明化合物Li1+xMyMn2-x-yO4-zFz的电池的电容量和循环稳定性与充电循环次数的比较,其中x=0,y=0.2且z≤0.1;
                          本发明的说明
如前述美国专利5,425,932所述,用主要前体化合物的化学计量值混合物制备过去使用的Li1+xMn2O4(根据本发明的通式Li1+xMyMn2-x-yO4-zFz,y=0且z=0)夹塞材料用作性能对照样品,例如,用9.23重量份Li2O3与43.46重量份MnO2得到公称化合物LiMn2O4。以同样的方法制备上述对照样品以及后文本发明材料样品的电池并在静态电流和静态电压研究中进行测试,大致如所述专利的说明书所述。所述测试电池包含锂箔阴极作为实用的材料,因为经验证明,以此方式获得的性能结果可客观地与前文另一专利说明书所述锂离子电池组合物相比。但是,还是用包含本发明材料的Li离子组合物进行了下文中的其它测试,以进一步证实结果中的这种相关性。
                               实施例1
在本发明夹塞材料的一典型制备过程中,用玛瑙的碾钵碾杵将化学计量份数的前体,即重量比为60.94∶12.82∶1的MnO2(EMD-型)、Li2CO3和LiF充分混合,与对照样品一样,在氧化铝坩埚中在空气中将混合物退火得到测试组合物Li1+xMyMn2-x-yO4-zFz,其中x=0.1,y=0且z=0.1(Li1.1Mn1.9O3.9F0.1)。具体地说,在约12小时内恒速加热混合物至800℃,在此温度保温12小时。然后用约24小时将混合物恒速冷却至室温。在一次混合/研磨后,再次用5小时将样品加热至800℃并保温约12小时,然后用24小时最终冷却至室温。所得的氧氟化物混合物经CuKαX光衍射(XRD)检查来进行表征,得到图1所述的图象。图象中清晰的衍射峰证实,合成的是结晶良好的单相产物。
                             实施例2
以同样方法,用前体化合物的适当组合制备一系列本发明氧氟化物化合物以获得Li1+xMyMn2-x-yO4-zFz,其中x=0.05,y=0且z=0,0.05,0.10,0.20,0.35和0.50。所得样品用XRD进行表征,并分别计算晶格的a轴参数。如图2所示,所述参数值的图表现出该值有规律的提高,这是随氟取代的增加的结果。
同样的样品各取部分分别与10%导体碳和5%聚氟乙烯粘合剂混合,并在一张铝箔基材上制成一层,用作测试电池阳极。将这些样品电极以常规方式与锂箔电极和用LiPF6在2∶1的碳酸亚乙酯∶碳酸二甲酯混合物中所成的1M电解质溶液饱和的中间玻斑纤维隔离体组装成测试电池,以C/5(每轮循环全程5小时)的速度,在3.4-4.5V范围内对电池进行充电/放电循环。如图3,对各电池的容量进行时间长达35轮循环的跟踪检测,以提供多次再充电后的容量改变率(即电池的循环稳定性)。轨迹31至36反映了前述氟取代水平即z由0.05至0.5的升高。将图2和图3所绘的图进行比较,证实了随着a轴尺寸增加超过约8.23埃的优选范围,电池容量和循环稳定性都降低这一普遍倾向。
                               实施例3
以相同的方法,制备一系列只改变Li的非取代夹塞化合物(现有技术),即Li1+xMyMn2-x-yO4-zFz中的x=0.05,0.075和0.1,y=0且z=0,并进行测试,用于表明上述变量对于所得电池的容量和循环稳定性的影响。如图4所示,随着轨迹41至43的Li含量增加,单纯的这一改变提高了循环稳定性,但明显降低了电池电容量。在图4中,另以轨迹44表示了用实施例1中的氧氟化物化合物(x=0.1,z=0.1)所制电池的性能,该轨迹表明了利用本发明获得的出人意料的效果。具体地说,将Li含量相近的轨迹43与44相比显示,与氟取代相结合对容量和循环稳定性都造成了显著改善。
                                实施例4
以相同的方法制备改变Li和F的氧氟化物化合物系列,即Li1+xMyMn2-x-yO4-zFz中的x=0,0.1和0.2,y=0且z=0,0.05,0.1,0.2和0.4。各系列a轴晶格尺寸的改变在图5中表现为随Li含量增加的轨迹52至56,它们表明Li含量和F含量的组合对于获得所述参数的最佳范围具有显著效果。
                                实施例5
用实施例4中x=0的化合物系列制备电池,用前述方法对其进行测试。结果在图6中表现为随氟含量增加的轨迹61至65,它们表明在Li∶F之比中增加F对于容量和循环稳定性的显著效果。
                                实施例6
用实施例4中x=0.1的化合物系列制备电池,用前述方法对其进行测试。结果在图7中表现为随氟含量增加的轨迹71至75,它们表明较好地平衡Li∶F之比中的F改善了电池的容量和循环稳定性。
                                  实施例7
用实施例4中x=0.2的化合物系列制备电池,用前述方法对其进行测试。结果在图8中表现为随氟含量增加的轨迹81至85,它们表明更精密地平衡Li∶F之比中F的进一步的效果,尤其是对于循环稳定性。
                                  实施例9
如前所述,通过将适当化学计量的前体混合,制备兼有阳离子(Cr)取代和阴离子取代的本发明化合物系列,即Li1+xMyMn2-x-yO4-zFz中的x=0,y=0.2且z=0,0.05和0.1,例如化合物重量比为10.3∶2.31∶1.0∶0.086的MnO2,Li2CO3,Cr2O3和LiF(LiCr0.2Mn1.8O3.9F0.05)。用所得的材料制备测试电池,如图9中随氟含量增加的轨迹92至96所示,这些电池的性能改善可与前述结果相比。利用阳离子Co和Fe取代可以获得相似的结果。
                            实施例10
如前述美国专利5,460,904所述,用实施例6的阳极材料,并使用石油焦炭阴极和聚偏乙烯(polyvinylidene)共聚物基质电解质/隔离体元件,制备一系列Li离子电池。重复的充电循环测试显示,电池的电容量和循环稳定性可与实施例6中的相比。
我们希望,根据以上说明,本发明的其它实施方式对本领域技术人员来说将是显而易见的,而此类改变应包括在后文权利要求书所述的本发明范围之内。

