CN1214599A - 产生图象形成设备的方法 - Google Patents

产生图象形成设备的方法 Download PDF

Info

Publication number
CN1214599A
CN1214599A CN98119936A CN98119936A CN1214599A CN 1214599 A CN1214599 A CN 1214599A CN 98119936 A CN98119936 A CN 98119936A CN 98119936 A CN98119936 A CN 98119936A CN 1214599 A CN1214599 A CN 1214599A
Authority
CN
China
Prior art keywords
emitting device
image
electron emitting
forming apparatus
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98119936A
Other languages
English (en)
Other versions
CN1213616C (zh
Inventor
浜元康弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of CN1214599A publication Critical patent/CN1214599A/zh
Application granted granted Critical
Publication of CN1213616C publication Critical patent/CN1213616C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/126Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using line sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/316Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
    • H01J2201/3165Surface conduction emission type cathodes

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

一种用于产生图象形成设备的方法,该图象形成设备包括:容器;配置在该容器中并具有在对电极之间的电子发射部分的电子发射装置,该电子发射装置在对电极之间施加电压时适于发射电子;和用于利用从电子发射装置发射的电子的照射,形成图象的图象形成件,该产生方法包括步骤是,利用从电子发射装置发射的电子,照射图象形成件的步骤,其中照电子形成件的电子是通过对电子发射装置施加与图象形成设备的图象形成驱动期间,在电子发射装置的对电极之间所施加电压极性相反的电压所发射的电子。

