CN1225311C - 结构增强的裂化催化剂 - Google Patents

结构增强的裂化催化剂 Download PDF

Info

Publication number
CN1225311C
CN1225311C CNB01817891XA CN01817891A CN1225311C CN 1225311 C CN1225311 C CN 1225311C CN B01817891X A CNB01817891X A CN B01817891XA CN 01817891 A CN01817891 A CN 01817891A CN 1225311 C CN1225311 C CN 1225311C
Authority
CN
China
Prior art keywords
catalyst
microballoon
zeolite
kaolin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB01817891XA
Other languages
English (en)
Other versions
CN1498133A (zh
Inventor
D·M·斯托克韦尔
R·P·布朗
S·H·布朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Catalysts LLC
Original Assignee
Engelhard Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/956,250 external-priority patent/US6656347B2/en
Application filed by Engelhard Corp filed Critical Engelhard Corp
Publication of CN1498133A publication Critical patent/CN1498133A/zh
Application granted granted Critical
Publication of CN1225311C publication Critical patent/CN1225311C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/60Synthesis on support
    • B01J2229/64Synthesis on support in or on refractory materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)

Abstract

具有包含大孔多孔基质和在基质孔壁上以结晶沸石自由包层的新型形态的沸石微球FCC催化剂。该催化剂由含有变高岭土和煅烧至经历其放热过程的高岭土的微球形成,其中煅烧至经历其放热过程的高岭土由具有高孔隙容积的高岭土制得。具有高孔隙容积的高岭土可以是研磨极细高岭土或经研磨的、初始淤浆点小于57%固体的高岭土。