Claims (12)

1.一种氧氟化锂锰化合物,具有通式Li1+xMyMn2-x-yO4-zFz,其中,M是金属,且x≤0.4,y≤0.3,0.05≤z≤1.0。
2.如权利要求1所述的化合物,其中,M是Co、Cr或Fe。
3.如权利要求2所述的化合物,其中,x≤0.2,y=0且0.05≤z≤0.4。
4.如权利要求2所述的化合物,其中,0.1≤x≤0.2,y=0且0.05≤z≤0.4。
5.如权利要求2所述的化合物,其中,0.1≤x≤0.2,y=0且0.05≤z≤0.2。
6.如权利要求2所述的化合物,其中,0.05≤x≤0.2,y≤0.3且0.05≤z≤0.2。
7.一种具有阳极,阴极和位于两极之间的隔离体的可充电电池,其特征在于,阳极包含通式为Li1+xMyMn2-x-yO4-zFz的夹塞化合物,其中,M是金属,且x≤0.4,y≤0.3,0.05≤z≤1.0。
8.如权利要求7所述的可充电电池,其中,M是Co、Cr或Fe。
9.如权利要求8所述的可充电电池,其中,x≤0.2,y=0且0.05≤z≤0.4。
10.如权利要求8所述的可充电电池,其中,0.1≤x≤0.2,y=0且0.05≤z≤0.4。
11.如权利要求8所述的可充电电池,其中,0.1≤x≤0.2,y=0且0.05≤z≤0.2。
12.如权利要求8所述的可充电电池,其中,0.05≤x≤0.2,y≤0.3且0.05≤z≤0.2。
CN97197718A 1996-09-06 1997-09-04 用于锂离子充电电池电极的氧氟化锂锰 Pending CN1229528A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/706,546 1996-09-06
US08/706,546 US5674645A (en) 1996-09-06 1996-09-06 Lithium manganese oxy-fluorides for li-ion rechargeable battery electrodes

Publications (1)

Publication Number Publication Date
CN1229528A true CN1229528A (zh) 1999-09-22

Family

ID=24838083

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97197718A Pending CN1229528A (zh) 1996-09-06 1997-09-04 用于锂离子充电电池电极的氧氟化锂锰