Description

产生图象形成设备的方法
本发明涉及于电子发射装置产生图象形成设备的方法。
通常已知的电子发射装置被粗略划分为利用热离子发射装置和利用冷阴极发射装置的两种类型。冷阴极发射装置包括场发射型(以下称为“FE型”)装置,金属/绝缘体/金属型(以下称为“MIM型”装置,表面传导(导通)电子发射装置,等等。已知包括这些FE型装置的举例揭示在W.P.Dyke&W.W.Dolan,电子物理学“场发射”导论中,8,89(1956)或在C.A.Spindt,“具有钼锥的簿膜场发射阴极的物理特性”中,J.Appl.phys.,47,5248(1976),等等。已知包括这些MIM型装置的举例揭示在C.A.Mead,“隧道发射装置的”操作中,J.Appl.phys.,32,646(1961),等等。包括这些表面传导电子发射装置的举例揭示在M.I.Elinson,Radio Eng.Electron Phys.,中10,1290(1965),等等。表面传导电子发射装置利用这样一种现象,即当电子流被允许平行流动到基片形成的小区域的簿膜时,产生电子发射。迄今由Elinson上述发表的利用SnO2簿膜[M.I.Elinson,Radio Eng.Electron phys.,10,1290(1965)],利用Au簿膜[G.Dittmer:"Thin Solid Films,"9,317(1972],利用In2O3/SnO2薄膜[M.Hartwell和C.G.Fonstad:"IEEE Trans.EDConf.,"5,9,(1975)]利用碳簿膜[Hisashi Araki:Shinku(Vacuum),Vol.26,No.1,P22(1983)],以及等等的表面传导电子发射装置的举例。
上述表面传导电子发射装置结构简单,还易于制造,并具有这样的优点,即许多装置能被交叉排列成一大的面积。在各种应用上的研究取得该优异的特性。例如,包括充电束源,显示装置,等等的应用。具有许多表面传导电子发射装置的阵列的应用举例是表面传导电子发射装置被平行排列的电子源,各装置的两端由各自的导线(也称之为公共线)被连接成每一行,而许多行如下面将描述的被加以排列。(应参照例如,日本公开专利申请No.64-031332,1-283749,2-257552,等等)。特别是在图象形成设备领域中,例如显示装置,利用取代CRT的液晶的平面型显示装置近来变得普及。然而,它们不是自身发射型,这样,例如它们具有的问题包括背光(back light)。因此迄今仍希望自发射型显示装置的发展。自发射型显示装置的一例是一种显示装置的图象形成设备,该显示装置包括在其中形成的通过从电子源发射电子用于发射可视光的一荧光件的许多表面导通电子发射装置的电子源的组合。(应参考例如USP5,066,883。)。
在上述平面型图象形成设备中,具有在其上排列大量电子发射装置的电子源基片和在其中具有荧光件的图象形成件,在其间的真空部分彼此相对配置。上述图象形成设备以这样的方式显示图象,即扫描信号和/或调制信号被送到电子源基片上形成的电子发射装置,使得每个电子发射装置或某些电子发射装置发射电子,以及这些电子通过数百伏或数千伏或更高的阳极电压Va加速以提供给图象形成件,撞击该荧光件,以便实现从其中发射光。
该上述平面型图象形成设备,然而,在早期操作中,在显示图象上有时会遭受明显的亮度降或点或线的缺陷。引起亮度降和缺陷产生的一个原因就是发生真空泄漏和由于在真空屏中真空的降低(压力增加)而引起电子发射装置的特性变差。在真空屏中真空降低发生过程如下:随着图象形成装置的激励,电子束开始辐照荧光件和图象形成件中的金属外壳,和该屏单元包括在电子源基片中的导线电极,电子发射装置,等等,导致吸附气体分子的(或原子)的退吸和同时由于产生离子的撞击也增强了气体的退吸,这样就使得这样产生的气体降低了真空屏中真空(或压力增加)。
妨碍真空降低的可能干扰是“增加抽空性能”和“从每个屏单元降低脱气量”。
对于前者,安装一个足够容量的吸气泵(吸取真空泵)是可以想象的。在内部保持真空的普通显示装置中,例如CRT,有少量立体空间限制在吸气泵的位置上,使得吸气泵能在宽的区域中构成。在CRT情况下,在真空容器中,表面区域与其容积的比率也很小,这样就能在其中保持足够的真空。在上述平面型显示装置的的情况中,无论如何有许多空间限制了吸气泵的位置,正常情况是,吸气泵经常被构成在远离图象显示区域的靠近屏边缘的一限定区域。由于在平面型真空容器中,在容器的高度方面,到图象显示区域的距离是很大的,结果是就不容易保证吸气泵的足够的抽空传导,也就不容易在局部显示装置中达到局部抽气中的足够抽空。
对于后者,在高温下的抽空干燥处理使用的普通处理以降低从屏单元的除气量。然而在百十来度(℃)的一般干燥是不适当的,这就不能说,对前述问题,该干燥是一好的方案。在较高温度下的干燥其结果是不能使用不耐高温真空干燥的构件,即这些构件要经化学反应,合金组成,粘附的薄膜,等等,以及在显示装置中使用的各成分的组合,使得制约显示装置结构的因素增加了,这是不可取的。
本发明的一个目的是提供一种在图象形成期间使电子发射装置的变差减至最小,产生高可靠性的图象形成设备的方法,特别是,在图象形成期间由于从图象形成件的气体退吸,而使电子发射装置的变差减至最小的产生高可靠性的图象形成设备的方法。
本发明的另一个目的是,提供一种产生图象形成设备的方法,其中在图象形成期间,在图象形成设备的产生过程中,把对电子发射装置变差的影响能被减至最小。
根据本发明的图象形成设备的产生方法是一种用于产生图象形成设备的方法,该图象形成设备包括一容器,在该容器中配置的电子发射装置并具有在一对电极之间的电子发射部分,该电子发射装置适合于在该对电极之间的应用电压下发射电子,和用于从电子发射装置发射的电子照射下形成图象的图象形成件,该产生方法具有的步骤是,利用从电子发射装置发射的电子照射图象形成件,其中照射图象形成件的电子是这样发射的电子,即在图象形成设备的驱动图象形成期间,提供给电子发射装置的电压其极性与电子发射装置的对电极之间提供的电压的极性相反。
根据本发明的图象形成设备的另一产生方法是产生图象形成设备的方法,该图象形成设备包括一容器,配置在该容器中的电子发射装置和在一对电极之间具有大量电子发射部位,电子发射装置适合于在该对电极施加电压时从大量电子发射部位中的某一些发射电子,和电子形成部件用于通过从电子发射装置发射的电子照射形成图象,该产生方法具有的步骤是,利用从电子发射装置发射的电子照射图象形成件,其中照射电子形成件的电子是在图象形成设备驱动图象形成期间从不同的电子发射部位发射的电子。
图1A是本发明的表面导通电子发射装置的结构的透视图,和图1B是其中沿1B-1B的截面图;
图2A是本发明的另一种表面导通电子发射装置的结构的透视图,和图2B是其中沿2B-2B的截面图;
图3是本发明的横向电子发射型电子发射装置的结构的透视图;
图4是本发明的表面导通电子发射装置中发射电流Ie’,装置电流If,和装置电压Vf的相互关系的举例;
图5是本发明的简单矩阵(无源矩阵)结构的电子源的示意图;
图6是根据本发明生产的图象形成设备的显示屏举例的示意图;
图7A是荧光膜举例的示意图和图7B是荧光膜另一举例的示意图;
图8是在图象形成设备中,根据NTSC方法的TV信号进行显示的驱动电路举例的方框图;
图9是根据本发明的真空系统;
图10是根据本发明的形成设备;
图11A是根据本发明的激励形成操作中的电压波形举例,图11B是在激励形成操作中电压波形的另一举例;
图12A,图12B,和图12C分别是本发明老化(aging)操作波型举例,本发明的驱动操作,和本发明的正常驱动;
图13是本发明的老化技术和老化设备;
图14是在表面导通电子发射装置中观察的光点形状,和从电子发射单元和光点密度的距离关系;
图15A和图15B是本发明的图象形成设备中电子束的轨迹;和
图16和图17A,17B,17C,17D,17E,17F,17G和17H是本发明举例中解释产生步骤的各图。
首先,该老化步骤是在图象形成设备中先于驱动图象形成之前,用加速的电子束照射图象形成设备的屏容器中的部件的步骤,从而必定从部件中解吸附着和保存在屏容器中部件的气体,并排除该气体。
本发明老化步骤的基本原理是解吸和排除附着并保存在图象形成设备的屏容器中的配置的图象形成件的气体。通过主要是利用加速的电子束照射图象形成件,从图象形成件中解吸气体。通过连接到屏容器到其外侧的排气管道抽取气体,达到抽空解吸气体,还可以配置在屏容器中的吸气泵吸附气体,或者利用这二者的组合。在本发明的上述老化步骤中用电子束照射图象形成件得以实现是通过预先予先利用在图象形成设备中在连续图象形成操作中使用的电子发射装置。
完成本发明的发明人了解到,在上述老化步骤中使用的电子发射装置的电子发射特性同老化步骤之前相比较被降低了。特别是有关电子发射装置的驱动,提供到电子发射装置的电压极性在上述老化步骤期间与前述图象形成期间相比被反相,从而电子发射特性近似等价于老化步骤之后的图象形成期间所获得的老化步骤之前的电子发射装置的特性。
将详细描述本发明的最佳实施例。
首先,本发明的电子发射装置具有至少一对电极,当该对电极之间施加一电压时适于发射电子,该装置甚至在该对电极之间施加电压的极性反向时也能发射电子,换言之,就是在该对电极之间的电场方向是反相的。
本发明电子发射装置的第一例是一表面导通电子发射装置。(表面通导电子发射装置)
图1A是本发明的表面导通电子发射装置的结构的示意图和图1B是图1A的沿1B-1B的截面图。在图1A和1B中,标号1是基片,2是第一装置电极,3是第二装置电极,4是导电膜,5是导电膜4中的空隙。当对装置电极2,3之间施加电压时,表面导通电子发射装置从靠近空隙5处发射电子。
在由本申请人申请的,例如日本公开专利号7-235255和8-264112中披露了表面导通电子发射装置的一般结构,材料,和产生过程。
表面导通电子发射装置具有如图4所示的装置电流特性和发射电流特性。图4是在未示出的阳极被在表面导通电子发射装置和用于发射电子的正电压施加到阴极的状态下所获得的装置电压Vf对装置电流If和发射电流Ie的关系图,其中装置电压Vf是施加给与第二装置电极3的基准(0V)相关的第一装置电极2的电压,装置电流If是在两个装置电极之间流动的电流,和发射电流Ie是从表面导通电子发射装置发射的并由阳极捕获的电子电流。图4中的电位是任意单位,因为发射电流Ie可考虑小于装置电流If。横坐标和纵坐标二者是线性比例。
如图4所示,当施加给表面导通电子发射装置的装置电压Vf超过确定的阈值电压Vth时,发射电流Ie迅速增加;然而,利用低于阈值电压Vth的装置电压检测少的发射电流Ie。即,该装置是对发射电流Ie具有确定的阈值电压Vth的非线性装置。
另外,如图4所示,表面传导电子发射装置具有正的阈值电压Vth(p)和负的阈值电压Vth(n),甚至用极性相反的电压施加到装置电极2,3之间装置也发射电子,换言之,甚至在装置电极2,3之间电场方向反向,该装置也发射电子。
本发明电子发射装置的另一最佳举例是一图3所示的横向场发射型电子发射装置。
图3中,标号161指明电绝缘基片,162是第一电极,和163是第二电极,凸出的电子发射部分164,165被构成在相应的第一电极162和第二电极163的相对侧表面上。在图3所示的横向场发射型电子发射装置中,如上述装置中在发射电流Ie和装置电压Vf之间有正阈值电压Vth(p)和负阈值电压Vth(n),甚至施加给电极162,163的电压极性反向,换言之,甚至电极162,163之间电场方向反向,该装置也发射电子。
应注意,本发明的电子发射装置不限于上述提供的表面导通电子发射装置和上述横向场发射型装置而是任何一种如前所述的具有一对电极并在该对电极之间施加电压时发射电子,甚至在该对电极之间电场方向相反时也能发射电子的装置。
<图象形成设备的结构>
以下将描述本发明的电子源。本发明的电子源例如是,在基片上配置的大量上述表面导通电子发射装置或上述横向场发射型电子发射装置的电子源。
能从各种阵列中选择电子发射装置的阵列。