Description

结构增强的裂化催化剂
相关申请的交叉引用
本申请是2000年9月22日提出的美国专利申请第09/667,677号的部分继续申请。
发明的背景
本发明涉及包括含有Y-八面沸石的微球的、具有特别高的活性和其他优良性质的新型液体催化裂化催化剂,制备该催化剂的方法和该催化剂在石油原料的裂化中特别是在短停留时间工艺中的使用。
从二十世纪六十年代起,多数商品化液体催化裂化催化剂就含有作为活性组分的沸石。该催化剂采取了被称为“微球”的小颗粒的形式,而微球中包含活性沸石组分和非沸石组分。非沸石组分经常被称作催化剂中的沸石组分的基质。非沸石组分起到许多涉及催化剂的催化和物理性质的重要的作用。Oblad对这些作用描述如下:
“基质被认为起到筛中的钠的接收器的作用,由此为基质催化剂中的沸石颗粒增加了稳定性。此外,基质的作用还有:稀释沸石;为其提供对热、蒸汽和机械磨损的稳定性;提供高孔隙率以将沸石的能力使用到其最大并使其再生变得容易;最后,在大规模催化裂化中,在再生、裂化和热贮存过程中,提供对热传递来讲重要的整体性质”(A.G.Oblad,“分子筛裂化催化剂”,《油和气杂志》(The Oil and Gas Journal)第70卷第84页,1972年3月27日)。
已有技术中的液体裂化催化剂中,将活性沸石组分用两种普通方法之一结合进催化剂的微球中。在一种方法中,将沸石组分结晶,然后在一个单独的步骤中混入微球中。在另一种方法即现场方法中,首先形成微球,然后沸石组分在微球本身中结晶以提供含有非沸石组分和沸石组分二者的微球。
长期以来人们已经认识到,液体催化裂化催化剂若要取得商业上的成功,就必须具有商业上可以接受的活性、选择性和稳定性特性。它必须具有足够的活性以提供经济上有吸引力的产率,它必须具有良好的向产生需要的产物且不产生不需要的产物的方向的选择性,它必须具有足够的湿热稳定性和耐磨性从而具有商业上有用的寿命。
在商业化的催化裂化方法中,两种特别不受欢迎的产物是焦炭和氢。这些产物的相对于汽油的产率的即使小幅度的上升可以引起显著的实际问题。例如,所产生的焦炭的量的增加会在高度放热的催化剂再生过程中因焦炭的燃烧而引起不受欢迎的热的增加。相反地,焦炭产量不足也可能破坏裂化过程的热平衡。此外,在商业化精炼中,使用了昂贵的压缩机来处理大体积的气体(例如氢)。因此,所产生的氢的体积的增加会显著增加精炼厂的资本开支。
美国专利第4,493,902号(在此处通过引用将其所讲解的内容并入本文,并且该美国专利在下文中简称为“`902”)公开了包含含有Y-八面沸石大于约40重量%(优选50-70重量%)的、耐磨损、高沸石含量和具有催化活性的微球的新型液体裂化催化剂和通过在多孔微球中结晶多于40%钠-Y-八面沸石制备该催化剂的方法。该微球包含两种不同形式的具有化学活动性的煅烧粘土的混合物。这两种形式的煅烧粘土是变高岭土(煅烧至经历与脱羟基有关的强吸热反应的高岭土)和在比通常的高岭土转化为变高岭土的条件更剧烈的条件下煅烧的高岭土,即煅烧至经历特征性的高岭土放热反应的高岭土,有时被称为尖晶石型煅烧高岭土。在一个优选的实现方案中,将含有两种形式的煅烧高岭土的微球浸入碱性硅酸钠溶液中,加热,优选加热至可以得到的最大量的Y-八面沸石在微球中结晶。
在实施`902的技术时,在其中进行沸石的结晶的多孔微球,优选通过将粉状的未加工(水合)高岭土(Al2O3:2SiO2:2H2O)和经历放热过程的粉状煅烧高岭土以及少量硅酸钠一起形成含水基料浆而制备,其中,硅酸钠在加入喷雾干燥器中形成微球的料浆中作为流化剂,而后起为经喷雾干燥的微球的组分提供物理完整性的作用。随后,含有水合高岭土和经历放热反应的煅烧高岭土的喷雾干燥后的微球在比使高岭土经历放热过程所需的条件的剧烈程度较低的控制的条件下煅烧,从而将微球的水合高岭土部分脱水并使其转化成变高岭土。这样就生成了含有所希望的变高岭土、经历放热反应的煅烧高岭土和硅酸钠粘合剂混合物的微球。在`902专利的说明性例子中,喷雾干燥器的进料中含有约等重量的水合土和尖晶石,而得到的煅烧微球含经历放热过程的粘土比变高岭土稍多。`902专利指出,煅烧微球包含约30-60重量%变高岭土和约40-70重量%以经历其特征性放热反应为特点的高岭土。该专利中所描述的一个较非优选的方法使用了将含有已经煅烧至变高岭土状态的高岭土和经历放热过程的高岭土,但不合任何水合高岭土的混合物料浆喷雾干燥,从而得到含有变高岭土和直接经历放热过程的高岭土的微球,而不经过使水合高岭土转化为变高岭土的煅烧。
在实施`902专利中所描述的发明时,包含经历放热过程的煅烧高岭土和变高岭土的微球在结晶引发剂(晶种)的存在下与苛性碱加强的硅酸钠溶液反应,从而将微球中的氧化硅和氧化铝转化为合成钠八面沸石(Y-沸石)。将微球从硅酸钠母液中分离出来,用稀土、铵离子或二者进行离子交换,从而形成催化剂的稀土或各种已知稳定形式。`902专利的技术提供了获得人们所需的和独特的与高活性有关的高沸石含量、好选择性和热稳定性以及耐磨性的组合的手段。
上述技术已经取得了广泛的商业成功。由于能够得到同时具有耐磨性的高沸石含量的微球,石油精炼厂已经可以得到特别设计的具有特定性能目标(例如改进的活性和/或选择性)的催化剂,并无需昂贵的机械再设计。现在提供给美国和美国以外的石油精炼厂商的(流化催化裂化)催化剂中相当一部分是基于此技术的。在气体压缩器的限制使得降低气体发生量的催化剂变得非常受欢迎的同时,FCC单元受再生器可以容忍的最高温度或鼓风机容量所限制的精炼厂商寻找选择性上的改进,从而减少焦炭发生量。看起来,少量的焦炭减少可以代表着具有鼓风机或再生器温度限制的FCC单元操作的显著的经济利益。
裂化催化剂的裂化活性和汽油选择性的改进不一定一起发生。由此,裂化催化剂可以具有突出的高裂化活性,但如果这种活性带来的是以减少汽油产量为代价的大量的向焦炭和/或气体的转化,该催化剂的用途将是有限的。目前的FCC催化剂的催化裂化活性被归结于沸石和非沸石(例如基质)成分两者。沸石裂化倾向于高汽油选择性。基质裂化倾向于低汽油选择性。在适当的使用稀土阳离子的离子选择处理后,`902专利中描述的原地生成的高沸石含量微球同时具有高活性和高汽油选择性。随着这些未混合微球的沸石含量增加,活性和选择性都倾向于增加。这可以被解释为是由于随着沸石含量的增加而带来的基质含量的减少,和非选择性的基质裂化的重要地位的下降。因此,增加高沸石含量微球中的沸石含量被报告称是非常有益处的。
一般地,`902专利的方法形成的催化剂的活性和选择性特性甚至可以通过具有相对较低的总孔隙率的催化剂(象将沸石组分结合进基质中而得到的流化催化裂化催化剂)而得到。特别是在某些情况下,该催化剂的微球具有低于约0.15cc/g或者甚至低于约0.10cc/g的总孔隙率。一般地,`902专利的微球具有低于0.30cc/g的总孔隙率。在此,“总孔隙率”指由汞孔隙率测定方法所确定的、直径在35-20,000的孔的容积。`902专利提到了总孔隙率低于0.15cc/g的微球表现出所发现的活性和选择性这样的惊人发现。例如,这一结果与文献中公开的低孔隙容积“会由于扩散限制而导致选择性的损失。”相矛盾。
人们相信,按照`902专利所形成的催化剂微球的相对低的孔隙率不对活性和选择性特性起有害作用,因为对于该专利所处时期所使用的典型的FCC工艺条件而言,`902专利的微球不是扩散限制性的。特别是,典型的催化剂与待裂化的进料相接触的时间为为5秒或更长。因此,尽管典型的通过向基质中机械混入沸石所形成FCC催化剂可能更具多孔性,已有技术中FCC提升管中的反应时间不能产生活性或选择性上的优势。受这一结果启发,得到了在FCC催化剂中,至少在沸石结构外,传输过程根本不是限制因素的结论。于此相反的论点与事实不符,并很容易地被认为是“自私自利的”而被驳回。重要的是,按照`902专利而制备的微球的耐磨损性比结晶沸石催化组分被物理混入非沸石基质的常规FCC催化剂更好。
但是,最近,开发了大幅度降低催化剂和待裂化的进料的接触时间的FCC设备。通常,反应器是一根提升管,其中,催化剂和烃原料从提升管底部进入,并被通过提升管输送。热的催化剂导致烃在通过提升管的过程中裂化,并且,在从提升管中排出时,将经裂化的产物同催化剂分离。催化剂随后被输送到一个再生器中,在再生器中除去焦炭从而清洁催化剂,同时产生提升管反应器中催化剂所需要的热。新式的提升管反应器在较短停留时间和较高操作温度下操作以减少焦炭选择性和焦炭差。有几种设计甚至不使用提升管,进一步减少接触时间至低于一秒。硬件变化改进了汽油和干气选择性。这些FCC单元的变化在营销中被宣传为独立于所购买催化剂种类而具有价值,从而暗示现有的催化剂技术中不存在系统性问题。
在FCC类工艺中处理越来越重的原料和此类原料提高焦炭产量和产生不受欢迎的产物的倾向也导致了新的原料与催化剂接触的方法的产生。与FCC催化剂以很短时间接触的方法得到了特别的注意。由此,在提升管中的少于3秒的短接触时间以及1秒或更短的极短接触时间,已经显示出了在减少焦炭和干气产量的同时对汽油的选择性的改进。
为了补偿FCC工艺中催化剂与油的接触时间的不断下降,所使用的“平衡”催化剂倾向于变得越来越活跃。由此,需要使得催化剂的总表面积的增加,同时,加入催化剂的稀土氧化物助催化剂的量也在增加。此外,裂化温度在升高以补偿转化率的降低。不幸的是,已经发现,在装置修补(revamp)之后,在短接触时间(SCT)内形成的塔底产物的API比重经常增加,从而使得有些人提出烃原料最重的部分需要更长时间裂化。此外,尽管催化剂的高总表面积得到了重视,FCC方法仍旧重视耐磨损性。因此,尽管FCC催化剂针对现在所使用的新的短接触时间和极短接触时间的优化的需求对于参与这一技术的人员并非显而易见,但这种需求正越来越可能出现。
现在的理论是,在以短接触时间处理烃时,进一步的改进可以通过消除现有催化剂中可能仍旧存在的扩散限制而实现。这一结论即使在这些材料在这一应用中显示出其优越性时就已经得出了。我们推测,这些催化剂的改进可以通过在所谓混合法制备的催化剂中优化催化剂的孔隙率和消除活性点阻塞和粘合剂相的扩散限制而实现。
尽管本受让人已经通过增加喷雾干燥微球沸石前体的大孔孔隙率而制备了具有增加了的沸石含量和增加了的活性的沸石微球,由于在过去的FCC处理方法中没有发现扩散限制,形成的沸石微球催化剂的孔隙率过去未被作为一个问题考虑。例如,转让给同一受让人的Speronello的美国专利第4,965,233的公开内容包括通过形成允许在多孔基质中生长的沸石的量增加的、高度多孔的前体微球来增加原地生成的催化剂的沸石含量。高度多孔的前体微球是通过喷雾干燥水合高岭土的料浆而形成的,其中水合高岭土的特点是,在含有尖晶石煅烧粘土的同时含有大量大(大于2微米)的高岭土堆叠物。喷雾干燥后,粗水合高岭土生成具有所要求的高大孔含量的微球,而Y-沸石可以在这些大孔中生长。类似地,转让给同一受让人的Dight等的美国专利第5,023,220号也通过喷雾干燥水合粘土、变高岭土和尖晶石的混合物增加了前体微球的大孔孔隙率。这些催化剂微球带有相当量的沸石,并且是很活跃和具有选择性的。此外,催化剂的高氧化铝、氧化硅-氧化铝基质部分经常完全被现场生成的沸石所包围,因此,在短接触时间FCC条件下,基质现在被认为仅提供降低了的塔底产物的裂化。
因此,本发明的一个目的是提供催化剂和可重复地制备之的方法,其中催化剂是具有沸石包覆基质形态的、耐磨损的、高度多孔的催化剂。
本发明的另一个目的是提供催化剂及其制备方法,其中催化剂具有改进的钠去除特性,从而可以容易地和一致地得到低钠值。
本发明的另一个目的是提供针对短接触时间FCC优化的催化剂,特别是使塔底产物的裂化最大化和淤浆比重最小化至至少与SCT修补前一样小的催化剂,并且不带来干气方面的不利结果。
本发明的另一个目的是提供针对短接触时间FCC优化的催化剂,特别是允许使用者实现SCT硬件的全部焦炭选择性降低优点的催化剂。
本发明的另一个目的是提供针对短接触时间FCC优化的催化剂,特别是使汽油产率最大化的催化剂。
发明的概述
按照本发明,形成了新型沸石微球,该微球具有大孔多孔性、具有非常高活动性所要求的足够沸石含量并具有独特的形态从而在SCT FCC方法中在改进的塔底产物裂化的同时取得有效的烃至裂化汽油的转化。本发明的新型沸石微球是由新方法得到的,该方法是美国专利4,493,902中所描述的技术的变型。已经发现,如果催化剂的非沸石、富含氧化铝的基质是由其颗粒度使90重量%的水合高岭土颗粒小于2微米且经过研磨和煅烧至经历放热过程的极细水合高岭土来源而得到的,则可以制得大孔沸石微球。更普遍地,在本发明中得到FCC催化剂大孔多孔性的方面有用的FCC催化剂基质是由氧化铝来源得到的。该氧化铝来源的例子包括煅烧至经历放热过程的的高岭土。该高岭土具有特定的水孔隙容积,在这一点上该高岭土与已有技术中用于形成催化剂基质的煅烧高岭土不同。水孔隙容积由下述的初始淤浆点(ISP)测试得到。