Country Status (5)

Country Link
US (1) US5674645A (zh)
CN (1) CN1229528A (zh)
ID (1) ID17374A (zh)
IL (1) IL128392A0 (zh)
TW (1) TW455566B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100342579C (zh) * 2000-01-27 2007-10-10 雷天绿色电动源(深圳)有限公司 可再充电的固体铬-氟-锂电池
CN100344543C (zh) * 2002-02-21 2007-10-24 东曹株式会社 锂-锰复合氧化物的粒状二级颗粒、其制备方法和其用途
CN102696137A (zh) * 2010-01-07 2012-09-26 株式会社Lg化学 包含在3v区域和4v区域中提供优异充放电特性的锂锰氧化物的正极活性材料

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087042A (en) * 1996-10-18 2000-07-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Positive electrode material for secondary lithium battery
US6040089A (en) * 1997-02-28 2000-03-21 Fmc Corporation Multiple-doped oxide cathode material for secondary lithium and lithium-ion batteries
US6037095A (en) * 1997-03-28 2000-03-14 Fuji Photo Film Co., Ltd. Non-aqueous lithium ion secondary battery
JP3045998B2 (ja) 1997-05-15 2000-05-29 エフエムシー・コーポレイション 層間化合物およびその作製方法
US6277521B1 (en) 1997-05-15 2001-08-21 Fmc Corporation Lithium metal oxide containing multiple dopants and method of preparing same
US5759720A (en) * 1997-06-04 1998-06-02 Bell Communications Research, Inc. Lithium aluminum manganese oxy-fluorides for Li-ion rechargeable battery electrodes
US5932374A (en) * 1997-12-04 1999-08-03 Telcordia Technologies, Inc. Lithium magnesium manganese oxy-fluorides for Li-ion rechargeable battery electrodes
US6004697A (en) * 1997-12-05 1999-12-21 Minnesota Mining & Manufacturing Co. Modified lithium vanadium oxide electrode materials products and methods
JP3928231B2 (ja) * 1997-12-15 2007-06-13 株式会社日立製作所 リチウム2次電池
US5916516A (en) * 1998-02-18 1999-06-29 Mitsubishi Chemical Corporation Fluoridated electrode materials and associated process for fabrication
WO1999060638A2 (en) * 1998-05-15 1999-11-25 Duracell Inc. Battery cathode materials
US5939043A (en) * 1998-06-26 1999-08-17 Ga-Tek Inc. Process for preparing Lix Mn2 O4 intercalation compounds
US6267943B1 (en) 1998-10-15 2001-07-31 Fmc Corporation Lithium manganese oxide spinel compound and method of preparing same
KR100473413B1 (ko) 1998-11-13 2005-03-08 에프엠씨 코포레이션 국부화된 입방형 스피넬 구조의 상을 가지지 않는 층상리튬 금속 산화물 및 그 제조방법
CN1170773C (zh) 1998-11-20 2004-10-13 Fmc公司 含多种掺杂剂的含锂、锰和氧的化合物及其制备方法
US6136476A (en) * 1999-01-29 2000-10-24 Hydro-Quebec Corporation Methods for making lithium vanadium oxide electrode materials
KR100307160B1 (ko) * 1999-03-06 2001-09-26 김순택 리튬 이차 전지용 양극 활물질 및 그 제조 방법
US6153333A (en) 1999-03-23 2000-11-28 Valence Technology, Inc. Lithium-containing phosphate active materials
KR100296877B1 (ko) * 1999-05-27 2001-07-12 김순택 리튬 이차 전지용 양극 활물질 및 그를 이용한 리튬 이차 전지
US6322928B1 (en) 1999-09-23 2001-11-27 3M Innovative Properties Company Modified lithium vanadium oxide electrode materials and products
JP3913941B2 (ja) * 1999-10-14 2007-05-09 株式会社日立製作所 リチウム二次電池用正極活物質およびリチウム二次電池
JP4960561B2 (ja) 1999-12-10 2012-06-27 エフエムシー・コーポレイション リチウムコバルト酸化物及びその製造方法
JP2002075366A (ja) * 2000-08-31 2002-03-15 Kyushu Ceramics Kogyo Kk リチウム二次電池正極用リチウムマンガン酸化物及びその製造方法
US7556655B2 (en) * 2003-03-14 2009-07-07 3M Innovative Properties Company Method of producing lithium ion cathode materials
US7754111B1 (en) 2006-06-09 2010-07-13 Greatbatch Ltd. Method of making silver vanadium oxyfluorides for nonaqueous lithium electrochemical cells
CN101542787A (zh) 2006-09-25 2009-09-23 德克萨斯州立大学董事会 用于锂离子电池的阳离子取代的尖晶石氧化物和氟氧化物阴极