例如,阵列可以是类似于梯形布局,许多平行放置的电子发射装置每一个在两端被连接,电子发射装置的许多行被在一方向上(称之为行方向),控制电极(也称栅极)被放置在垂直于导线和上述电子发射装置的方向(称之为列方向),来自于电子发射装置的电子由控制电极控制。另一种阵列是大量电子发射装置在X方向和Y方向上排列成矩阵,每一行中的电子发射装置的一种电极被连接到X方向的公共导线上,和在每一列的电子发射装置的另一电极被连接到Y方向的公共导线上。该阵列也被称之为简单(无源)矩阵布局。
作为一种举例,简单矩阵布局将参照图5描述。在图5中,数71指定是电子源基片,72m X方向导线Dxl至Dxm,和73n Y方向导线Dyl至Dyn。数74是电子发射装置,例如,如上所述的。未示出的隔离绝缘层被插入在mx方向导线72和ny方向导线73之间,以使它们彼此电绝缘(m,n二者是正整数)。
前述电子发射装置74的对电极(未示出)被电连接到mx方向导线72和ny方向导线73。
连接到X方向导线72的是扫描信号提供装置(未示出),用于为选择配置在X方向上的电子发射装置74的一行而提供一扫描信号。另一方面,连接到Y方向导线73的是调制信号产生装置(未示出),用于根据输入信号,调制在Y方向配置的电子发射装置74的每一列。提供给每个电子发射装置的驱动电压被提供作为扫描信号和提供给该装置的调制信号之间的差电压。
在上述结构中,每个装置能利用简单的矩阵导线被选择并单独驱动。
利用这样简单矩阵布局的电子源构成的图象形成设备将参照图6,图7A,7B和图8加以描述。图6是图象形成设备中显示屏举例的示意图,和图7A和7B每个是图6图象形成设备中使用的荧光膜。图8是根据NTSC方法的TV信号,完成显示的驱动电路举例的示意图。
图6中,标号71是放置有大量电子发射装置的电子源基片,81是被固定的电子源基片71的后板,和86是荧光膜84,金属基座85,等等被构成在玻璃基片83的内表面上的面板。数82是构成显示屏的包层88的支撑框,和支撑框82,后板81,和前板86。
数74表示电子发射装置和分别连接到电子发射装置的前述对电极的X方向导线和Y方向导线的72,73。
包层88也可由抗大气压力的足够强度的材料构成,按装成前板86和后板81之间间隔的非典型支撑。
图7A和7B的每一个表示荧光膜的示意图。荧光膜84只由单色荧光部件构成。在彩色荧光膜的情况下,荧光膜由荧光部件92和取决于该荧光部件阵列的被称之为黑条或黑矩阵的黑色导电材料构成。在彩色显示的情况下,装备黑条或黑矩阵的目的是通过必需三基色的荧光部件92之间的黑色部分进行彩色混合类似的自由混合,和抑制由于在荧光膜84上的环境光的反射而导致的对比度降低。黑条材料可从包括通常广泛使用的石墨的基本成分的材料中选取,或者从具有一点发射和反射光的导电材料中选取。
金属基座85通常设置在荧光膜84的内表面。金属基座的设置目的是增强光的镜反射亮度,以便从荧光件发射光传播到内侧,朝向面板86,使用金属基座作为提供电子束加速电压的电极,以便在包层以及等等中产生的离子撞击时保护荧光件不受损坏。
面板86可以在荧光膜84的外表面侧设置成透明电极(未示出),以便于增强荧光膜84的导电特性。
<产生图象形成设备的方法>
以下将描述产生本发明的上述图象形成设备的方法。
以下参照图6描述利用表面导通电子发射装置作为电子发射装置的用于产生图象形成设备的方法举例。
1)电子源基片的形成
上述表面导通电子发射装置的m个X方向导线72,n个Y方向导线73,和对装置电极通过真空蒸发和光刻形成在绝缘基片71上。隔离绝缘层形成在m个X方向导线72和n个Y方向导线73之间,以便使导线相互电绝缘。上述每个表面导通电子发射装置的对电极被形成在靠近X方向导线72和Y方向导线73之间的交会点中的一个,和每对装置电极被电连接到X方向导线72和Y方向导线73。然后导电膜被形成在每对装置电极之间。例如,该导电膜是通过金属有机化合物溶液并通过旋转器或喷墨方法或类似方法,及烘焙它(干燥)来形成。
2)图象形成件的形成(面板)
淤浆法或类似方法可被用作为将荧光件固定到玻璃基片83上的方法。金属基座85通常被设置在荧光膜84的内表面侧和在产生荧光膜之后,通过处理荧光膜的内表面侧的表面,以平滑操作(正常称为镀膜)和在真空中蒸发AL在其上,以此产生金属基座(衬垫)。
3)密封
图6所示包层是利用密封技术制成。如上所述的具有电子源基片71的后板81,和具有图象形成件并包括有荧光膜84和金属基座85的前板86,与支撑框82放置在其间,烧结玻璃被提供到面板86,支撑框82,和后板81之间的连接部分,密封是通过在大气中或氮环境中烘焙实现的。在密封情况下,位置充分对准,以便在彩色情况下使电子发射装置对准各自的彩色荧光件。
图9是随后步骤中使用的系统方案的示意图。图系形成设备1131通过抽气管1132连接到真空室1133,和进一步通过阀门1134连接到抽气单元1135。压力担保1136和四极量光谱仪1137或类似物被附于真空室1133,以便于测量内部压力和大气中各个成分的局部压力。由于直接测量图象形成设备1131的包层88的内部压力是困难的,所以操作状态由测量真空室1133的内部压力来控制。
气体进入线1138被进一步连接到真空室1133,以便于引导必要的气体进入真空室,以控制环境。引入物质源1140被连接到气体进入线1138的另一端,和引入的物质被存储在细颈瓶或气瓶中。引入控制单元1139用于控制设置在气体进入线中部的引入物质的引入比率。引入量控制装置能从允许泄漏率控制值中特定选取,例如慢泄漏值,或质量流动控制器,这取决于引入物质的种类。
4)抽气
这样完成的包层88内部气体由真空泵通过连接到上述图9设备的抽气管1132抽取。
5)形成
接着,执行形成步骤,以便在上述电子源基片上产生的装置电极之间的导电膜中形成电子发射部分。在此情况下,例如,如图10所示,通过连接Y方向导线73到公共电极141和同时从电源提供电压脉冲到连接到X方向导线72中一个的各装置的装置电极之间,以在装置电极之间的导电膜上形成。用于判断操作完成的脉冲形式和条件被适当选择为需求的情况。通过连续提供(或漩涡)具有移相的脉冲给X方向导线,这也可以影响到连接到X方向导线的装置的批形成。序数143是测量电流的电阻器,144是测量电流的示波器。
激发形成中的电压波形举例示出在图11A和11B。
电压波形最好是脉冲波形。在此情况下,连续提供具有恒定电压的脉冲峰值的脉冲技术在图11A中示出,和提供具有增加脉冲峰值的电压脉冲技术示出在图11B。
在图11A中,T1和T2表示脉冲宽度和电压波形的脉冲分离。正常是,T1被设备在1微秒至10毫秒范围,和T2是在10微秒至100毫秒范围。三角波的峰值(激励形成期间的峰电压)依据表面导通电子发射装置的形式而选择。在这些条件下,例如,提供电压若干秒至几十分钟。脉冲波形不限于三角波,而希望的波形,例如也可以使用矩形波。
如图11B所示,三角波的峰值(激励形成期间的峰压)能被增加,例如在上述0.1V的步骤中。通过在脉冲分离T2和测量电流期间提供电压,能够检测激励形成操作的完成。例如提供约0.1V的电压,在那时流动的装置电流被测量,以计算电阻,以及用不少于1MΩ的电阻结束激励形成。上述形成操作在装置电极之间的导电膜中形成缺口(裂缝),在装置电极之间提供电压,电子从缺口附近发射。
6)激励
在上述形成之后,在靠近前叙的缺口处对沉积的碳膜或碳化合物(图2A和2B中的6)执行驱动操作。例如,通过对包层88内部足够抽空,可执行驱动步骤,通过气体进入线1138引入有机物质的气体和通过抽气管进入包层,以及分别提供脉冲。通过利用在轴空之后的环境中保留的,例如,通过油扩散泵或旋转泵,或通过离子泵将内部足够抽空成真空并向真空引入足够的有机物质的气体而保留的有机气体来形成该有机物质的气体。有机物质的优选压力依真容器的形状,有机物质的种类等等不同而不同,适当的设置取决于这些情况。适当的有机物质可从由烷,烯,和炔,芳烃,酒精,醛,酮,胺,有机酸,例如酚,羧基酸,和硫酸等等代表的脂类烃类选取。有机物质的特定举例包括由CnH2n+2,例如甲烷,乙烷,和丙烷代表的饱和烃,和由CnH2n组成分子式的或类似的,例如乙烯,丙烯,苯,苯基氰(benxonitrile),三腈,甲苯,甲醇,乙醇,甲醛,乙醛,丙铜,甲基乙基,酮,甲基胺,乙基胺,酚,甲酸,醋酸,丙酸,等等代表的非饱和烃。通过该操作,碳或碳化合物在当前环境下从有机物质沉淀到该装置,这样对装置电流If和发射电流Ie带来极大变化。驱动操作使用的电压脉冲波形可以从例如,矩形波,三角波,正弦波,不规则波,等等中任意选择。有图12A所示的总是提供单极性脉冲的技术和图12B所示的交替提供相反极性的脉冲技术,作为提供给本发明使用的表面导通电子发射装置的技术,更可取的是使用具有正和负极性这二者的图12B的类型的电压脉冲。
在使用以恒定电压保持电压脉冲(驱动电压Vact)的峰值的技术或随时间逐渐增加电压的技术,或类似技术进行上述驱动操作之后,装置电压被提供给表面导通电子发射装置,以允许电流流经装置表面,从而该装置从电子发射单元(部分)发射足够量的电子。在此时的电压提供方法使用如上述形成情况的相同连接,并通过同时向连接到一方向导线的装置的装置电极之间提供电压脉冲而实现。
上述步骤在碳膜6中形成窄的5′,或者如图2A和2B所示的导电膜4的碳化物内侧缺口,它可以增强电子发射效率。图2A和2B中相同参加符号的序数与图1A和1B中相同数表示的相同。
7)稳定
在驱动之后可希望于进行随后的稳定步骤。该步骤是从真空容器中抽取有机物质的步骤。在包层中真空单元的压力最好不大于1×10-5pa和更可取的是不大于1×10-6pa。用于抽空包层的抽气单元最好是不用油的一种,以便防止从该单元产生的油影响该装置的特性。特别是该抽气单元能从,例如,吸附泵,离子泵,等等中选择。在真空容器内部抽气期间,整个真空容器最好加热,以便有利于对吸附在真空容器的内壁和电子发射装置上的有机分子的抽取。在此时的加热最好在100-300℃并尽可能地长些时间,而无须对这些条件进行限制,对这些条件的适当选择取决于包括真空容量的尺寸和形状,电子发射装置的结构,等等的各种条件。在完成上述稳定步骤之后,有机物质被从真空单元充分移除,使得抑制碳或碳化合物的新的沉淀,以便使装置电流If和发射电流Ie稳定。
8)封装/吸气
在稳定操作之后,未示出的抽气管由将被使用的气体燃嘴加热,从而封装该包层。也进行吸气操作,以便于在封装包层88之后,保持在屏中的压力。在包层88封装之前或之后,立即进行的这一过程用于通过电阻加热或高频加热来加热放置在包层88中予定位置处的吸气剂(未示出),以形成沉淀膜。吸气剂通常包含Ba或类似的基本成分,并通过沉淀膜的吸附作用,保持例如1×10-4至1×10-7pa的压力。
9)老化步骤
在封装和吸气剂蒸发(flash)之后,对如上产生的屏容器执行老化步骤。在其中封装之后即进行老化,但是它也可以在封装之前,即稳定之后进行老化。本发明的老化步骤的最佳实施例是在特定的吸气剂蒸发之后执行。
将参照图13描述本发明的老化步骤和老化设备。图13是在上述生产过程下,对图象形成设备的屏容器101,执行本发明老化步骤的老化设备的示意图。在该生产过程下的屏容器101内侧有基片,基片中设置有复数个发射装置的电子源,和与设置有电子源的基片相对配置的图象形成件。电子源驱动装置通过终端外侧该屏容器连接到该电子源,和用于加速电子束的高压电源(阳极电源)连接到图象形成件。电子源驱动装置13是这样一种单元,用于对排列在电子源基片上的和由电子源驱动控制单元121控制的电子发射装置,提供希望的装置电压,从而驱动电压Vf,驱动脉冲宽度,驱动扫描频率,已驱动的装置数,等都能任意设置。这里的驱动扫描频率是驱动线连续转换驱动的频率。驱动信号总线126将电子源驱动控制单元121连接到电子源驱动单元123,以发射(传输)驱动信号和控制信号。高压电源(阳极电源)Va是用于向图象形成件提供阳极电压的单元。另外如上述,也提供附加装置,包括用于测量在电子源驱动期间,在电子源基片上流动的电流(即装置电流)的驱动电流测量单元124,用于测量在电子源基片和图象形成件之间流动的电流(即发射电流)的阳极电流测量单元125,以及等等。驱动电流测量单元124和阳极电流测量单元125的每一个都能通过装置电流信号总线127和通过发射电流信号总线128将测量电流值的数据传输到数据采集/分析单元122。电子源驱动控制单元121和数据采集/分析单元122的操作也能通过同步信号彼此同步进行;在此情况下,也可构成具有这二者功能的整个装置并代替上述装置。