所形成的微球催化剂的形态相对于过去形成的原地生成的微球催化剂而言是独特的。经煅烧至经历放热过程的研磨极细水合高岭土的使用产生了具有大孔多孔结构原地沸石微球,其中,结构中的大孔在结晶后基本上由沸石包覆或加衬。此处定义的大孔多孔性指催化剂具有在600-20,000范围内的孔至少有压入汞0.07cc/gm的大孔容积。本发明的催化剂还应具有小于500m2/g的BET表面积。本发明的新型催化剂对于FCC过程(包括烃原料与催化剂接触的时间为3秒获更少的短接触时间过程)是优化的。
从最广义上讲,本发明并不限于具有仅从高岭土得到的非沸石基质的大孔催化剂。由此,任何在沸石合成中具有适当的多孔性和反应性的组合并可以产生令人满意的的催化剂大孔多孔性和形态的氧化铝来源都可以使用。令人满意的形态包括在整个催化剂中很好地分散的基质,和基质的大孔壁以沸石为衬并基本不带粘合剂涂层。因此,与过去的催化剂相比,不仅催化剂的孔隙表面有了极大的改进,而且活性基质在整个微球中分散,沸石晶体容易接近烃原料。尽管不希望被任何操作理论所约束,看来过去的将沸石通过物理混合混入基质并用粘合剂粘合而结合的催化剂虽然具有足够的大孔孔隙率,但是粘合剂覆盖了活性沸石催化剂,由此阻塞了其可接近性。本微球催化剂由于其大孔多孔性而具有允许快速扩散进入催化剂的形态学和增强的基质的分散,并且进一步由于沸石自由地在孔隙的壁上包覆而提供了沸石的最高的可接近性。术语“自由”指沸石相存在于基质的表面上而不为任何粘合剂相所阻断。仅仅具有大孔多孔性并不能提供我们得到的结果,因为常规混合催化剂具有类似的大孔多孔性。因此,是多孔性和被沸石包覆的大孔壁给出了令人惊讶的选择性结果。
本发明发现,对于分子经常太大(如果不是一般太大的话)而无法进入沸石的孔隙中的重的烃原料,以原料在与基质接触之前接触沸石为最佳。而这一点是他人无法预见的。实际上,流行的“分步裂化”理论提出相反的论点,即较大的烃分子首先在活性基质上裂化,产生的较小分子随即在沸石内部裂化。为追随和支持这一理想化的概念,人们进行了很多研究和宣传活动。
附图的简要说明
附图1是实施例6中制备的本发明的沸石微球的扫描电子显微镜照片。
附图2是显示本发明的催化剂和用于对比催化剂的氮滞后循环的图。
附图3是发明的催化剂与常规催化剂相比所得到的产率变化的图。
附图4显示附图3中的试验得到的汽油产率。
发明的详述
本发明的催化剂微球是通过转让给同一受让人的美国专利第4,493,902号所公开的的一般方法制备的。重要的是,本发明的催化剂的非沸石、富含氧化铝的基质以从水合高岭土来源得到为宜,该水合高岭土来源的形式是极细粉,其中至少90重量%的颗粒小于2.0微米,优选至少90重量%的颗粒小于1微米。将极细水合高岭土研磨和煅烧至经历放热过程。典型的沸石微球由富含氧化铝的基质形成,而该基质则由从具有比本发明中所用的尺寸为大的高岭土通过煅烧至至少基本经历其特征性的放热过程而得到。1号Satintone(一种商业化的、煅烧至经历其特征性的放热过程而基本未形成富铝红柱石的高岭土)是一种起初在商业上用于形成富含氧化铝的基质的材料。1号Satintone是由至少70%的颗粒小于2微米的水合高岭土得到的。其他用于形成富含氧化铝的基质的原料来源包括煅烧至基本经历其特征性放热过程的、经精细分割的水合高岭土(例如在标题为“铝硅酸盐颜料”的Engelhard技术报告(Engelhard Technical Bulletin)第TI-1004号中所描述的一种商业化的水合高岭土ASP600(EC-1167))。册页粘土(booklet clay)得到了最广泛的商业应用,并在全世界范围内取得了巨大的成功。在本发明之前,这些较大的粘土颗粒代表了在形成富含氧化铝的催化剂微球基质方面的技术水平而没有发现任何不足之处。
虽然基本沿用了美国专利第4,493,902号中所描述的形成原地微球状催化剂的过程,但是,富含氧化铝的基质是从极细水合高岭土得到的。“极细”粉末是指用SedigraphTM(或沉降法)测量,至少90重量%的水合高岭土颗粒的直径必须小于2微米,以小于1微米为宜。特别是,已经发现,使用具有此颗粒度分布的、经研磨和煅烧至经历其特征性放热过程的水合高岭土颜料,即使在沸石结晶后的催化剂微球中,也会产生更大的大孔孔隙率。已发现的煅烧极细高岭土的松散堆积可以被比作“卡片盒”,其中各个颗粒随机地与相邻的颗粒以非平行的方式对齐。此外,煅烧极细高岭土以具有“卡片盒”的形态的多孔聚集体的形式存在,不仅提供了多孔聚集体,而且还提供了更多的聚集体之间的多孔区域。为了提供各个高岭土小片的随机堆叠,极细水合高岭土的研磨是必须的。
高岭土或颜料是大致分子式为Al2O3.2SiO2.XH2O的自然存在生的水合铝硅酸盐,其中X经常为2。高岭土、珍珠石、地开石和多水高岭土是高岭土族的矿物种类。众所周知,在空气中加热高岭土时,第一个转换在约550℃发生,并与吸热的脱羟基反应相联系。生成的材料一般称作变高岭土。在材料被加热到约975℃前,变高岭土保持不变,此后开始发生放热反应。该材料经常被描述为经历特征性放热反应的高岭土。有些著作将该材料称作有缺陷的铝-硅尖晶石或者γ-氧化铝相。参见《沸石分子筛》(Donald W.Breck著,John Wiley and Sons 1974年出版)第314-315页。继续加热至约1050℃时,包括富铝红柱石的高温相开始形成。正如在该领域中众所周知的,向富铝红柱石转化的程度取决于时间-温度关系和矿化剂的存在。
在本发明的优选的实现方案中,将用来制备富含铝的基质的研磨极细水合高岭土煅烧至经历其特征性放热反应且生成或不生成富铝红柱石。特别优选的用于本发明中以形成大孔沸石微球的基质来源是Ansilex93。Ansilex93是由硬高岭土粗产物中的精细尺寸部分得到的,通过喷雾干燥、研磨和煅烧而制备低磨耗颜料,其方法在Fanselow等的美国专利第3,586,523号中得到描述。该专利的全部内容通过引用并入本文。将极细水合基质来源喷雾干燥、研磨然后煅烧至经历放热反应,可以但不必须生成富铝红柱石。上述美国专利第4,493,902号公开了煅烧高岭土至富铝红柱石,直到X-射线衍射强度可以与完全结晶标准参比物相比较。尽管如`902专利所公开的煅烧高岭土至放热过程之外从而使其X-射线衍射强度可以与完全结晶标准参比物相比较是包含在本发明的范围之内的,以煅烧高岭土至其特征性的放热过程之外从而使之转化为小微晶尺寸富铝红柱石为宜。小微晶尺寸富铝红柱石具有完全结晶富铝红柱石标准参比物的适当的衍射线和沥滤化学组成,但因其微晶较小,衍射线较弱。衍射线强度/线宽度与微晶尺寸之间的关系是众所周知的。由于在实践中完全煅烧高岭土至富铝红柱石需要过多的时间和温度,以煅烧高岭土至放热反应之外形成小微晶富铝红柱石基底为宜。此外,煅烧高岭土至放热反应之外而形成完全结晶富铝红柱石可能由于烧结而带来大孔孔隙率的损失。而且,煅烧高岭土至完全结晶富铝红柱石后,ISP和堆积密度将显著增大。因此,优选煅烧极细高岭土经历放热反应至其具有含有彻底结晶富铝红柱石的高岭土参比样品的X-射线衍射峰面积积分的20-80%,更优选煅烧极细高岭土经历放热反应至其具有含有彻底结晶富铝红柱石的高岭土参比样品的X-射线衍射峰面积积分的50-70%。
使用Ansilex材料的不寻常之处在于该材料是由硬高岭土得到的。典型的硬高岭土带有灰色色调或色彩,因此也被称为“灰色粘土”。这些硬高岭土还具有被破碎为具有粗糙表面的不规则形状碎片的特性。硬高岭土还含有相当大量的铁,典型的含量为0.6至1重量%的Fe2O3。Grim的《(应用粘土矿物学》(MaGraw Hill书籍有限公司(MaGraw Hill Books Inc.),1962年)第394-398页中对硬高岭土进行了描述,其公开的内容通过引用。在本发明之前,尽管这些材料以混合方式的使用已经为人们充分接受,其在形成原地生成的FCC微球催化剂的富含氧化铝的基质中的使用尚属未知。硬高岭土也偶尔被用作原地生成式微球中变高岭土的来源,但并没有什么优点。在并不希望被任何理论所限制的条件下,看来过去煅烧灰色粘土在原地生成式基质领域中的应用为以下因素所妨碍:(a)其高铁含量和由此的将引起焦炭和气体生成的可能性,和(b)其所形成的料浆的膨胀特性,显然这将引起处理时间上的毫无意义的浪费以及降低高粘度料浆的粘度以在低固含量下喷雾干燥而导致的成本的增加。我们现在相信这些膨胀性问题和多孔性优点是在本质上和根本上互相联系的。对于前一点,减少焦炭和气体是原地生成式催化剂所特别追求的目标,因为Harden的最初的配方制造了与其特别高的无定形基质活性相称的焦炭和气体。这使得此后的发明中铁和尖晶石的含量越来越低。我们得到了令人惊讶的发现,即铁与焦炭和气体的选择性之间其实没有联系。。
富含氧化铝的基质可以由以其在煅烧材料的堆积时提供多孔性为一般特征的含氧化铝的材料得到。为确定最终形成本发明催化剂的基底的煅烧富含氧化铝材料的孔隙容积而开发了一个试验。该试验通过确定从固体样品制造料浆所需要的最小量的水表征煅烧富含氧化铝材料的水孔隙容积。在该实验中,在一个杯中,用搅拌棒或刮勺将粉末样品与含有类似例如佐治亚州(GA)亚特兰大(Atlanta)的Viking Industries出品的Colloid 221的分散剂的水混合。将刚好足够的水加入干样品,从而将干粉转化为单独一块在其自身重量下刚刚开始流动的膨胀的泥浆。初始淤浆点(ISP)可以由下式计算:ISP=[(干燥样品的克数)/(干燥样品的克数+所加的水的克数)]×100。该单位无量纲并以固体百分数的形式报告。
这一水量大于样品的(内部)水孔隙容积,但显然与水孔隙容积有关。较低的初始淤浆点固体百分数值显示样品中的较高的水吸收能力或较高的孔隙容积。按本发明用于制造高氧化铝基质的煅烧含氧化铝材料的初始淤浆点应小于57%固体,优选48-52%固体。于此项对比,Satintone1号的初始淤浆点试验得到的结果是58%固体。
据此,催化剂微球的基质不仅可以从作为含氧化铝材料有用的极细水合高岭土得到,也可以从层离高岭土、片状氧化铝和沉淀氧化铝得到。册页或堆叠高岭土的层离方法在该领域中是人所共知的。优选使用颗粒研磨媒介(例如正如人所共知那样使用砂子或玻璃微囊)的方法。层离后,将小片状物研磨从而生成随机堆叠或“卡片盒”形态。
优选由水合高岭土的研磨-煅烧-研磨处理制造本发明的基质前体,其原因在于,看来当上述材料与水合高岭土一起被作为变高岭土源而形成活性前体微球时,可在高孔隙容积下得到更好的耐磨损性。基质前体也可以被湿磨以进一步破碎前体的聚集体,尽管不优选这样做。研磨看起来会减小微球的孔隙容积,而所有其他性质则保持不变。在使用预煅烧的变高岭土粉形成活性前体微球,减小微球孔隙容积的方法是有用的。Dight曾指出,使用变高岭土粉会增加前体微球孔隙容积,但可能需要过高沸石含量和过大表面积以使这些微球具有可以接受的耐磨损性。尽管可以帮助调节所需要的沸石含量并且或许可以改善该研磨基质在微球中的分散,聚集体的破碎看上去会起打断强连接的作用,而这种连接如果不被打断,就可以加强最终的催化剂,因此,这种操作并非优选。
从化学合成的尖晶石和/或富铝红柱石得到基质也在本发明的范围中。由此,Okata等在刊载于《美国陶瓷学会会志》(Journal of AmericanCeramic Society)第69卷第9期第652至656页(1986年)的“源自SiO2-Al2O3干凝胶的尖晶石相的表征和富铝红柱石的形成过程”中公开指出,可以由溶于乙醇的无水硝酸铝和四乙氧基硅烷的缓慢和快速的水解制备两种干凝胶。上述文献的全部内容通过引用并入本文。缓慢水解方法将上述混合物在60℃下的烘箱中凝胶一至二周,而快速水解方法将氢氧化铵溶液加入混合物并在空气中干燥。用缓慢水解方法制备的干凝胶在煅烧时从无定形态直接结晶成富铝红柱,而用快速水解的方法制备的干凝胶则在富铝红柱石形成前结晶成尖晶石。只要此类煅烧合成材料具有本发明范围内的水孔隙容积,该材料就可以被用于形成本发明的催化剂的高氧化铝基质。
用于生成催化剂骨架的由用ISP试验确认的高水孔隙容积含氧化铝材料而形成的本发明的结晶沸石微球的孔隙容积在直径40-20,000的范围内大于0.27cc/gm,优选大于0.30cc/gm汞。更特别地,本发明的催化剂的尺寸在600-20,000范围内的孔的大孔容积至少为0.07cc/gm汞,优选至少为0.10cc/gm汞。尽管常规的混入沸石的催化剂具有与本发明的催化剂可以相比较的大孔孔隙率,混入沸石的催化剂不具有该新式的“沸石位于基质上”的形态,也不具有本发明的催化剂的性能。本发明的催化剂所具有的BET表面积小于500m2/g,优选小于475m2/g,最优选在约300-450m2/g的范围内。本发明的催化剂的适度的表面积与大孔多孔性相结合,在减少气体和焦炭的产率的同时,取得了希望得到的活性和对汽油的选择性。
熟悉这一领域的人员会容易地估计到,真正有意义和必须与可用的孔隙容积相平衡的是经蒸汽老化后的表面积和活性。所提及的催化剂最终产品(新鲜)催化剂的优选的表面积的选择使得在1500、1atm蒸汽压强下四小时汽蒸后表面积一般低于300m2/gm。