US8062791B1 (en) * 2007-06-11 2011-11-22 Northwestern University Battery cathode
US8916294B2 (en) * 2008-09-30 2014-12-23 Envia Systems, Inc. Fluorine doped lithium rich metal oxide positive electrode battery materials with high specific capacity and corresponding batteries
US8389160B2 (en) * 2008-10-07 2013-03-05 Envia Systems, Inc. Positive electrode materials for lithium ion batteries having a high specific discharge capacity and processes for the synthesis of these materials
US8465873B2 (en) 2008-12-11 2013-06-18 Envia Systems, Inc. Positive electrode materials for high discharge capacity lithium ion batteries
CN101986441B (zh) * 2009-07-29 2013-06-19 比亚迪股份有限公司 一种锂离子电池正极材料的制备方法
WO2011031546A2 (en) 2009-08-27 2011-03-17 Envia Systems, Inc. Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
US8535832B2 (en) * 2009-08-27 2013-09-17 Envia Systems, Inc. Metal oxide coated positive electrode materials for lithium-based batteries
US9843041B2 (en) * 2009-11-11 2017-12-12 Zenlabs Energy, Inc. Coated positive electrode materials for lithium ion batteries
US8741484B2 (en) 2010-04-02 2014-06-03 Envia Systems, Inc. Doped positive electrode active materials and lithium ion secondary battery constructed therefrom
US8928286B2 (en) 2010-09-03 2015-01-06 Envia Systems, Inc. Very long cycling of lithium ion batteries with lithium rich cathode materials
US8663849B2 (en) 2010-09-22 2014-03-04 Envia Systems, Inc. Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
FR2972442B1 (fr) * 2011-03-08 2013-03-29 Accumulateurs Fixes Materiau d'electrode positive pour accumulateur lithium-ion
FR2978137A1 (fr) * 2011-07-21 2013-01-25 Saint Gobain Ct Recherches Produit fondu a base de lithium
US10170762B2 (en) 2011-12-12 2019-01-01 Zenlabs Energy, Inc. Lithium metal oxides with multiple phases and stable high energy electrochemical cycling
US9070489B2 (en) 2012-02-07 2015-06-30 Envia Systems, Inc. Mixed phase lithium metal oxide compositions with desirable battery performance
DE102012102831A1 (de) * 2012-04-02 2013-10-02 Karlsruher Institut für Technologie Dotierter Spinell, Verfahren zu seiner Herstellung, seine Verwendung und Lithium-Ionen Batterie
US9552901B2 (en) 2012-08-17 2017-01-24 Envia Systems, Inc. Lithium ion batteries with high energy density, excellent cycling capability and low internal impedance
US10115962B2 (en) 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
ES2870712T3 (es) * 2013-02-01 2021-10-27 Emd Acquisition Llc Composiciones mejoradas de óxido de litio manganeso
US10573885B2 (en) * 2017-01-24 2020-02-25 Farasis Energy (Ganzhou) Co., Ltd. Lithium source material and preparation method thereof and use in Li-ion cells
EP3399012A1 (en) 2017-05-05 2018-11-07 The Procter & Gamble Company Liquid detergent compositions with improved rheology
EP3399013B1 (en) 2017-05-05 2022-08-03 The Procter & Gamble Company Laundry detergent compositions with improved grease removal
US11784301B2 (en) 2017-06-12 2023-10-10 The Regents Of The University Of California High-capacity lithium metal oxyfluorides with combined metal and oxygen redox for Li-ion battery cathodes
WO2019207065A1 (en) 2018-04-26 2019-10-31 Rhodia Operations Fluorinated oxide based on li and mn
WO2021011542A1 (en) * 2019-07-15 2021-01-21 The Regents Of The University Of California Lithium-excess transition-metal-deficient spinels for fast charging/discharging lithium-ion battery materials