利用以前描述的以简单矩阵布局排列的表面导通电子发射装置中的电子源的屏容器101作为举例,将描述利用老化设备的老化步骤。
屏容器101外侧设置有外部终端,用于电连接到X方向导线和Y方向导线,作为前述简单矩阵的导线。例如,电子源驱动单元123通过外部终端连接到X方向导线,而驱动电流测量单元124类似地连接到Y方向导线。阳极电流测量单元125和阳极电源Va通过用于电连接的阳极终端连接到屏容器中设置的图象形成件。
当超过上述阈值电压的电压从电子源驱动单元123施加到在上述条件下的X方向导线和Y方向导线之间时,从电子发射装置中发射电子;当有关X方向导线和Y方向导线的正电压被施加到阳极端时,从电子发射装置的发射的电子能撞击面板。在最终图象形成期间,施加到X方向导线的电势极性与相关的Y方向导线的电势极性之间的关系是,这二者或正或负要维持能获得良好图象那么长;在本实施例中,施加给用于在最终图象形成期间(即,正常驱动期间)发射电子的装置的电压的电势关系这样选择,使得连接到Y方向导线的第二装置电极的电势对于连接到X方向导线的电子发射装置的第一装置电极是正向的。
在本发明的老化步骤中,用于电子发射的装置在老化步骤期间通过提供与前述正常驱动期间的电极极性相反的电压来驱动的。上述举例描述如下,从电子源驱动单元123输出的电压信号使用于电子发射的装置的电压的电势关系被设置成,连接到Y方向导线的第二装置电极的电势相对于连接到X方向导线的电子发射装置的第一装置电极是负的。
接着描述的是图14和图15A和15B的在正常驱动期间和老化期间屏内侧电子束的轨迹。图14是前述表面导通电子发射装置中观察到的亮点形状,和点的光密度与从在阳极电极和正常是到装置电极的连接方向上电子发射单元之间的交叉点的距离的关系。图15A和15B是沿X方向导线的电子发射单元的截面视图,它示出利用以简单矩阵布局排列的上述表面导通电子发射装置的电子源的屏容器101的截面。图15A是虚拟的正常驱动期间的电子束的轨迹图和图15B是虚拟的老化期间的电子束的轨迹图。这些电子轨迹是基于经验结果和利用简化结构的有限元素(element)法的数字计算。虽然图15A和15B仅对于特定屏结构和电势关系是有效的,但在本发明老化步骤中的电子束轨迹并不限于该举例,和束轨迹的说明也可用于其它结构,包括称之为格栅结构,在该结构中,控制电极,例如设置在前述电子源的上部空间。为描述的简化起见,以下描述利用图15A和15B并在第二电极电势确定为基准电势(在此情况下是0V)的基础上进行。
在图15A和15B中,标号61是绝缘材料制成的基片,62是用于电隔离X方向导线和Y方向导线之间的电绝缘层,64是Y方向导线,65是电子发射装置的第一装置电极,66是电子发射装置的第二装置电极,和67是电子发射单元。第二装置电极66直接连到Y方向导线64,和第一装置电极65通过接触孔连接到X方向导线。标号68是图象形成件和69是玻璃基片,和图象形成件68和电子发射单元67在之间真空区域的彼此距离是H。
图15A示出图象形成期间(或正常驱动期间)的电子束轨迹,在此期间,第一装置电极65被设置成负的,以便建立起超过用于电子发射的阈值电压的电压(例如,施加如图12C所示的电压脉冲)。比第一装置电极65较高电势的dc电压施加到图象形成装置(该电压将作为阳极电压)。图15B示出本发明的老化步骤期间的电子束轨迹,与图15A不同的是,施加给第一装置电极65的电压极性是正的(例如,施加图12A所示的电压脉冲)。如从图15A和图15B所示,与图象形成件68碰撞的电子束的束斑点位置从阳极和正常到电子发射单元67之间交叉点移位到较高电势的电极侧,即第一装置电极侧或第二装置电极侧这二者之一。
当几千伏至十几千伏的正常驱动高电压被施加到阳极产生图象显示时,从电子发射单元67发射的电子由阳极加速去撞击上述的束斑点位置并促使从图象形成件68中的气体解吸。随着气体的解吸,产生正离子(即,电离的气体分子),正离子由高电势加速,去撞击形成电子源的各件,等等,使得在某些情况下,由于该离子的撞击也能引起气体解吸。在此情况下,由于从图象形成件68发射的气体和电子源部件包含的气体,降低了电子发射装置的特性,所以从电子发射装置发射的电流量随驱动减少。特别是,在屏容器101在产生期间或产生之后,当图象形成件68由电子束首先撞击时,电子发射装置的特性的降低是很大的。应考虑到,在驱动早期,解吸有大量气体。
本发明的老化步骤是这样一种步骤,首先降低从图象形成件68予先解吸的气体,先于正常驱动的图象形成期间,通过配置在屏容器中的吸气剂或通过屏容器外侧的抽气单元移除它。老化步骤的基本特点是在老化步骤期间施加给电子发射装置的电压极性与上述图象形成期间的相反。在图象形成期间的电子发射特性近似等价于老化步骤之前的电子发射装置的特性,甚至哪怕由于老化步骤中的解吸气体,而产生电子发射装置的特性的降低。与此相关的是,老化步骤可理解如下。正在发射电子的电子发射部位更易受前述解吸气体的影响。进而,在电子发射装置中的电子发射部位随着由于极性的反相,而使电子发射装置的对电极之间的电场方向的改变而变化。甚至哪怕,在老化步骤期间,发射电子的电子发射部位被变坏,在图象形成期间,该相反极性所引起的从其它电子发射部位发射电子,比老化步骤期间由解吸气体造成的影响很少;因此,电子发射特性近似等价于老化步骤之前电子发射装置所达到的特性。
前述束斑点位置的不同取决于施加给电子发射装置,即施加给控制电极和阳极的电压,电子源基片的材料和尺寸,等等,但前述简单矩阵中的束斑点位置能由等式1描述。
                        (等式1) Xc = A &bull; H &bull; ( Vf / Va ) 在等式1中,Xc是从阳极和正常到电子发射单元之间交叉点到装置电极之间连接方向中束斑位置的距离,H是电子发射装置和阳极之间的距离,Vf是施加到装置电极之间的电压,Va施加到阳极的电压,和A是根据电子源基片等材料和结构确定的比例常数,例如,在以简单矩阵结构产生的图象形成设备和具有Vf和Va的束斑测量的位置关系情况下,该A=2.0。
束斑点位置Xc由最高束密度的位置表示,如图14所示,但亮点(电子束撞击位置)自身有某些扩展。令Xh表示从阳极和正常到电子发射单元之间的交叉点的最远位置,和Xt表示最近位置。将A代入等示1Xh和Xt的值分别是2.33和0.95。其中电极之间的连接方向,该方向朝向图14中是正电位的较高电势装置的电极。
本发明老化步骤的最佳驱动条件如下;适当选择Vf和/或Va使得在老化(=Xca)期间某些或全部束斑点位置Xc等于在图象形成期间(正常驱动期间)(=Xcp)的某些全部的束斑点位置Xc。这就实现了在正常驱动期间,在束斑点区域中的正向气体解吸。例如,在本实施例中的简单矩阵结构中,Vf和/或Va被选择成满足以下等式:
(等式2) n &bull; p = 2 H ( Vf / Va ) + 2 H ( Vfp / Vap ) 这里P是大量排列的电子发射装置的X方向(图15A和15B和水平方向)的间距,n是正整数,Vfp是图象形成期间施加的电子发射装置的驱动电压,和Vap是在图象形成期间施加给图象形成件的电压。
也可能执行的一种过程包括相对大量不同的,在一个老化操作期间的正整数n的驱动电压条件的组合。
当Vf和/或Va被调制成,使得在老化步骤期间的束斑点位置Xca照射图象形成期间的亮点的头Xh至尾Xt的范围,则抽气操作能理想地完成,另外,上述条件即是,最大电子束密度的束斑点位置Xc如上所述正好对齐(Xca=Xcp)。即当调制Vf和/或Va满足下式时,执行老化步骤。
(等式3) n &bull; p / ( 2 H ) - 1.165 &bull; ( Vfp / Vap ) &le; ( Vf / Va ) &le; n &bull; p / ( 2 H ) - 0.475 &bull; ( Vfp / Vap )
该驱动方法也可以利用这样一种过程,包括相对大量不同的在一个老化操作期间正整数n的驱动电压条件的组合。
本发明老化步骤的进一步最佳驱动条件如下:在老化期间的电子源Va被控制在500至1000V电压或更少。这能够使在老化期间随着气体的解吸,在屏容器中由压力的增加而导致的放电,而使电子源基片和其它元件受到的损害减至最小。很清楚,通过约500至1000V的加速电压,充分论述了老化作用,例如,如披露在M·Nishijiam和F·M·Propst:phys·Rev.,132(1970)2368和其它文献中的,在约400eV的电子能量上解吸气体的交迭点中已经看到,事实上只少量增加了。
接着,参照图8的描述是,在利用上述产生的简单矩阵布局的电子源构成的显示屏上,在NTSC方法的TV信号基础上,作用于TV显示的驱动电路的结构。在图8中,10是图象显示屏,102是扫描电路,103是控制,和104是移位寄存器。105是行存储器,106是同步信号分离器,107是调制信号发生器,和Vx和Va是直流电压源。
该驱动电路适合于执行图象显示的正常驱动,还可以执行与正常驱动相反极性的显示屏驱动,以用于由本电路执行老化步骤。
显示屏101通过终端Dox1至Doxm,终端Doy1至Doyn连接到外部电子电路,和高压端HV。施加到终端Dox1至Doxm的是用于连续驱动在显示屏中设置的电子源的的扫描信号,该电子源即是以M行×N列的矩阵中一行一行的表面导通电子发射装置矩阵导线组(每个N装置)。
施加到终端Dy1至Dyn的是用于控制从该扫描信号选择一行中的表面导通电子发射装置的每个中输出的电子束。直流电压,例如10kV从dc电压源Va施加到高压端HV,这是加速电压;用于传递足够的能量激励荧光件,以便从表面导通电子发射装置中输出电子束。
在老化期间,Va值可设置在500至1000V的电压。
以下描述扫描电路102。该电路内部设置有M个转换(开关)装置(图中由S1至Sm示出)。每个转换装置选择直流电压源Vx或0v(地电平)这二者之一电连接到显示屏101的终端Dx1至Dxm。S1至Sm的每个转移装置的操作是基于从控制电路103输出的控制信号Tscan,并能够构成,例如作为FET的这样转换装置的组合。
直流电压源Vx能被设置成正的或负的这二者之一的极性电压。
本例的直流电压Vx被设置成输出这样的恒定电压,即在表面导通电子发射装置的不扫描特性基础上(电子发射阈值电压)提供给该装置的驱动电压不多于电子发射阈值电压。
控制电路103具有匹配各单元操作的功能,使得在从外部提供的图象信号的基础上实现适宜的显示。控制电路103在从同步信号分离器106寄送的同步信号Tsyre的基础上,为每个单元产生Tscan,Tsft,和Tmry的每个控制信号。
同步信号分离器电路106是用于从外部提供的NTSC方法的TV信号中分离同步信号成分和亮度信号成分的电路,它可以利用普通频率分离器(滤波器)电路或类似电路构成。由同步信号分离器106分离的同步信号由垂直同步信号和水平同步信号组成,但是由于所述描述方便缘由,它被示作为其中的Tsync信号。从上述TV信号中分离的图象的亮度信号成分,由描述方便缘由,由数据信号表示。数据信号被输入到移位寄存器104。
移位寄存器104是用于在从控制电路103寄送的控制信号Tsft基础上的操作,对以时间序列串联输入的前述数据信号的图象的每一行,完成串/并联转换的寄存器(这意味着,控制信号Tsft可以被说成是移位寄存器104的移位时钟)。在串/并联转移之后,每个图象行的数据(对应于N个电子发射装置的驱动数据)作为来自移位寄存器104的Id1至Idn的N个并联信号。
行存储器105是用于在必要周期期间存储一图象行的数据的存储装置,它能根据从控制电路103寄送来的控制信号Tmry适当存储者Id1至Idn的数据。存储的数据作为I’d1至I’dn被输出到调制信号产生时107。
调制信号产生器107是用于根据图象数据I’d1至I’dn的每一个适当调制表面导通电子发射装置的驱动的信号源,并通过终端Doy1至Doyn,从中提供输出信号到在显示屏101中的表面导通电子发射装置。
如前所述,本发明提供的电子发射装置具有涉及发射电流Ie的所述基本特征。特别是有用于电子发射的确定的阈值电压Vth,使得电子发射只发生在应用电压超过Vth的情况下。随着电压超过电子发射的阈值,发射电流也对应着施加给该装置的电压变化而变化。从这样的事实中能看到,当施加给该装置的电压脉冲时,在应用低于电子发射阈值的电压情况下,没有电子发射产生,但,例如应用高于电子发射阈值的电压时,则输出电子束。在此情况下,输出电子束的密度,可通过改变脉冲峰值Vm来加以控制。这也就可能通过改变脉冲的宽度Pw来控制输出电子束的总电荷量。
相应地,电压调制方法,脉冲宽度调制方法,或类似方法,能作为根据输入信号用作为调制电子发射装置的方法。用于执行电压调制方法的调制信号产生器107可以是根据输入数据,用于产生恒定长度和调当调制峰值的电压脉冲的电压调制方法的电路。
用于执行脉冲宽度调制方法的调制信号产生器107可以是用于根据输入数据产生恒定峰值和适当调制宽度的电压脉冲的电压脉冲的脉冲宽度调制方法的电路。
移位寄存器104和行存储器105可以是数字信号类型或模拟信号类型这二者之一。该点是串/并联转换和应当以予定速率执行的图象信号存储的点。
为使用数字信号类型,同步信号分离器106的输出的信号数据需要数字化。为此目的,106的输出单元设置有A/D转移器。与其连接中的调制信号产生器107中使用的电路稍不同于依赖行存储器105的输出信号是数字信号还是模拟信号的电路。利用数字信号的电压调制方法的情况中,例如是D/A转移器和如果必要附加一放大器。在脉冲宽度调制方法的情况中,调制信号产生器107,例如是包括有高速振荡器,用于计算从振荡器输出波的计数器,和用于比较计数器输出值和存储器输出值的比较器的电路。如果必要,该电路还可以设置一放大器,用于放大来自比较器的脉宽调制过的调制信号电压,以驱动表面导通电子发射装置。
在利用模拟信号的电压调制方法的情况中,该调制信号产生器107可以是,例如利用一运算放大器的放大电路,如果必要还可以设置一电平移位电路。在脉冲宽度调制方法的情况中,例如可以使用压控振荡器(VCO),和如果必要,还可以设置一放大器,用于放大表面导通电子发射装置的驱动电压的电压。
在本发明提供的和以上述结构构成的图象形成设备中,当电压通过容器外侧的终端Dox1至Doxm,Doy1至Doyn,施加到每个电子发射装置时,产生电子发射。通过高压端HV将高压施加到金属基座85或透明电极(未示出),加速电子束。这样加速的电子撞击荧光膜84,出现荧光,形成图象。
应注意到,这里所述图象形成设备的结构恰是本发明提供的图象形成设备的一例,在本发明工艺思想基础上,可以包含各种改型。虽然用于输入信号的NTSC方法仅是一例,但输入信号也可以是不限于NTSC方法的PAL方法,SECAM方法,及类似方法,或包括更多扫描线的TV信号方法(例如,包括MVSE方法的高清晰度TV方法的一种)。
本发明的图象形成设备可应用于电视广播系统的显示装置,电视会议系统的显示装置,计算机,以及等等,利用光敏磁鼓等构成的作为光打印机的图象形成设备,等。
举例
本发明将以特定举例进一步详述,但是应注意,本发明并不意味着限定于这些实施例,和本发明在实现本发明的目的范围内,还包含着各种代用品和每个单元的设计变化。
[例1]
该例是根据本发明老化步骤的一例,该老化步骤是在大量表面导通电子发射装置以简单矩阵布局排列在电子源基片上的图象形成设备制造情况下,利用制造设备在吸气剂蒸发和封装之前执行的。
图13是用于图象形成设备的屏容器101的,用于执行根据本发明老化步骤的老化设备的示意图。
在图13中,101是屏容器,121是电子源驱动控制单元,122是数据采集/分析单元,123是电子源驱动单元,124是驱动电流测量单元,125阳极电流测量单元,126是驱动信号总线,127是装置电流总线,和128是发射电流信号总线。
图13中,101表示图6所示的图象形成设备的屏容器,其中该图象形成设备的电子源是作为图5示意图中,大量表面导通电子发射装置以简单矩阵布局(包括三种颜色的100行×100列的矩阵中)排列的电子源。以下将描述屏容器的产生步骤。
<屏容器的产生步骤>
以下描述电子源基片的产生,图象形成件的产生,和产生屏容器早期中密封/装配的步骤。
如上所述有大量表面导通电子发射装置的电子源基片的产生如下所述。根据该例的步骤产生的电子源基片的平面图示出在图16和沿17-17的截面图示出在图17A至17H。图号71是基片,72是x方向导线(也称低线),73是y方向导线(也称高线),4是导电膜,2、3是装置电极,141隔离绝缘层,和142是用于在装置电极2和低线72之间进行电连接的接触孔。
下面,将根据参照图17A至17H的步骤顺序,专门描述产生步骤。
步骤a:通过喷射将在纯净的碱石灰玻璃上沉淀0.5μ厚的硅氧化物膜,以获得基片71。在该基片71上,通过蒸发,Ti和An被分别连续沉淀成50厚度和6000厚度。然后,通过旋转器旋转复盖,施加光刻胶(Hoechst通用的AZ1370),随后烘焙。在烘焙之后,光掩膜图象暴光并发展成x方向导线72的电阻形式。然后,Au/Ti沉淀膜经湿刻蚀,从而形成希望形状的x方向导线72(图17A)。
步骤b:1.0μm厚的硅氧化物膜的隔离绝缘层141然后通过RF喷射而被沉淀(图17B)。
步骤c:用于形成接触孔142的光刻胶模形成在前述步骤b中沉淀的硅氧化物膜上,和利用它作为模片通过刻蚀隔离绝缘层141形成接触孔142。利用CF4和H2气体,通过RIE(活性离子刻蚀)处理进行刻蚀(图17C)
步骤d:然后,模片成为由光刻胶(Hitachi Kasei通用的RD-2000N)形成的装置电极2和装置电极3之间的间隙G,和通过蒸气蒸发,将Ti和Ni分别连续沉淀成50的厚度和500的厚度。然后,光刻胶模用有机溶剂溶解和Ni/Ti沉淀膜经折卸,以形成具有3μm的装置电极间隙G和200μm装置电极的宽度W1的装置电极2、3(图17D)。
步骤e:在装置电极2、3上形成用于y方向导线73的光刻胶膜,Ti和Au分别通真空蒸发被连续沉淀成50厚度,和5000厚度,以及不必要的部分被折卸移除,从而形成希望形状的y方向导线73(图17E)。
步骤f:通过真空蒸发沉淀1000厚的Gr膜151和然后成模,和通过旋转器旋转复盖,将有机Pd(Okuno Seiyaku K.K通用的ccp4230)施加其上,随后经过300℃的烘焙处理10分钟。用于形成电子发射单元的簿膜4主要包括这样形成的PdO的细小部分,具有85厚度和3.9×104Ω/□的表面电阻(图17F)。
步骤g:在烘焙之后,用酸刻蚀剂,刻蚀Cr膜151和用于形成电子发射单元的簿膜4,形成希望的模式(图17G)。
步骤h:通过真空蒸发,利用Ti和Au分别连续沉淀成50厚度和5000厚度所形成的模,使得覆盖各部分,除了具有电阻的接触孔142部分之外。不必要的部分被拆卸移除,从而填充接触孔142(图17H)。
根据上述步骤产生的是电子源基片,用于形成电子发射单元的x方向导线72,隔离绝缘层141,y方向导线73,装置电极2、3,和簿膜4被形成在绝缘基片1上。
上述装置电极,导线,和导电膜要使得电子发射装置之间的间隔等于y方向420μm,x方向500μm的间隔。
利用这样产生的电子源基片,图6所示图象形成设备制造,在下面随同面板描述。
图6中,71是配置有电子发射装置的上述电子源基片,81是固定电子源基片71的后板,和86是其中荧光膜84,基座85等被形成在玻璃基片83的内表面上的面板。面板86和后板81之间的间隙是4μm。82代表支撑框,和后板81和面板86通过施加低熔点的熔化玻璃并在大气中,以410℃烘焙10分钟连接到支撑框82。这些支撑框82,面板86,和后板81组成包层88。
荧光膜84包括有用于实现彩色图象的带状荧光件(见图7A)。荧光膜84的制造首先形成黑条并通粘合方法将各自颜色的荧光件92施加到带中间的区域。黑条的材料是通常使用的基本材料是石墨的材料。
金属基座85被设置在荧光膜84的内表面侧。金属基座85的产生是这样,在荧光膜84产生之后,荧光膜84的内表面经平滑操作(通常称为加膜)和之后通过真空蒸发沉淀Al。
面板86设置有在荧光膜84的外表面侧(或在玻璃基片83侧)上的ITO的透明电极(未示出),以便于增强荧光膜84的导电性能。
在上述封装情况中,在彩色情况下,要足以对准,以便实现在各彩色荧光件72和表面导通电子发射装置74之间相应对准。
<形成/激励/稳定步骤>
接着执行形成和激励步骤,然后进行稳定操作。
利用图9所示的真空系统执行形成,激励,稳定这些步骤。在图9中,1131是由上述步骤制造的屏,和1132是连接屏1131到真空室1133的抽气管。真空室1133被连接到门阀1134和门阀1134被连接到抽气单元1135。抽气单元1135的组成有磁悬浮型涡轮分子泵和干燥泵,以便通未示出的阀门支撑连接在其中。真空室1133配备有用于监视内部压力的压力表1136和用于监视真空室1133内部气体局部压力的组成的四极量光谱议(Q量)1137。然而,通过气体进入线1138连接真空室1133和配置在气体进入线1138中间的气体引导控制单元1139连接到细颈瓶,在该瓶中引入的物质源1140被封装。在该举例中,准备用于超高真空的变量泄漏值被用作空气引导控制单元和苯基氰(benzonitrile)作为引入的物质源。
由前述步骤产生的屏的包层88中的气体通过抽气线1132和真空室1133利用抽气单元1135抽取。在压力表的指示达到约1×10-3Pa之后,通过图6所示包层88的外部的终端Dx1至Dxm和Dy1至Dyn施加电压到每个簿膜,以用于在前述电子源基片171上形成电子发射单元,以便在簿膜上形成电子发射单元,这样就在本实施例中完成了电子源基片的形成操作。
为形成操作使用脉冲电压。在本实施例中,脉冲宽度是1毫秒,脉冲距离是10毫秒。
然后利用图9的设备和图12B的电压波型执行激励操作。本例的激励操作下述条件下执行:脉宽是1毫秒,脉冲距离是10毫秒,峰值Vf是15V,正和负极性电压施加相同的幅度,和操作是在作为压力表1136指示的1×10-4Pa下的苯基氰(benzonitrile)条件下进行的并随同测量装置电流If和发射电流Ie。在先于激励操作之前,真空室1133的内部被抽成大于2×10-5Pa或更少的压力,和然后通过调节气体引导控制单元1139将苯基氰引入真空室1133。在此情况下,用Q量1137检验苯基氰的气体分子确实被引入真空室1133。
然后执行稳定操作。在以200℃对整个包层88加热10小时,通过抽气执行稳定操作。在稳定操作完成之后,真空室1133的压力在室温下约为1×10-6Pa。
<老化步骤>
接着,在上述步骤之后的屏101连接到图13所示的老化设备。通过外部终端Dx1至Dxm,从电子源驱动单元123,向每线的每个电子发射装置,以扫描频率60Hz提供具有脉宽150微秒和脉冲峰值Vf=+15v的矩形脉冲,等于721v的直流高压通过高压端Hv施加到金属基座85和透明电极(未示出)。在此时,外端Dy1至Dyn通过驱动电流测量单元124,实质上维持在基准电势上(OV)。在该步骤中,Dy1至Dyn和Dx1至Dxm之间的驱动电势关系与最终产生的图象显示期间是相反的。
在本发明的老化步骤中的电子发射装置的驱动电压Vf和阳极电压Va的值被设置成满足(等式2)。特别是,它们被确定如下。利用下述值:在装置电极之间的连接方向的x方向中的装置至装置间距P,P=5.0×10-4m,面板86和后板81之间的间隙H,H=4.0×10-3m,在正常驱动期间的装置电极之间施加的电压脉冲的峰值Vfp,Vfp=15v,和在正常驱动期间的阳极电压Vap,Vap=8000v;当n=3和当在老化步骤期间施加到该装置的电压是Vf=15v时,在老化步骤中的阳极电压Va被确定如下。
(等式4) 3 &bull; 5.0 &times; 10 - 4 = 2 &bull; 4.0 &times; 10 - 3 &bull; ( 15 / Va ) + 2 &bull; 4.0 &times; 10 - 3 &bull; ( 15 / 8000 ) 通过在上述老化条件下的老化操作,在用于最终图象形成的图象形成单元中(即,在荧光件形成的象素单元),是能够完成解吸过种程的,特别是在大部分面积由电子束照射的条件下。
此方法是用从每个电子发射装置发射的电子束轰击面板和解吸的气体分子通过抽气管1132移出到显示屏101的外侧。该操作执行约1小时,然后完成老化操作。
<封装/吸气剂蒸发步骤>
在那之后,抽气管1132由气体喷嘴加热至熔化,这样完成了包围88的封装。在最后一步中,吸气剂操作由高频加热执行,以便在封装之后,维持屏中的压力。
<例1对照物>
作为例1对照物,图象形成设备以例1的相同方式形成,如密封/吸气剂蒸发步骤等,仅仅除了老外步骤之外。这样,在本对照物举例所有步骤中,只有老化步骤未执行。
如上述完成的图象形成设备以这样一种方式由图8所示的图象形成设备的驱动装置驱动,即通过外部终端Dx1至Dxm从信号产生装置施加扫描信号和调制信号,Dy1至Dyn在每个电子发射装置74的装置电极之间施加15v的电压脉冲,8Kv的高压通过高压端Hv施加到金属基座85和透明电极上(未示出),以加速电子束并轰击荧光膜84,以实现激励和发光,并依次带来图象显示,以及并测量发射电流Ie。在此该显示的图象是整个表面呈白色。一个典型行(100装置)的平均发射电流值Ie、<Ie>(μA),和标准的平均偏差百分比,ΔIe(%),是在开始结束之后立即的每一时计算的。其值在如表1所列。
                           表1
<Ie>(μA)刚开始后 ΔIe(%)刚开始后 <Ie>(μA)在结束时 ΔIe(%)在结束时
    例1     403     10.2     370     10.8
例1对照物     415     12.2     257     23.5
如表中所见,通过本发明老化步骤获得的图象形成设备与没有老化步骤的普通图象形成设备相比较,从开始到一长的期间,形成有高质量显示图象并建立在稳定基础上。
[例2]
该例是根据本发明的大量表面导通电子发射装置以简单矩阵布局排列在电子源基片上的图象形成设备的制造时期,通过利用图象形成设备,在吸气剂蒸发和封装步骤之后进行的老化步骤的一例。
利用大量表面导通电子发射装置的图象显示屏101,以如例1的相同方式制造。在该例中,用于显示屏101的材料和尺寸与例1相同,除了电子发射装置之间的x方向间隔和在面板上各彩色的荧光件间隔是360μm之外,然而,在显示屏101产生步骤中,在稳定步骤之后执行的封装/吸气剂蒸发步骤并没有进行老化步骤。
然后利用图8所示图象形成设备的驱动装置对显示屏101进行老化步骤。在此情况下,图中的所有S1至Sm被设置成选择Vx,电压Vx被置成-7.5v,施加到Dy1至Dyn的扫描信号选择的电压被置成+7.5v,Va电压从590v至890v的提升率为5v/min。在老化步骤期间的驱动电子源的扫描频率是60Hz和对所有行的选择一行的选择时间是150微秒。在该步骤中,施加到Dy1至Dyn和Dx1至Dxm之间的电压的电势关系与下文进行的图象显示的电势关系是反相的。
在该例中的老化步骤中,电子发射装置的驱动电压Vf和阳极电压Va的值被设置成满足(等式3)。特别是,它们被确定如下。利用下述值:在装置电极之间的连接方向上的x方向中的装置至装置的间距P,P=3.6×10-4m,面板86和后板81之间的间隙H,H=4.0×10-3m,在下文中将描述的图象显示期间的装置电极之间施加的电压脉冲的峰值Vfp,Vfp=15v和阳极电压Vap=8000v;当n=4和当施加到老化步骤期间的装置电极的电压是Vf=15v,在老化期间的Va的最小电压Vamin和最大电压Vamax能从下述等式(等式3)关系中获得。
(等式5-1) Va min = 15 / ( 4 &times; 3.6 &times; 10 - 4 / 8.0 &times; 10 - 3 - 0.475 ( 15 / 8000 ) ) 2 = 590
(等式5-2) Va max = 15 / ( 4 &times; 3.6 &times; 10 - 4 / 8.0 &times; 10 - 3 - 1.165 ) ( 15 / 800 ) ) 2 = 894
老化步骤中的阳极电压Va在这些值的基础上确定。通过在上述老化条件下的老化操作,在最终图象形成期间(即在荧光件的象素单元形成中),特别是是在几乎所有区域都由电子束照射的条件下,在图象形成单元中解吸过程是有效的。
以此方法,用从每个电子发射装置发射的电子束轰击面板和通过在显示屏101内部形成的吸气泵抽取解吸的气体分子。该操作执行约一小时,然后完成老化步骤。
[例2对照物]
如例2对照物,图象形成设备以例2相同的方式产生,包括封装/吸气剂蒸发步骤。所有对照举例都未执行老化步骤。
如上所述的图象形成设备由图8所示的图象形成设备的驱动装置以这样一种方式驱动,即扫描信号是-7.5v,调制信号的峰值Vx是+7.5v,通过外部终端Dx1至Dxm,Dy1至Dyn,从信号产生装置向每个装置发射装置74的装置电极之间施加15v的电压脉冲,通过高压端Hv,将18Kv高压施加到金属基座85和透明电极(未示出)上,以加速电子束和轰击荧光膜84,使得达到激励和发光并依次带来图象显示,和测量发射电流Ie。在此时,整个表面的显示图象是白色。在开始和结束之后立即在此时计算一个典型行(100装置)的平均发射电流值Ie,<Ie>(μA),和平均标准偏差百分比,ΔIe(%)。这样获得数据如下表2。
                           表2
<Ie>(μA)刚开始后 ΔIe(%)刚开始后 <Ie>(μA)结束 ΔIe(%)结束
    例2     424     10.5     381     10.7
例2对照物     430     11.0     254     23.1
如从表中所见,通过本发明老化步骤获得的图象形成设备,与没有老化步骤的普通图象形成设备相比较,从开始到一长过程具有高质量的显示图象(极少偏差),并在稳定基础上。
[例3]
该例中产生的图象形成设备与例2的图象形成设备的结构和各步骤的所有处理条件相同,除了在为便于形成操作,激励操作,稳定操作,吸气操作,老化操作,和封装而在抽气之后执行的图象形成设备的产生步骤之外。
如上所述产生的该例的图象形成设备与例2相同的方式驱动,和其中的发射电流Ie被测量并与例2对照物比较,结果示于表3。
表3
<Ie>(μA)刚驱动之后 ΔIe(%)刚驱动之后 <Ie>(μA)结束 ΔIe(%)结束
    例3     426     9.6     397     9.8
例3对照物     430     11.0     254     23.1
从表中可知,通过本发明老化步骤获得的图象形成设备,与举例对照物的图象形成设备相比较,从驱动开始到长时间过程,形成有高质量显示图象(极少偏差),并有稳定的基础。
[例4]
该例中产生的图象形成设备具有与例2相同的结构和相同的过程,除了在面板上的x方向的电子发射装置之间的间隔和彩色荧光件的间隔是4.6×10-6m,电子发射装置的三个多列产生在电子源基片上的x方向中,和在老化期间仅驱动电子发射装置的附加的三列。
将进一步描述本发明的图象形成设备的结构。
图6所示的电子源基片71的简单矩阵结构的该例包括x方向导线100行和y方向导线103列。这样,三个多列被附加在x方向上和电子发射装置的三个多列也相应附加其上。另一方面,在面板上形成的荧光件的列象素是颜色R、G、B总共100列。后板和面板之间对准,使得分别连接到y方向导线Dy1至Dy100的电子发射装置发射的电子束照射在正常驱动期间在100列的各颜色的荧光件。
如上述执行位置对准,然后构成包层和密封,然后如列1的相同方式执行形成操作,激励操作,和稳定操作,之后进行吸气激励步骤,和然后执行封装步骤。由上述步骤获得的在产生步骤下的图象形成设备连接到以例2相同方式的图8所设备,并经老化操作。
在图8该例的S1至S3被设置成选择地电势加S4至S103在老化步骤期间选择Vx。在上述设置下,Vx设置成-7.5v,提供给Dy1至Dyn的扫描信号选择电压是+7.5v,Va电压以约6v/min的偏差率,从+650v至+1007v变化。在老化步骤期间,用于驱动电子源的扫描频率是60Hz和用于所有行的一行选择时间是150微秒。
在本实施例中的老化步骤中,电子发射装置的驱动电压Vf的值和阳极电压值要满足(等式3)。特别是,它们被确定如下。利用下述值:在装置电极之间连接方向的x方向中的装置至装置的间距P,P=4.6×10- 4m,面板86和后板81之间的间隙H,H=4.0×10-3m,在下文将描述的图象显示期间,装置电极之间的电压脉冲的峰值Vfp,Vfp=15v,和阳极电压Vap=8000v;当n=3和当在老化步骤期间装置电极之间的电压是Vf=15v,从下述相关等式(等式3)中能获得老化期间Va的最小电压Vamin和最大电压Vamax。
(等式6-1) Va min = 15 + ( 3 &times; 4.6 &times; 10 - 4 2 &times; 4.0 &times; 10 - 3 - 0.475 &times; 15 8000 ) 2 = 650
(等式6-2) Va max = 15 + ( 3 &times; 4.6 &times; 10 - 4 2 &times; 4.0 &times; 10 - 3 - 1.165 &times; 15 8000 ) 2 = 1007
在老化步骤中阳极电压Va的范围在这些值的基础上确定。
令符号E(M,N)代表在x方向导线第M行和y方向导线第N列之间交叉点处连接的电子发射装置。然后,在老化期间从E(M,N+3)发射的电子束照射在正常驱动期间从E(M,N)发射的电子束的照射位置。这里1≤M≤100和1≤N≤100。
如上所述,通过本例以上老化条件下的老化操作,在最终图象形成期间(即在荧光件形成象素单元中),特别是电子照射的所有区域的图象形成单元中,解吸过程起作用。该老化方法不限于n=3的情况,而是能如本例中那样,适当设置相应到(等式3)中的n。
以此方法,用从每个电子发射装置发射的电子束和通过在显示屏101内形成的吸气泵抽取的解吸的气体分子的轰击。该操作执行约一小时,然后完成老化操作。
如上述产生了本例的图象形成设备并以例2所示的相同方式驱动,和其中的发射电流被测量并与例2对照物比较,结果如表4所示。
                         表4
<Ie>(MA)刚驱动之后 ΔIe(%)刚驱动之后 <Ie>(MA)结束 ΔIe(%)结束
    例4     428     9.5     395     9.8
例2对照物     430     11.0     254     23.1
从表中可见,通过本发明老化步骤获得的图象形成设备与对照举例的图象形成设备相比较,从驱动开始到一长时间,形成高质量的显示图象(极少偏差)并在稳定的基础上。
[例5]
本例是利用横向场发射型电子发射装置,作为构成电子源的电子发射装置的一例。电子源基片的基本结构基本与例1所示相同,而每个电子发射装置的部分具有与图3所示基本结构。
在图3中,有用发射器的电极162,门电极163,发射器164,和用于通过在碱石灰玻璃制成的电绝缘基片161上的0.5μm厚的硅氧化物膜的绝缘层形成老化的发射器165。发射器电极162,门电极163,发射器164,和老化发射器165是用0.3μm厚度的Pt薄膜制成的。发射器164的尖端作为在正常驱动期间的电子发射单元,而老化发射器165的尖端作为老化期间的电子发射单元。尖端角是30°。
根据与例1基本相同的过程执行产生电子源基片的方法。然而,在本例中,横向场发射型电子发射装置的发射器电极和门电极的制造代替了在例1中步骤d中进行表面导通电子发射装置的装置电极的形成。进而,本例中排除了在例1所执行的步骤f、g中的,用于表面导通电子发射装置的电子发射单元的形成的导电膜的形成和成型。
发射器电极和门电极是通过喷射利用0.3μm厚度的Pt膜制成,接着,施加光刻胶和烘焙,形成保护膜层。之后,要用光掩膜暴光和发展形成相应于发射极电极162,门电极163,发射器164,和老化发射器165的形状的保护模式。这之后,进行干刻蚀,以形成希望形状的发射极电

Claims (13)

1、用于产生图象形成设备的方法,所述图象形成设备包括一容器,配置在所述容器中并具有在一对电极之间的电子发射部分的电子发射装置,所述电子发射装置在所述对电极之间施加一电压时适于发射电子,和利用从所述电子发射装置发射的电子照射,以形成图象的图象形成件,所述产生方法具有的步骤是,利用从电子发射装置发射的电子照射所述图象形成件,其中照射所述图象形成件的所述电子是通过在所述图象形成设备的图象形成驱动期间,向电子发射装置提供与电子发射装置的对电极之间施加的电压的极性相反的电压所发射的电子。
2、用于产生图象形成设备的方法,所述图象形成设备包括有一容器,配置在所述容器中并具有在一对电极之间大量电子发射部位的电子发射装置,所述电子发射装置,在所述对电极之间施加一电压时,适于从所述大量电子发射部位中的某些部位发射电子,以及通过从所述电子发射装置发射的电子的照射,形成图象的图象形成件,所述产生方法具有的步骤是,利用从所述电子发射装置发射的电子照射该图象形成件,其中所述照射图象形成件的电子是在所述图象形成设备的图象形成驱动期间,从不同的电子发射部位发射的电子。
3、根据权利要求1或2的图象形成设备的产生方法,其中所述利用从电子发射装置发射的电子照射所述图象形成件的所述步骤是在对所述容器内部抽真空下进行的。
4、根据权利要求1或2的图象形成设备的产生方法,其中所述容器的封装操作是在电子发射装置发射的电子,照射所述图象形成件的所述步骤之后执行的。
5、根据权利要求1或2的图象形成设备的产生方法,其中在所述容器中的吸气剂蒸发操作是在电子发射装置发射的电子,照射所述图象形成件的所述步骤之后执行的。
6、根据权利要求1或2的图象形成设备的产生方法,其中所述利用从电子发射装置发射的电子照射所述图象形成件的步骤是在对所述容器内部抽真空下进行的,和该步骤之后,执行所述容器的封装和所述容器中的吸气剂蒸发操作。
7、根据权利要求1或2的图象形成设备的产生方法,其中所述用从电子发射装置发射的电子,照射所述图象形成件的步骤是在所述容器的封装操作完成之后执行的。
8、根据权利要求1或2的图象形成设备的产生方法,其中所述用从电子发射装置发射的电子,照射所述图象形成件的步骤是在所述容器中的吸气剂蒸发操作完成之后执行的。
9、根据权利要求1或2的图象形成设备的产生方法,其中所述用从电子发射装置发射的电子,照射所述图象形成件的步骤是在所述容器的封装操作和在所述容器中吸气剂蒸发操作完成之后执行的。
10、根据权利要求1或2的图象形成设备的产生方法,其中所述图象形成设备具有大量所述电子发射装置和其中利用从大量电子发射装置发射的电子,照射所述图象形成件的步骤是在这样条件下执行的,即,P是所述大量电子发射装置在所述对电极之间的连接方向上的阵列间距,-Vf是所述对电极中与一个电极相关的另一个电板的电势,Va是施加到图象形成件的电压,Vfp是所述图象形成设备的图象形成驱动期间,所述对电极中与一个电极相关的所述另一个电极的电势,Vap是所述图象形成设备的图象形成驱动期间,施加给图象形件的电压,和H是电子发射装置和所述图象形成件之间的距离,所述Va和所述Vp被设置成满足下式: n &bull; p = 2 H ( Vf / Va ) + 2 H ( Vfp / Vap )
其中n是正整数。
11、根据权利要求1或2的图象形成设备的产生方法,其中所述图象形成设备具有大量所述电子发射装置和其中利用从大量电子发射装置发射的电子,照射所述图象形成件的所述步骤是在这样条件下执行的,即,P是所述大量电子发射装置在对电极之间的连接方向上的阵列间距,-Vf是所述对电极中与一个电极相关的另一个电极的电势,Va是施加到图象形成件的电压,Vfp是所述图象形成设备的图象形成驱动期间,所述对电极中与一个电极相关的另一个电极的电势,Vap是所述图象形成设备的图象形成驱动期间,施加到图象形成件的电压,和H是电子发射装置和所述图象形成件之间的距离,所述Va和所述Vp被设置成满足下式: n &bull; P / 2 H - 1.165 ( Vfp / Vap ) &le; ( Vf / Va ) &le; n &bull; P / ( 2 H ) - 0.475 ( Vfp / Vap )
其中n是正整数。
12、根据权利要求1或2的图象形成设备的产生方法,其中所述电子发射装置是表面导通电子发射装置。
13、根据权利要求1或2的图象形成设备的产生方法,其中所述电子发射装置是场发射型电子发射装置。
CNB981199364A 1997-08-06 1998-08-06 产生图象形成设备的方法 Expired - Fee Related CN1213616C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP212087/97 1997-08-06
JP212087/1997 1997-08-06
JP21208797 1997-08-06

Publications (2)

Publication Number Publication Date
CN1214599A true CN1214599A (zh) 1999-04-21
CN1213616C CN1213616C (zh) 2005-08-03

Family

ID=16616668

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB981199364A Expired - Fee Related CN1213616C (zh) 1997-08-06 1998-08-06 产生图象形成设备的方法

Country Status (5)

Country Link
US (1) US6259422B1 (zh)
EP (1) EP0896357B1 (zh)
KR (1) KR100289480B1 (zh)
CN (1) CN1213616C (zh)
DE (1) DE69805711T2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110875165A (zh) * 2018-08-30 2020-03-10 中国科学院微电子研究所 一种场发射阴极电子源及其阵列

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0908919B1 (en) * 1997-03-31 2007-09-12 Mitsubishi Denki Kabushiki Kaisha Plane display panel and method for manufacturing the same
KR100537399B1 (ko) * 1998-10-06 2005-12-19 캐논 가부시끼가이샤 화상 디스플레이 장치 및 그 제어 방법
US6396207B1 (en) 1998-10-20 2002-05-28 Canon Kabushiki Kaisha Image display apparatus and method for producing the same
TW461180B (en) * 1998-12-21 2001-10-21 Sony Corp Digital/analog converter circuit, level shift circuit, shift register utilizing level shift circuit, sampling latch circuit, latch circuit and liquid crystal display device incorporating the same
JP3323849B2 (ja) 1999-02-26 2002-09-09 キヤノン株式会社 電子放出素子およびこれを用いた電子源およびこれを用いた画像形成装置
JP3323850B2 (ja) * 1999-02-26 2002-09-09 キヤノン株式会社 電子放出素子およびこれを用いた電子源およびこれを用いた画像形成装置
KR100474277B1 (ko) * 2002-10-29 2005-03-10 엘지전자 주식회사 전계 방출 소자의 에이징 구동 장치 및 방법
JP4378087B2 (ja) * 2003-02-19 2009-12-02 奇美電子股▲ふん▼有限公司 画像表示装置
JP3703459B2 (ja) * 2003-03-07 2005-10-05 キヤノン株式会社 電子放出素子、電子源、画像表示装置
JP4769569B2 (ja) * 2005-01-06 2011-09-07 キヤノン株式会社 画像形成装置の製造方法
KR101082438B1 (ko) * 2005-03-29 2011-11-11 삼성에스디아이 주식회사 전자방출패널의 화소간의 휘도 균일도 향상방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066883A (en) 1987-07-15 1991-11-19 Canon Kabushiki Kaisha Electron-emitting device with electron-emitting region insulated from electrodes
JPS6431332A (en) 1987-07-28 1989-02-01 Canon Kk Electron beam generating apparatus and its driving method
JP2610160B2 (ja) 1988-05-10 1997-05-14 キヤノン株式会社 画像表示装置
JP2782224B2 (ja) 1989-03-30 1998-07-30 キヤノン株式会社 画像形成装置の駆動方法
JP2727224B2 (ja) 1989-05-15 1998-03-11 キヤノン株式会社 画像表示装置の製造方法
EP0714114A1 (en) 1990-12-28 1996-05-29 Sony Corporation A method of manufacturing a flat panel display apparatus
CA2112431C (en) * 1992-12-29 2000-05-09 Masato Yamanobe Electron source, and image-forming apparatus and method of driving the same
DE69425230T2 (de) * 1993-12-17 2001-02-22 Canon Kk Herstellungsverfahren einer Elektronen emittierenden Vorrichtung, einer Elektronenquelle und eine Bilderzeugungsvorrichtung
JP3416266B2 (ja) 1993-12-28 2003-06-16 キヤノン株式会社 電子放出素子とその製造方法、及び該電子放出素子を用いた電子源及び画像形成装置
JP2836015B2 (ja) 1995-03-22 1998-12-14 キヤノン株式会社 電子放出素子、電子源、画像形成装置の製造方法
US5610478A (en) 1995-10-30 1997-03-11 Motorola Method of conditioning emitters of a field emission display
FR2750785B1 (fr) 1996-07-02 1998-11-06 Pixtech Sa Procede de regeneration de micropointes d'un ecran plat de visualisation
US5886988A (en) * 1996-10-23 1999-03-23 Arraycomm, Inc. Channel assignment and call admission control for spatial division multiple access communication systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110875165A (zh) * 2018-08-30 2020-03-10 中国科学院微电子研究所 一种场发射阴极电子源及其阵列

Also Published As

Publication number Publication date
CN1213616C (zh) 2005-08-03
KR19990023424A (ko) 1999-03-25
DE69805711T2 (de) 2003-01-02
KR100289480B1 (ko) 2001-06-01
EP0896357A1 (en) 1999-02-10
DE69805711D1 (de) 2002-07-11
US6259422B1 (en) 2001-07-10
EP0896357B1 (en) 2002-06-05

Similar Documents

Publication Publication Date Title
CN1066572C (zh) 图象形成装置及其制造方法
CN1123049C (zh) 电子束发生装置、图象显示装置及其驱动方法
CN1106662C (zh) 电子发生装置,成像装置,及制造该电子发生装置的方法
CN1086509C (zh) 图象形成设备
CN1066553C (zh) 电子发生器件、图象显示器及其驱动电路
CN1078010C (zh) 电子源和电子束设备
CN1195312C (zh) 电子发射装置和图像显示装置
CN1086054C (zh) 电子源和成象装置
CN1143356C (zh) 使用电子发射器件的电子装置及成象装置
CN1213616C (zh) 产生图象形成设备的方法
CN1154149C (zh) 通过电子辐射来形成图象的图象形成设备
CN1133199C (zh) 采用电子发射器件的电子装置及成像装置
CN1174400A (zh) 电子发射器件、电子源和图像形成装置的制造方法
CN1147900C (zh) 电子发射器件和电子源及图像形成装置的制造方法
CN1118844C (zh) 成像装置和生产及调整该成像装置的方法
CN1126137C (zh) 电子发射器件及其制造方法
CN1208945A (zh) 制造带有电子发射元件的电子源基片及电子装置的方法
CN1226050A (zh) 驱动元件和电子源的装置和方法以及成象装置
CN1302509C (zh) 图像形成装置
CN1154081C (zh) 图象形成装置及其制造方法
CN1444248A (zh) 带有支撑板的电子射线产生装置
CN1487558A (zh) 管壳及其制造方法和图象显示装置以及电视显示装置
JPH1173897A (ja) 画像形成装置及びその装置とそのスペーサの製造方法
CN100514530C (zh) 电子发射器件,电子发射装置,电子源,图像显示器件及信息显示/再现装置
JP3524392B2 (ja) 画像形成装置の製造方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050803

Termination date: 20140806

EXPY Termination of patent right or utility model