我们进一步发现,即使基质的一部分是由粗粒含氧化铝材料得到的,本发明的催化剂的大孔多孔性仍可以维持,而上述粗含氧化铝材料原本不能达到本发明所希望的由ISP实验所确定的水孔隙容积。由此发现,煅烧至经历放热过程的极细高岭土和册页高岭土的混合物可以产生具有高孔隙容积、宽大的大孔但低沸石含量的催化剂。此类催化剂在极端苛刻的裂化环境下可能是有价值的。
生产本发明的FCC微球的一般过程在是这一技术中是众所周知的,并可以从美国专利第4,493,902号所公开的过程得出。正如其中所公开的,制备具有活性的精细分割的水合高岭土和/或变高岭土以及生成基质的含氧化铝材料(例如煅烧至经历其特征性放热反应的极细高岭土)的水基料浆。随后将水基料浆喷雾干燥从而得到包含水合高岭土和/或变高岭土和煅烧至至少基本经历其特征性放热过程从而形成高铝氧化物基质的高岭土的混合物的微球。优选在喷雾干燥水基料浆前加入适量硅酸钠。在喷雾干燥的过程中和喷雾干燥后,硅酸钠在高岭土颗粒间起粘合剂的作用。
形成微球的水基料浆的反应性高岭土可以由水合高岭土或煅烧水合高岭土(变高岭土)或其混合物形成。高岭土原料料浆的水合高岭土可以是从粗粒白高岭土天然物质得到的ASP600或ASP400中任一者或其混合物。也可以使用颗粒尺寸更细小的水合高岭土,包括从灰色粘土沉积物得到的水合高岭土,例如LHT颜料。已经成功地使用了经提纯的水处理过的来自美国佐治亚州(Georgia)中部的高岭土。这些水合高岭土的煅烧产物可以被用作原料料浆的变高岭土组分。使用变高岭土得到的高孔隙容积可以被基质前体的湿磨所抵消。作为粘合剂的硅酸盐优选由SiO2对Na2O的比例为1.5至3.5的硅酸钠提供,其中特别优选的比例为2.88至3.22。
也可以将一定量(例如高岭土重量的3至30%)的沸石引发剂在喷雾干燥前加入水基料浆。在此使用的术语“沸石引发剂”应包括任何含有氧化硅和氧化铝的材料,该材料使在无引发剂时不会发生的沸石结晶过程得以发生或显著缩短无引发剂时发生的沸石结晶过程。此类材料也被称为“沸石晶种”。沸石引发剂可以具有被可X-射线衍射所检测到检测不到的结晶度。
在此,在将高岭土的水基料浆喷雾干燥而形成微球前向其加入沸石引发剂被称作“内部晶种放入”。除此之外,可以在高岭土微球形成后和结晶过程开始之前将沸石引发剂与高岭土微球混合,这种作法在此被称为“外部晶种放入”。
本发明中使用的沸石引发剂可以来自许多来源。例如,沸石引发剂可以包含回收的结晶过程本身期间产生的细小物质。其他可以使用的沸石引发剂包括另一沸石产品的结晶过程中产生的细小物质或硅酸钠溶液中的无定形沸石引发剂。此处所使用的“无定形沸石引发剂”指无X-射线衍射检测得到的结晶度的沸石引发剂。
晶种可以如4,493,902公开的内容制备。特别优选的晶种公开于4,631,262中。
喷雾干燥后,可以将微球直接煅烧。除此之外,还可以用酸中和以加强结晶后催化剂的离子交换。酸中和处理包括在控制的pH下将未煅烧的、喷雾干燥后的微球和无机酸一起加入搅拌下的料浆。调整固体和酸的加入速度以维持约2至7的pH,优选由约2.5至4.5且目标为3的pH。将硅酸钠粘合剂凝胶化为氧化硅和可溶性钠盐,该钠盐随后由过滤和洗涤而由微球中除去。硅胶粘合的微球随后被煅烧。在每一情况下,煅烧在足以将微球的任何水合高岭土组分转化为变高岭土而保持微球的过去已煅烧的高岭土组分基本不变的温度和时间(例如在箱温约为1,350的马弗炉中两小时)下进行。得到的煅烧多孔微球包含变高岭土和煅烧至经历其特征性放热过程的高岭土的混合物,在该混合物中,在同一种微球中含有两种煅烧高岭土。此外,如前所述,任何经适当地煅烧的氧化铝都也可以代替煅烧至经历其特征性放热过程的高岭土。一般而言,变高岭土与煅烧氧化铝之比应为约1∶0.66至1∶4,优选1∶1.5至1∶3。因此,煅烧微球应一般包含约25-60重量%变高岭土和40-75重量%煅烧至经历其特征性放热过程的高岭土。优选包含30-40重量%变高岭土和60-70重量%煅烧至经历其特征性放热过程的高岭土。同时存在的还有源于硅酸钠粘合剂的Na2O和SiO2
如下文详细描述的,通过将煅烧高岭土微球与适量其他组分(至少包括硅酸钠和水)混合,使Y-八面沸石结晶,然后将得到的料浆加热至足以在微球中结晶Y-八面沸石的温度和时间(例如至200°-215、10-24小时)。可以按照4,493,902所表述的规定进行。尽管如此,等价的、重新编排的配方提供如下。
我们所使用的结晶配方是基于一系列假设和一定的原料的。晶种由4,631,262描述,并以外部使用为宜。假设变高岭土、晶种、硅酸钠溶液、煅烧硅酸钠粘合剂和硅胶的SiO2、Al2O3和Na2O组分的活性为100%。假设在煅烧至经历其特征性放热过程至尖晶石形态的高岭土中的氧化铝和氧化硅的活性分别为1%和9%。尽管使用了这两个值,他们被认为是并不准确的。假设在煅烧至经历其特征性放热过程至富铝红柱石形态的高岭土中的氧化铝和氧化硅的活性分别为0%和67%。这两个数值被认为是准确的,并代表了晶体中3∶2富铝红柱石的惰性和游离氧化硅相的完全溶解性。由于变高岭土氧化铝在合成中是限制性的试剂,并且沸石的体积远大于对应的变高岭土的体积,对于给定的微球孔隙容积,适当地限制沸石的产率是重要的。否则,结晶后将得到很少或得不到剩余孔隙容积。这是已有技术中的情况。另一方面,如果在微球中没有足够的限制性试剂以生长足够的沸石从而适当地硬化催化剂,正如本技术领域中众所周知的,可以以变高岭土微球的形式加入更多的营养氧化铝。由此,为了得到孔隙容积和耐磨性,应使用严密的工艺控制。
基于这些假设,将以下反应组分的重量比用于总结晶配方中。除被定义为Al2O3晶种克数与微球总克数的比值的晶种加入量外,惰性组分不计入比例中。
重量比 SiO2/Na2O  SiO2/Al2O3  H2O/Na2O  Al2O3晶种/微球
宽泛值 2.50-3.1  4.5-15  5-15 .01-0.0001
优选值 2.55-2.95  5.5-8  5.5-8  0.006-0.001
典型值(富铝红柱石)(尖晶石)(酸-营养) 2.5752.752.9  7.0  7.0  0.004
可以从多种来源将硅酸钠和氢氧化钠反应物加入结晶反应器。例如,反应物可以以N牌硅酸钠和氢氧化钠的水基混合物的形式加入。再例如,至少一部分硅酸钠可以由另一个含沸石产品的结晶过程中产生的母液提供。
结晶过程中止后,将含Y-八面沸石的微球从其至少相当大部分母液中例如经过滤而分离出来。在过滤步骤中或过滤步骤后通过将微球与水接触而洗涤微球可能是有益处的。洗涤步骤的目的是除去若非如此将被留在微球中的母液。
可以进行“氧化硅保留”处理。关于氧化硅保留的美国专利第4,493,902号第12栏第3-31行通过引用结合于此。
经过滤的微球含有钠形式的Y-八面沸石。典型的微球含有多于约8重量%的Na2O。为制备本发明的微球,用铵或稀土离子或两者置换微球中相当大部分钠离子。
可以以多种离子交换方法进行离子交换。优选首先在pH约3-4下用硝酸铵溶液一次或多次对微球进行交换。在使用铵离子的离子交换后,优选在pH约3-4下使用稀土离子进行一次或多次离子交换。稀土可以以单个稀土材料或稀土材料的混合物的形式提供。优选以硝酸盐或氯化物的形式提供稀土。本发明的微球优选离子交换至含有0至12重量%REO,最优选0.5至8重量%REO和少于0.5重量%Na2O,更优选少于0.4重量%Na2O,最优选0.2重量%Na2O。正如众所周知的,可能需要中间煅烧以达到这样的纯碱含量。
离子交换完成后,将微球过滤并干燥。以上描述的本发明的FCC微球催化剂的离子交换过程是众所周知的,同样地,该方法本身并不构成本发明的基础。
本发明的微球可以以单一物质的形式或与其他催化剂、添加剂和/或其他掺合剂的混合物的形式出售。
和其它商品化的液化催化裂化催化剂一样,本发明的催化剂将在裂化单元的操作工程中被水热减活。因此,此处使用的短语“在催化剂的存在下裂化石油给料”应包括在新鲜的、部分减活的或完全减活的形式的催化剂的存在下裂化石油给料。
优选的本发明的催化剂包含含有至少40重量%的Y-八面沸石的微球,优选50%至65重量%的Y-八面沸石的微球,其中Y-八面沸石的重量基于沸石的相对应的钠结晶八面体形式而表达。此处使用的术语“Y-八面沸石”应包括合成八面沸石,其钠形式表现出Breck所著的《沸石分子筛》(1974年出版)第369页表4.90所描述的X-射线衍射图案类型,且其钠形式(在从沸石中洗出所有结晶母液后)具有小于约24.75的晶体晶胞尺寸,该尺寸是按照题为“八面沸石类沸石的晶胞尺寸的确定”的ASTM标准测试方法(编号D3942-80)中的所描述的方法或等效的方法确定的。术语“八面沸石”应包括钠形式的沸石,也包括已知的变型形式的沸石,包括例如稀土和铵交换后的形式和稳定后的形式。催化剂的微球中的Y-八面沸石的百分含量在沸石处于其钠形式时(在其被洗涤除去微球中的所有结晶母液后),按照题为“相对沸石衍射强度”的ASTM标准测试方法(编号D3906-80)中的所描述的方法或等效的方法而确定。在进行X-射线评价前将微球小心地平衡是重要的,因为平衡可以对结果产生显著的影响。
附图1图示了本发明的FCC催化剂独特的形态学。该形态学是由用来生成催化剂基质的独特的含氧化铝材料而得到的,而这种材料过去在已有技术中在原地式沸石催化剂的形成中未使用过或甚至未曾被认为有用处。再来讨论一次,基于上述讨论,曾认为从所提供的极好的耐磨损性、高活性和选择性的角度来看,特别是根据这些催化剂具有至少与低表面积、高孔隙容积的催化剂相当的选择性,并经常在短接触时间下具有更好的选择性这一很好地确立了的事实,孔隙较少的催化剂微球是较好的产品。与此相反的论点可以被容易地被驳回,其理由是这是“自私自利”的,并且等于宣称所谓混合催化剂在短停留时间下是限制扩散的。最近才发现,在短接触时间FCC过程中,对于沸石外的孔隙中的输送,FCC催化剂技术可能是限制扩散的。这被建议为是SCT修补后塔底产物部分的API比重经常上升的原因。与此相比较不明显的是,现在看来,常规的、已有技术中的催化剂不能提供SCT硬件的所有潜在效益。但是,迄今为止无法知道缺少了什么好处。因此,与过去的催化剂微球相比,本发明的催化剂微球具有本质上不同的形态,特别在孔隙容积的加大、“沸石位于基质上”的形态和适当的表面积等方面。这些催化剂的耐磨损性好并在SCT FCC处理条件下有效。
如附图1所示,本发明的催化剂包括大孔多孔基质,其中基质的大孔是由多孔性基质平面结构的随机构造而形成的,该多孔性基质平面结构在相对的平面的表面上以沸石为衬。因此,催化剂的大孔以活性沸石晶体为衬。在附图1中,中孔基质平面是由富铝红柱石颗粒形成的。催化剂的大孔多孔性允许烃自由地进入催化剂并增加了大孔表面积从而允许该烃与催化剂表面接触。重要的是,烃可以不受阻碍地接触沸石,使得催化剂具有高活性和对汽油的选择性。尽管常规的混合沸石催化剂(沸石晶体被混入粘合剂和/或基质)具有高度多孔的基质,至少一部分粘合剂包裹或遮蔽了沸石晶体。在本微球催化剂中,除很少量的可以在沸石结晶后仍存在的硅酸盐外,不需要单独的将沸石粘结在基质表面上的物理粘合剂。我们相信,按照本发明的方法形成的微球催化剂产生的对沸石的可及性是所有沸石/基质催化剂中最高的。
已经发现本发明的微球催化剂提供了比现在市售的先前的FCC催化剂更高的汽油选择性和低焦炭选择性和高转化率。令人惊讶的是,该催化剂能够始终如一地胜过具有类似甚至更高的多孔性和更小的表面积的常规混合式催化剂。这表明仅仅增加多孔性是不够的。现在,我们相信,具有大孔多孔性、大孔壁以沸石为衬且中孔或微孔性基质基本处于在沸石层后面的新型催化剂结构是催化剂在汽油、LCO和焦炭选择性方面胜出的原因。本催化剂足以裂化较重的烃和改善底塔底馏分的API比重,在短接触时间处理中尤为如此。在本发明之前,一般认为并例行公事地断言短接触时间式塔底馏分裂化的最好结果应由“分步裂化”机理而得到,按照该机理,重原料组分被强制与覆盖或包裹沸石的中孔或微孔基质(例如由胶溶假勃姆石得到的氧化铝)接触。令人惊讶的是,我们的结果表明正好相反的思想才是正确的。
通过以下实施例图解本发明。
实施例1
制备含有以下物质的微球:30份变高岭土(MK)、20份经湿介质研磨的Ansilex 93TM、20份经介质研磨的煅烧至1050℃以上的HiOpaqueTM颜料和30份直接煅烧至1050℃以上的NuSurfTM颜料,将微球研磨并气流粉碎。向此煅烧高岭土的混合物中加入15份源自N牌硅酸钠的SiO2。此微球不经酸中和。变高岭土来源是MetamaxTM(一种经研磨的粉末),在自来水中55%固体,每kg煅烧高岭土用3ml Colloid 211表面活性剂(佐治亚州(GA)亚特兰大(Atlanta)的Viking工业公司(Viking Industries)出品)减粘。用空气驱动Cowles混合器成批将干燥高岭土加入已含有表面活性剂的水中。混合物变稠时更缓慢地向水中加入高岭土。形成非常膨胀性的料浆,但可通过连续混合将粘度减小。通过逐渐加入高岭土和连续混合45分钟或更长时间得到其膨胀性在非正式检查中不再明显的料浆。
经介质研磨的Ansilex 93TM颜料是由商业生产的固体含量为50%和60%的料浆的混合物。向一个4L搅拌介质磨(宾夕法尼亚州(PA)Reading的Premier磨公司(Premier Mill Corp.)生产)的带搅拌原料罐中加入约7加仑此料浆,在磨中研磨3次,每次停留时间约4分钟,得到90%小于1.66μm(由激光散射(Horiba)测量)的固体含量51%的产物。
HiOpaqueTM是由层离高岭土得到的煅烧颜料。将商业生产的颜料用堇青石盘和预加热的高温电炉在2350下进一步煅烧四小时以得到最大产率的完全结晶富铝红柱石。随后将炉产物压碎而形成粉末,象上面一样减粘并用湿介质研磨四次。最终产物90%<3.24μm(由激光散射测量)且固体含量为37%(由比重测量)。两种经湿磨的料浆粘度都很低。
NuSurfTM是层离水合高岭土的粗粒部分。该产物在堇青石盘中在2350下煅烧四小时以得到最大产率的完全结晶富铝红柱石,压碎,气流粉碎(使用纽约州(NY)Palmyra的喷射研磨机公司(Jet Pulverizer Co.)出品的Micron Master喷射研磨机)至90%<8.51μm的颗粒度。该材料在50%固体下很容易地被在Cowles混合器中用自来水和每kg干燥高岭土3ml Colloid 211减粘形成非膨胀性料浆。容易减粘意味着水合颜料在煅烧前并未最优化地研磨,或者气流粉碎压缩了聚集体。
四种组分料浆中的每一种都通过在封闭的罐中滚动而被维持在悬浊液状态下,直到需要进行混合为止。
如上面所记录的,通过在一个Cowles混合器中以30∶20∶20∶30的比例和按4kg总干燥主要成分的量混合四种组分料浆而得到喷雾干燥所用的料浆。向该料浆中直接加入2.14kg N牌硅酸钠以形成固体含量45.7%的混合物,其流动性足以用泵输送和喷雾干燥。将该材料用0.6mm单流体喷嘴在700psi下喷雾干燥。
如此喷雾的材料具有0.71gm/ml ABD(表观体积密度)并且经分析含3.9%Na2O或13.1%作为SiO2的粘合剂。将该产品在1500在预热的加热炉里用敞开的堇青石盘直接煅烧两小时。该产品在40-20,000的范围内具有0.356cc/gm的孔隙容积(用汞孔隙率测定技术测得),76μm APS和14.2重量%溶于酸的物质(美国专利第5,023,220号第18栏第59行)和0.71gm/cc ABD。
实施例2
制备含有以下物质的微球:含有30份MK、20份经湿介质研磨的Ansilex 93TM、20份经球磨的煅烧至1050℃以上的NuSurfTM颜料和30份由研磨水合颜料然后煅烧至1050℃以上而制备的NuSurfTM富铝红柱石聚集体,加上15份源自N牌硅酸钠的SiO2。将微球用酸中和。
MK来源为第二批在55%固体时用C211分散剂减粘的MetamaxTM。经介质研磨的Ansilex 93TM与实施例1中制备的料浆相同。
通过在预加热的加热炉中在堇青石盘中在2350下煅烧水合层离颜料四小时而制备经球磨的NuSurfTM富铝红柱石。该材料被压碎、研磨,随后在46%固体含量下湿球磨。最终产品为92%<2μm(由激光散射测得)的低粘度料浆。
本实施例中的NuSurfTM富铝红柱石的制备的目的在于确保具有卡片盒结构的高孔隙容积聚集体的形成。将NuSurfTM层离水合颜料用水和分散剂制成料浆,喷雾干燥得到紧密堆积微球,并随即研磨得到低密度粉末。将该含水粉末在2350下在堇青石盘中煅烧四小时,形成完全结晶富铝红柱石。将产物压碎和研磨至粉末,随即用Cowles混合器在50%固体时用每kg煅烧高岭土4ml C211减粘。该料浆开始是非常膨胀性的并且很难收小。继续混合直到膨胀性不再明显。激光散射得到的颗粒度为90%<14.75μm。
四种组分料浆中的每一种都通过在封闭的罐中滚动而被维持在悬浊液状态下,直到需要进行混合为止。
如上文所介绍的,通过在一个Cowles混合器中以30∶20∶20∶30的比例和按3.93kg干燥总量主要成分混合四种组分料浆而得到喷雾干燥所用的料浆。向该料浆中直接加入2.11kg N牌硅酸钠以形成固体含量48%的混合物,其流动性足以用泵输送和喷雾干燥。将该材料用0.6mm单流体喷嘴在700psi下喷雾干燥。
如此喷雾的材料具有0.72gm/ml的ABD并且经分析含4.01%Na2O或13.5%SiO2粘合剂。将该产品酸中和,其方法是将经喷雾干燥的微球加入一桶搅拌的冷自来水中,同时一起加入足够量的40重量%的H2SO4从而使浆料的pH保持在2.5至4之间。加入所有固体之后,监测和控制pH10分钟,随后过滤,每kg微球用2加仑自来水洗涤,接着在350下干燥过夜。
经酸中和的微球在1500下在预热的加热炉里用敞开的堇青石盘直接煅烧三小时。该产品在40-20,000的范围内具有0.402cc/gm的孔隙容积(用汞孔隙率测定技术测得),77μm APS和14.4重量%溶于酸的物质和0.66gm/cc ABD。
实施例3
制备含有30份MK和70份NuSurfTM富铝红柱石聚集体的具有异常高的孔隙容积和不同寻常的宽大的大孔的微球。NuSurfTM富铝红柱石聚集体通过研磨后煅烧至1050℃制得。将煅烧高岭土混合物和15份源自N牌硅酸钠的SiO2一起喷雾干燥。将微球用酸中和。
MK来源为实施例2中所减粘的MetamaxTM的同一批。NuSurfTM富铝红柱石(聚集体)也是实施例2中所减粘的同一批。两种料浆通过在封闭的罐中滚动而被维持在悬浊液状态下,直到需要进行混合为止。
如上文所介绍的,通过在一个Cowles混合器中以30∶70的比例和按4.00kg干燥总量主要成分混合两种组分料浆而得到喷雾干燥所用的料浆。向该料浆中直接加入2.14kg N牌硅酸钠以形成固体含量48%的混合物,其流动性足以用泵输送和喷雾干燥。将该材料用0.6mm单流体喷嘴在700psi下喷雾干燥。
如此喷雾的材料具有0.56gm/ml ABD并且经分析含3.92%Na2O或13.1%SiO2粘合剂。将该产品按实施例2中的过程酸中和和干燥。经酸中和的微球在1500下在预热的加热炉里周敞开的堇青石盘直接煅烧三小时。该产品在40-20,000的范围内具有0.407cc/gm的孔隙容积(用汞孔隙率测定技术测得),86μm APS和10.6重量%溶于酸的物质和0.53gm/ccABD。
实施例4-6
将实施例1-3中的微球由常规过程(4,493,902和5,395,809)在23小时的时间内结晶形成Y-沸石,并得到以下结果。晶种由4,631,262描述。
                         表1
结晶 实施例4 实施例5 实施例6
微球来源 实施例1 实施例2 实施例3
结晶配方
微球克数 245.0 225.0 230.0
晶种,克 171.9 157.9 161.4
N牌,克 403.0 414.4 415.0
50%NaOH,克 66.8 90.6 87.6
H2O,克 462.0 435.9 429.6
钠形式的性质
UCS, 24.62 24.62 24.63
BET,M2/gm 446 447 420
MSA,M2/gm 66 69 54
ZSA,M2/gm 380 379 366
Hg TPV,40-20K,cc/gm 0.283 0.328 0.508
辊,重量%/hr 26 36 128
这些材料的汞孔隙容积与已有的原地式结晶技术所提供的相比大很多。将钠形式的催化剂随后离子交换形成如下文的最终产物。将钠形式催化剂在180和pH 2.8-3.2下在搅拌的同时加入27%硝酸铵溶液中,并滴加入50%HNO3以控制pH。所有催化剂加入之后,将料浆搅拌15分钟,过滤,将滤饼用两倍于干燥催化剂重量的去离子水洗涤。如此交换两次,其中催化剂与27重量%硝酸铵的重量比为1∶2。样品在180和pH4下用稀土交换以在催化剂上产生3%REO。此时的Na2O含量为1.8至1.9重量%,与已有技术中的配方相比低很多。
将经部分交换的材料干燥后在预热的加热炉里在加盖的开始时含有25%水分的氧化硅盘中在1150下煅烧两小时。煅烧后,重复铵交换过程五次(实施例4)或三次(实施例5、6),而后在25%水分和1150下再次煅烧而形成最终产物。结果如下:
                  表2
实施例4 实施例5 实施例6
 UCS, 24.52 24.51 24.48
辊,重量%/hr 20 47
ABD VF,gm/cc 0.600 0.569 0.463
按照直径的Hg孔隙容积,
40-200 0.076 0.090 0.069
200-2000  0.186 0.166 0.125
2000-20,000  0.068 0.098 0.317
40-20,000  0.329 0.353 0.511
BET, m2/gm 383 361 299
MSA,m2/gm 71 76 57
ZSA,m2/gm 312 285 242
Al2O3,重量% 41.8 43.8 43.5
SiO2,重量% 52.8 50.8 51.2
Na2O,重量% 0.1 0.1 0.21
Fe2O3,重量% 0.54 0.47 0.4
TiO2,重量% 0.85 0.83 0.79
P2O5,重量% 400 300 300
REO,重量% 2.92 2.41 2.58
可以看到,适当地预研磨的水合层离高岭土使用量的增加,产生了更多的催化剂孔隙容积和更宽大的大孔。附图1显示了实施例6的催化剂的SEM图像。深颜色部分是显然由层离颜料形成的基质的薄片以随机或“卡片盒”构造形成的大孔。夹在沸石的较大晶体之间的较小颗粒被肯定地鉴定为富铝红柱石晶体。包裹在或衬在富铝红柱石基质上的较大晶体被肯定地鉴定为Y-沸石。
富铝红柱石和尖晶石的存在导致了孔隙尺寸分布具有三个最常见值。尖晶石和富铝红柱石相固有的孔隙率可以在汞孔隙大小数据中可以看到,这意味着这些中孔基质并未被其上生长的沸石所遮蔽。这一点为在1500下在100%蒸汽中汽蒸四小时的最终产物在氮滞后循环中体积缩小所证实。两个对比实施例见美国专利第5,395,09号。
实施例7
本实施例描述粗粒和细粒基质高岭土混合物的使用,其中该混合物在保持了宽大的大孔和极好的催化性能的低表面积配方中有用。
在生产规模的用天然气直接燃烧的旋转煅烧器上进行一系列简短的将高岭土转化为富铝红柱石和氧化硅的测试。在一个测试中,生成了用于形成美国专利第4,493,902和5,395,809号的FCC催化剂基质的煅烧册页型粘土(NOKARBTM),在一系列试验的最后,升高煅烧器苛刻度以使富铝红柱石产率达到最大。收集一种产物以进行试验性喷雾干燥工作。此后制造Ansilex 93TM(A93)颜料。由90%比1μm细小的灰色粘土通过沉降法制造A93。将经分级的水合高岭土喷雾干燥,然后研磨成低密度粉末。刚刚在A93生产试验之前,将煅烧器苛刻度加大以将最初产物的富铝红柱石含量提高到可能的最大程度,在该产品(“M93”)中取样。此后很久确定该材料实际上是册页粘土和极细水合高岭土的混合物。无法测定混合物的精确性质,但Fe2O3、SEM和水孔隙容积结果证实混合确实发生了。X-射线衍射表明M93中58%转化为完全结晶富铝红柱石。
由M93混合煅烧高岭土制得微球,其方法是,在一分批过程中,通过在Cowles混合器中用水稀释33.3份(干燥主要成分)LHT水合颜料料浆,然后加入66.7份干燥M93和足够分散剂,从而制得流体混合物。混合物含有50%固体但表现出一些剩余膨胀性。将料浆加入装有带有单排环状开口的轮式喷雾器的喷雾干燥器。4.1份(以SiO2计)具有2.88的SiO2/Na2O的硅酸钠粘合剂溶液从刚好装置在喷雾器上游的线上静止混合器的入口处注入料浆。
将微球煅烧从而将水合高岭土转化为变高岭土而不到达其特征性放热过程。Na2O含量为1.40重量%,溶于酸的物质的含量为14.72重量%,APS为91μm,ABD为0.6gm/cc,且40和20,000直径间的Hg孔隙容积为0.520gm/cc。
实施例8
通过常规过程(美国专利第4,493,902和5,95,809号)将实施例7的微球结晶22小时,从而生成Y-沸石,结果见表3。
          表3
结晶 实施例8
微球 实施例7
结晶配方
MS克数 170.0
晶种,克 109.7
N牌,克 398.3
50%NaOH,克 76.5
H2O,克 418.3
反应产物性质
UCS, 24.62
BET, m2/gm 464
MSA,m2/gm 82
ZSA,m2/gm 382
辊,重量%/hr 12
将钠形式的催化剂如上文离子交换至1.75重量%Na2O和3.14重量%REO,如上文煅烧并如上文铵交换至0.23重量%Na2O,按如上文规定煅烧得到最终产物。最终产物在一根开放的石英管中在1500下和1atm蒸汽中汽蒸四小时。性质见表四。
实施例9
这是一个对比实施例。取本质上按美国专利第5,395,809号的方法制造的商业化制备的催化剂进行分析和测试。
实施例10
这是一个对比实施例。将名为“GDO”的FCC催化剂的样品分析和测试。具体的制造方法并不清楚,但是,假设这是一个用于塔底产物裂化的由氢氧化氯化铝(Aluminum Chlorohydol)粘合剂制造和在配方中额外加入氧化铝颗粒的混合式催化剂技术现状的代表。
                         表4
实施例8 实施例9 实施例10
UCS, 24.47 24.53 24.57
辊,重量%/hr 14 5
ABD VF,gm/cc 0.59 0.75 0.70
40-100,Hg PV 0.061 0.074 0.061
100-600,Hg PV 0.139 0.024 0.073
600-20,000,Hg PV 0.168 0.030 0.067
40-20,000,Hg PV 0.368 0.129 0.201
BET,m2/gm 377 402 222
MSA,m2/gm 90 108 85
ZSA,m2/gm 287 294 137
Al2O3,重量% 40.30 31.9 50.7
SiO2,重量% 53.70 61.5 44.7
Na2O,重量% 0.23 0.28 0.14
Fe2O3,重量% 0.69 0.27 0.62
TiO2,重量% 1.46 1.25 0.87
P2O5,重量% 0.03 .08 0.1
REO,重量% 2.85 3.00 1.96
1500下在100%蒸汽中汽蒸四小时后的性质
BET,m2/gm 249  241 133
MSA,m2/gm 73.4  76 50
ZSA,m2/gm 175.6  165 83
UCS, 24.34  24.33 24.29
实施例11-12
催化性能用在表面8WHSV和800下操作的ACETM微量固定流化床单元、用9克催化剂和瓦斯油A原料(表5)、基本按照美国专利第6,069,012号中的描述用2.215”注射器位置来测定。该专利提出这一注射器位置对应于2-2.5秒立管停留时间。催化剂清理时间被固定为575秒。按照布朗(Brwon)在`902专利中所公开的,将实施例8和9的催化剂用活性调整微球稀释。但是,为了继续遵守于美国专利第6,069,012号和常规反应工程的方法,显然应该在相同的柱床体积下评价不同的催化剂。这保证了在比较过程中蒸汽停留时间相同。为了做到这一点,这些催化剂配方被混合至相等的ABD并在固定重量下测试。这是通过使用适当量的布朗(Brwon)提及的活性调整微球(约0.98 ABD)和实施例3中的微球(0.53ABD)而实现的。
例如实施例10的对比催化剂的ABD是无法调整的。因此,该催化剂在加入量9克(低催化剂体积)和加入量约11克(相同催化剂体积)两种条件下都进行了测试。为了保持流体动力学不变,后一情况中的表面WHSV被调整为6.6以得到相同的油的释放速度(克/分钟)。在后一条件下,对比实施例的焦炭、LCO和汽油的选择性更优,因此,在表6中报告了这一结果。
             表5
          瓦斯油性质
加料  B
IBP() 462  355
5% 586  564
50% 808  826
95% 1018  1085
FBP() 1112  1248
Concarbon 0.36  0.79
60°的API 24.29  24.48
倾点(  ) 97  100
苯胺点 189  194
碱性氮ppm 355  282
总氮ppm 986  1018
25℃的折光指数 1.5045  1.5061
硫,% 0.72  0.48
UOP Kw 11.92
正如从商业经验中知道的那样,在短接触时间裂化中,即使与具有大得多的孔隙容积的催化剂相比,对比实施例9仍具有非常令人满意的选择性。由于实施例9和`902的催化剂与常规催化剂相比都具有大得多的表面积,过去合理地得到了在FCC催化剂性能上传输现象不是限制因素的结论。现在的结果显示了相对本身已经是领先的技术的实施例9的令人惊讶的选择性改进,以及令人惊讶的进一步的相对于具有低得多的表面积的高孔隙容积催化剂的优势。常规思路本应使人相信,如果传输一般是限制因素,实施例10应表现最好,而这与实际情况不符。考虑到该催化剂与本发明的催化剂相比较低的汽蒸ZSA/MSA之比和更高的氧化铝含量,实施例10在塔底产物改质上的不足是令人特别惊讶的。
使用本发明的催化剂可以改善主要裂化产物选择性。这些催化剂在恒定汽蒸晶胞尺寸下表现出不寻常的和令人满意的高汽油选择性的特性,并经常表现出更高的烯烃含量。在恒定转化率下,同时观察到了更高的LCO选择性和更低的焦炭选择性。在本发明的催化剂之前,这些性能特点一般只能互相妥协。
                               表6
               与恒定的75重量%转化率相对应的选择性
实施例8 实施例9 实施例10(加入量11克)
混合BET 140 150 133
H2,重量% 0.08 0.07 0.10
总C2- 1.47 1.70 1.81
LPG 17.49 19.43 19.90
汽油 53.35 50.91 50.16
LCO 16.98 16.51 16.70
HCO 8.02 8.49 8.30
焦炭 2.69 2.96 3.13
C3=/总C3 0.87 0.85 0.82
C4=/总C4 0.54 0.51 0.48
2.96%焦炭时的转化率 75.64 75.00 74.63
实施例11
将经分级的(90%<1μm,由沉降法制得)由灰色粘土沉积物制得的水合高岭土料浆按照美国专利第3,586,523号所公开的内容喷雾干燥并研磨。将该材料在高苛刻度下煅烧以将其向完全结晶的富铝红柱石转化的过程完成50%至80%,以上数值如`902专利中的实施例4,通过X-射线衍射线强度与完全转化后的高岭土相比得到。该材料(又称M93)的典型的性质与对比材料一起在表7中列出。
用作FCC催化剂基质前体的煅烧高岭土所具有的ISP固体百分比优选低于约57%,更优选低于55%固体,最优选在48-52%固体的范围内。即,与已有技术中的前体相比,具有较高的水孔隙容积。我们所希望的激光颗粒度为90%小于10μm,从而可以形成合适的微球。可接受性的最简单的测试方法是测量其夯实容积密度,其结果应小于约0.45gm/cc,更优选小于0.40gm/cc。夯实容积密度、松散堆积密度、汞容积和ISP固体都是相互关联的。
基于高岭土的材料只要符合以上要求,可以具有任何数值的富铝红柱石指数,但必须已经基本经历了放热过程以产生剩余的中孔多孔性或小孔多孔性基质。得到的基质表面积和最常出现的孔隙直径随着富铝红柱石的结晶尺寸的变化而平滑地变化。
                               表7
                       煅烧产物的典型性质
性质 ISP 激光散射颗粒度 Hg孔隙容积,40-20,000直径 夯实容积密度
单位 固体% 90%<,μm cc/gm gm/cc
M93,实施例11 48-52% 9至10μm 1.4至1.5 0.38
M93,实施例7 55% 7.89μm 1.13 0.45
A93尖晶石 48-52% 5至7μm 1.45 0.3
Satintone 1 58% 0.48
实施例8的NOKARB得到的尖晶石 66% 19μm 0.73 0.69
`902实施例4的方法的Satintone 2的富铝红柱石 58.76% 10.66μm 0.93 0.55
`902方法的A93的富铝红柱石:2200,7小时 51.38% 9.66 1.159 0.53
 CE矿物富铝红柱石 77% 117 非孔隙性 1.66
用分级Cowles系统将本实施例的M93和C211分散剂一起连续加入分散的LHT颜料在水中的料浆中。加入速度被控制为使混合料浆在48%至50%固体下含有33份LHT水合颜料和67份M93煅烧基质前体。将混合物喷雾干燥以形成微球。如过需要则另加入水以控制膨胀性和改善雾化。将料浆加入装有轮式喷雾器的喷雾干燥器。将具有2.88的SiO2/Na2O的4份(以SiO2计算)硅酸钠粘合剂溶液从装置在喷雾器刚好上游的线上静止混合器的入口处注入料浆中。将得到的微球在直接燃烧的旋转煅烧器中直接煅烧,从而将混合物中的水合高岭土转化为变高龄石而不到达其特征性放热过程。
Na2O含量为1.73重量%,溶于酸的物质的含量为16.23重量%,APS为82μm,ABD为0.47gm/cc,并且40和20,000直径间的Hg孔隙容积为0.679gm/cc。
将微球在工厂规模的反应器中用950加仑晶种、8,612加仑30重量%回收和浓缩的焦硅酸钠、600加仑19%NaOH、938加仑水、23,897磅上述微球和额外的3,259磅变高岭土微球进行结晶。变高岭土微球基本按3,647,718中的描述制备。变高岭土微球的量的选择的目的在于严格将最终产物的孔隙率和辊磨损控制在规格要求内。相信剩余的第二种微球大多被离心分离设备除去。
将结晶产物过滤,洗涤以除去过多的母液,离子交换至2.5重量%Na2O和3重量%REO,在旋转煅烧器中煅烧以迁移钠但不显著减少晶胞尺寸,再次铵交换至0.2%Na2O,然后再次煅烧以减小沸石晶胞尺寸。这些催化剂后处理过程是已知的并在本工作中仅采用而不作修改。
实施例12
按照常规催化剂的使用方法向一个FCC单元加入实施例11的催化剂。该单元装有现代化的加料喷嘴和提升管中止设备,并具有2.0至2.5秒的提升管接触时间。加入实施例11的催化剂后,在恒定的焦炭下,观察该单元的转化率至增加3LV%。汽油产率随轻质烯烃的增加一起增加,并且,最显著的是,塔底产物API比重减小到了过去从未观察到的水平。塔底产物裂化的改善是值得注意的,因为它没有伴随着干气产量或焦炭差方面的损失。
由于所使用的固定流化床比较新,尚未经过公开校准,使用在试验前和试验后得到的平衡催化剂进行了ACMTM方法的后检查。平衡催化剂的性质被列在表8中。ACMTM按过去的方法使用2.125”注射器位置进行,加料来自试验中。催化结果在表9中列出,并以恒定焦炭下相对常规催化剂在加料B上的产率增量的形式显示在附图3中。从固定流化床单元得到的结果基本上以合理的精度重现了从FCC单元得到的增量。
                      表8
                 平衡催化剂性质
样品 实施例12 实施例13
对比 发明
转化率 重量% 72.6 72
APS μ 75.2 72
SA M2/g 181.4 172
MSA M2/g 63.4 55
ABD g/cc 0.896 0.83
Cu Ppm 10.4 18
Ni Ppm 516.2 623
V Ppm 1877.2 1535
Fe 重量% 0.31 0.42
Na 重量% 0.376 0.25
C 重量% 0.06 0.08
Al2O3 重量% 33.98 37.5
Ti 重量% 0.784 0.75
Cl2 PV CC/G 0.31 0.36
P 重量% 0.3 0.27
ReO 重量% 2.03 2.44
Sb Ppm 103 5
UCS 24.29 24.29
Ecat Z/M 1.86 2.13
Hg孔隙容积 40-100 0.057 0.040
Hg孔隙容积 100-600 0.107 0.146
Hg孔隙容积 600-20K 0.067 0.123
Hg孔隙容积 40-20K TPV 0.231 0.309
                      表9
           与恒定的5%焦炭对应的选择性
基础催化剂-加料B 发明-加料B
转化率 76.37 78.51
H2 0.27 0.23
总C2- 2.68 2.55
C3=/总C3 0.84 0.85
C4=/总C4 0.53 0.53
LPG 22.45 22.84
汽油 46.24 48.12
LCO 17.94 16.82
HCO 5.70 4.67
焦炭 5.00 5.00
合计 100.00 100.00
实施例13
实施例12的多孔微球需要过量的第二种变高岭土微球以将摩擦和多孔性控制在规格范围内。微球的原始强度也引起磨损问题。由此,通过增加水合高岭土(以减少第二种微球的加入量)和粘合剂(以改善原始强度)而改进这些微球。按照实施例12用约37至40%的水合高岭土和约63%至60%的M93制备微球。按氧化硅计算约8%的粘合剂通过注射加入,并煅烧微球以将水合高岭土转化为变高岭土。在每一种情况下,原始强度都得到了改善。在不同的第二种变高岭土微球加入量下的微球的结晶表明,在同样或较少的第二种微球的加入量下,得到了本发明的催化剂的可以接受的性质。
一旦得到上述公开的内容,对于熟悉本领域的人员,许多特色、变型和改进都将变得显而易见。因此,这些特色、变型和改进被认为是本发明的一部分,本发明的范围由以下权利要求界定。

Claims (10)

1.大孔多孔沸石流化催化裂化催化剂,包含作为多孔的含氧化铝的基质表面上的层的结晶的沸石,该沸石包层的基质的构造提供了在孔壁上有沸石包层的大孔。
2.根据权利要求1的催化剂,其中所述结晶沸石为Y-沸石。
3.根据权利要求1的催化剂,该催化剂的直径为600-20,000的孔的汞孔隙率为至少0.10cc/gm。
4.流化催化裂化催化剂,其中包含含有原地结晶Y-八面沸石,并且其中直径在40-20,000范围内的孔的汞孔隙率为大于0.27cc/g的微球,该微球包含:
煅烧高岭土至经历其特征性放热过程而得到的非沸石氧化铝基质,该煅烧高岭土由其中90重量%的颗粒的直径小于2微米的研磨极细高岭土得到。
5.流化催化裂化催化剂,其中包含含有原地结晶Y-八面沸石,并且其中直径在40-20,000范围内的孔的汞孔隙率为大于0.27cc/g的微球,该微球包含:
由煅烧氧化铝得到的非沸石氧化铝基质,该煅烧氧化铝具有小于57%固体的初始淤浆点。
6.制备流化催化裂化催化剂的方法,包含以下步骤:
(a)制备包含25-60重量%变高岭土和40-75重量%煅烧氧化铝来源的微球,该煅烧氧化铝来源具有低于57%固体的初始淤浆点;
(b)将步骤(a)中的微球与一种或多种来源的硅酸钠和水混合,得到该微球在含硅酸钠的水溶液中的碱性料浆;和
(c)加热微球的该料浆至足以在微球中结晶Y-八面沸石的温度和时间,该Y-八面沸石为其钠形式。
7.根据权利要求6的方法,其中包括在步骤(c)之前向所述微球的碱性料浆加入沸石引发剂。
8.根据权利要求6的方法,其中所述步骤(c)得到的微球中直径在40-20,000范围内的孔的汞孔隙率为大于0.27cc/g。
9.在流化催化裂化条件下裂化烃原料的方法,该方法包含将该烃原料与权利要求1的催化剂相接触。
10.根据权利要求9的方法,其中所述烃原料和催化剂接触的时间不长于3秒。
CNB01817891XA 2000-09-22 2001-09-21 结构增强的裂化催化剂 Expired - Fee Related CN1225311C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US66767700A 2000-09-22 2000-09-22
US09/667,677 2000-09-22
US09/956,250 US6656347B2 (en) 2000-09-22 2001-09-20 Structurally enhanced cracking catalysts
US09/956,250 2001-09-20

Publications (2)

Publication Number Publication Date
CN1498133A CN1498133A (zh) 2004-05-19
CN1225311C true CN1225311C (zh) 2005-11-02

Family

ID=27099740

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB01817891XA Expired - Fee Related CN1225311C (zh) 2000-09-22 2001-09-21 结构增强的裂化催化剂

Country Status (9)

Country Link
US (1) US6943132B2 (zh)
EP (1) EP1333920B1 (zh)
JP (1) JP4991083B2 (zh)
CN (1) CN1225311C (zh)
AU (2) AU9297101A (zh)
BR (1) BR0114097A (zh)
CA (1) CA2422874C (zh)
MX (1) MXPA03002474A (zh)
WO (1) WO2002024329A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811812A (zh) * 2010-03-18 2012-12-05 格雷斯公司 由粘土得到的沸石制备改进的催化剂的方法
CN104818045A (zh) * 2014-01-31 2015-08-05 环球油品公司 用于提高丙烯收率的渣油催化裂化器和催化剂
CN105324463A (zh) * 2013-06-17 2016-02-10 巴斯夫公司 制备具有降低磨损率的fcc催化剂的方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6942784B2 (en) * 2000-09-22 2005-09-13 Engelhard Corporation Structurally enhanced cracking catalysts
US6673235B2 (en) 2000-09-22 2004-01-06 Engelhard Corporation FCC catalysts for feeds containing nickel and vanadium
FR2820990B1 (fr) * 2001-02-20 2003-11-28 Saint Gobain Mat Constr Sas Procede et installation de traitement de deshydroxylation de silicate d'aluminium
US6696378B2 (en) * 2001-08-31 2004-02-24 Engelhard Corporation Fluid catalytic cracking catalyst manufacturing process
US7101473B2 (en) * 2002-05-31 2006-09-05 Engelhard Corporation Method of enhancing the activity of FCC catalysts
CN1275855C (zh) * 2003-03-28 2006-09-20 中国石油化工股份有限公司 用高岭土合成的纳米级y型沸石及其制备方法
US6942783B2 (en) * 2003-05-19 2005-09-13 Engelhard Corporation Enhanced FCC catalysts for gas oil and resid applications
US6974788B2 (en) * 2004-03-12 2005-12-13 Chevron Oronite Company Llc. Zeolite Y alkylation catalysts
KR20050102766A (ko) * 2004-04-22 2005-10-27 주식회사 엘지화학 탄화수소 분해촉매 및 그 제조방법
MX2007015824A (es) * 2005-06-29 2008-02-22 Grace W R & Co Catalizador pentasilo para olefinas ligeras en unidades cataliticas fluidizadas.
TWI341218B (en) * 2005-11-14 2011-05-01 Oxy Vinyls Lp Catalyst compositions and process for oxychlorination
EP2522425A1 (en) * 2006-03-02 2012-11-14 BASF Catalysts LLC Hydrocracking catalyst comprising an in situ produced y-fauajasite and hydrocracking process
US9433934B2 (en) 2006-03-02 2016-09-06 Basf Corporation In-situ produced Y-faujasite from kaolin-derived, pre-shaped particles and the method of preparation and the use thereof
CN101437774A (zh) * 2006-03-09 2009-05-20 英默里斯高岭土公司 大颗粒、高矿物纯度的层离高岭土及其制备和使用方法
US8372269B2 (en) * 2009-10-02 2013-02-12 Basf Corporation Heavy metals trapping co-catalyst for FCC processes
CN102464333B (zh) * 2010-11-04 2013-10-16 中国石油天然气股份有限公司 原位晶化制备NaY分子筛的方法
US20120227629A1 (en) * 2011-03-08 2012-09-13 Basf Corporation Beneficial Thermo-Chemical Treatment of Kaolin with Ammonium Polyphosphate
US9227181B2 (en) * 2011-09-13 2016-01-05 Basf Corporation Catalyst to increase propylene yields from a fluid catalytic cracking unit
US10286391B2 (en) 2012-02-17 2019-05-14 Inaeris Technologies, Llc Catalyst system having meso and macro hierarchical pore structure
JP2016534857A (ja) * 2013-10-15 2016-11-10 ビーエーエスエフ コーポレーション 優れた耐摩耗性を有するメソポーラスfcc触媒
CN105983414B (zh) * 2015-01-28 2019-01-18 中国石油天然气股份有限公司 活性基质的制备方法、含活性基质的催化剂及其制备方法
US10507460B2 (en) 2015-11-24 2019-12-17 Basf Corporation Fluid catalytic cracking catalysts for increasing butylene yields
EP3512923A4 (en) 2016-09-16 2020-05-13 Lummus Technology LLC CATALYTIC FLUID CRACKING METHOD AND APPARATUS FOR MAXIMUM INCREASE IN LIGHT OLEFINS AND FOR OTHER APPLICATIONS
BR112019024084A2 (pt) * 2017-05-17 2020-06-02 Basf Corporation Catalisadores e método para fabricar um catalisador
US11286431B2 (en) 2019-07-02 2022-03-29 Lummus Technology Llc Fluid catalytic cracking processes and apparatus
JP2022540497A (ja) 2019-07-15 2022-09-15 ラマス・テクノロジー・リミテッド・ライアビリティ・カンパニー 軽質オレフィン収率の最大化および他の用途のための流動接触分解プロセスおよび装置
CN113137753A (zh) * 2020-01-20 2021-07-20 芜湖美的厨卫电器制造有限公司 燃烧换热组件以及燃烧换热设备
WO2023212011A1 (en) * 2022-04-26 2023-11-02 Basf Corporation Method for new fcc catalyst formulations using pre-milling techniques

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US559067A (en) * 1896-04-28 Injector
US3533962A (en) * 1965-06-14 1970-10-13 Air Prod & Chem Mulling precursor for cracking catalyst
US3458454A (en) * 1966-07-29 1969-07-29 Air Prod & Chem Fluidizable cracking catalyst
US3506594A (en) * 1968-06-20 1970-04-14 Engelhard Min & Chem Microspherical zeolitic molecular sieve composite catalyst and preparation thereof
CA990708A (en) * 1970-09-24 1976-06-08 Warren S. Briggs Process for preparing a zeolite containing petroleum cracking catalyst
US3944482A (en) * 1973-08-08 1976-03-16 Gulf Research & Development Company Process for the cracking of high metals content feedstocks
US4493902A (en) * 1983-02-25 1985-01-15 Engelhard Corporation Fluid catalytic cracking catalyst comprising microspheres containing more than about 40 percent by weight Y-faujasite and methods for making
AU5423186A (en) * 1985-03-01 1986-09-04 Engelhard Corporation High octane, high gasoline selectivity catalyst
US4965233A (en) * 1988-10-20 1990-10-23 Engelhard Corporation Novel zeolite fluid cracking catalysts and preparation thereof from mixtures of calcined clay
US5023220A (en) * 1988-11-16 1991-06-11 Engelhard Corporation Ultra high zeolite content FCC catalysts and method for making same from microspheres composed of a mixture of calcined kaolin clays
US5395809A (en) * 1993-11-01 1995-03-07 Engelhard Corporation Modified microsphere FCC catalysts
CN1121102A (zh) * 1994-07-15 1996-04-24 国际壳牌研究有限公司 一种烃原料的转化方法
FR2753717B1 (fr) * 1996-09-24 1998-10-30 Procede et installation pour la production d'essences de craquage catalytique a faible teneur en soufre
US6673235B2 (en) * 2000-09-22 2004-01-06 Engelhard Corporation FCC catalysts for feeds containing nickel and vanadium
US6656347B2 (en) * 2000-09-22 2003-12-02 Engelhard Corporation Structurally enhanced cracking catalysts
US20030089640A1 (en) * 2001-10-17 2003-05-15 Rostam Madon FCC catalysts for feeds containing nickel and vanadium
US6696378B2 (en) * 2001-08-31 2004-02-24 Engelhard Corporation Fluid catalytic cracking catalyst manufacturing process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811812A (zh) * 2010-03-18 2012-12-05 格雷斯公司 由粘土得到的沸石制备改进的催化剂的方法
CN105324463A (zh) * 2013-06-17 2016-02-10 巴斯夫公司 制备具有降低磨损率的fcc催化剂的方法
CN105324463B (zh) * 2013-06-17 2018-09-28 巴斯夫公司 制备具有降低磨损率的fcc催化剂的方法
CN104818045A (zh) * 2014-01-31 2015-08-05 环球油品公司 用于提高丙烯收率的渣油催化裂化器和催化剂

Also Published As

Publication number Publication date
WO2002024329A2 (en) 2002-03-28
JP4991083B2 (ja) 2012-08-01
EP1333920A2 (en) 2003-08-13
US6943132B2 (en) 2005-09-13
JP2004513760A (ja) 2004-05-13
US20030199386A1 (en) 2003-10-23
AU9297101A (en) 2002-04-02
BR0114097A (pt) 2004-03-02
EP1333920B1 (en) 2008-07-23
AU2001292971B2 (en) 2006-07-20
CA2422874A1 (en) 2002-03-28
MXPA03002474A (es) 2003-07-14
CN1498133A (zh) 2004-05-19
WO2002024329A3 (en) 2003-02-06
CA2422874C (en) 2010-11-30

Similar Documents

Publication Publication Date Title
CN1225311C (zh) 结构增强的裂化催化剂
US6673235B2 (en) FCC catalysts for feeds containing nickel and vanadium
US6656347B2 (en) Structurally enhanced cracking catalysts
CN1913965A (zh) 结构增强的裂化催化剂
JP5336480B2 (ja) 構造的に強化された分解触媒
KR101042413B1 (ko) 제올라이트의 자체 결정화에 의해 제조된 fcc 촉매
CN1549746A (zh) 流化催化裂化催化剂的制造方法
US20190099746A1 (en) Mesoporous fcc catalysts with excellent attrition resistance
US11254878B2 (en) FCC catalyst having alumina derived from crystalline boehmite
CN1319648C (zh) 提高fcc催化剂活性的方法
WO2012122339A2 (en) Thermochemical structuring of matrix components for fcc catalysts
JP4463556B2 (ja) ニッケルとバナジウムを含有する供給材料用のfcc触媒
JP2008173530A (ja) 炭化水素油の接触分解触媒及び該触媒を用いる炭化水素油の接触分解方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20051102

Termination date: 20200921

CF01 Termination of patent right due to non-payment of annual fee