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2098953A5 (zh) * 1970-07-31 1972-03-10 Anvar
DE69010045T2 (de) * 1989-03-30 1995-01-26 Matsushita Electric Ind Co Ltd Sekundärzelle mit nichtwässerigem Elektrolyten.
US5460904A (en) * 1993-08-23 1995-10-24 Bell Communications Research, Inc. Electrolyte activatable lithium-ion rechargeable battery cell
US5296318A (en) * 1993-03-05 1994-03-22 Bell Communications Research, Inc. Rechargeable lithium intercalation battery with hybrid polymeric electrolyte
US5425932A (en) * 1993-05-19 1995-06-20 Bell Communications Research, Inc. Method for synthesis of high capacity Lix Mn2 O4 secondary battery electrode compounds
US5370949A (en) * 1993-07-09 1994-12-06 National Research Council Of Canada Materials for use as cathodes in lithium electrochemical cells
JPH07240200A (ja) * 1994-02-28 1995-09-12 Fuji Photo Film Co Ltd 非水二次電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100342579C (zh) * 2000-01-27 2007-10-10 雷天绿色电动源(深圳)有限公司 可再充电的固体铬-氟-锂电池
CN100344543C (zh) * 2002-02-21 2007-10-24 东曹株式会社 锂-锰复合氧化物的粒状二级颗粒、其制备方法和其用途
CN102696137A (zh) * 2010-01-07 2012-09-26 株式会社Lg化学 包含在3v区域和4v区域中提供优异充放电特性的锂锰氧化物的正极活性材料
US9911977B2 (en) 2010-01-07 2018-03-06 Lg Chem, Ltd. Cathode active material comprising lithium manganese oxide capable of providing excellent charge-discharge characteristics at 3V region as well as 4V region

Also Published As

Publication number Publication date
US5674645A (en) 1997-10-07
TW455566B (en) 2001-09-21
IL128392A0 (en) 2000-01-31
ID17374A (id) 1997-12-24

Similar Documents

Publication Publication Date Title
CN1229528A (zh) 用于锂离子充电电池电极的氧氟化锂锰
CN1258383A (zh) 用作锂离子可充电电池电极的锂铝锰氟氧化物
US7892679B2 (en) Non-aqueous electrolyte secondary battery
CN1280932C (zh) 正电极材料和使用它的电池
EP0701293B1 (en) Method for producing cathode active material for non-aqueous electrolyte secondary battery
CN1401559A (zh) 磷酸亚铁锂的制备方法及采用该材料的锂离子电池
US5506078A (en) Method of forming a stable form of LiMnO2 as cathode in lithium cell
CN102456916A (zh) 锂离子二次电池
EP1026765B1 (en) Positive active material for lithium secondary battery and method of manufacturing the same
CN1784802A (zh) 用于锂电池的负电极
US7799459B2 (en) Insertion compound able to be used as cathodic active material of a lithium rechargeable electrochemical cell
US5693435A (en) Lix CoO2 electrode for high-capacity cycle-stable secondary lithium battery
AU711516B2 (en) Lithium manganese oxy-fluorides for li-ion rechargeable battery electrodes
CN1458706A (zh) 锂离子蓄电池正极材料及合成方法
JP2000223153A (ja) リチウムイオン二次電池
US5932374A (en) Lithium magnesium manganese oxy-fluorides for Li-ion rechargeable battery electrodes
US6764790B2 (en) Lithium secondary battery
CN1329371A (zh) 二次电池的正极活性材料、其制备方法及包含该材料的无水二次电池
EP2744020A1 (en) Complex oxide of alkali metal and tetravalent metal
JP3746099B2 (ja) リチウム電池用正極活物質及びその製造方法
US5747194A (en) Use of a stable form of LiMnO2 as cathode in lithium cell
JPH10241685A (ja) 非水電解質二次電池
JP3658807B2 (ja) 負極炭素材料及びその製造方法、これを用いた非水電解質二次電池
CN1472830A (zh) 锂离子电池的正极材料及其制备方法
JPH0982362A (ja) 非水電解液二次電池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Applicant after: Telcordia Technologies, Inc.

Applicant before: Baer studies Limited by Share Ltd

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: BERTONE RESEARCH CO., LTD. TO: TELCORDIA TECHNOLOGIES, INC.

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication