CN1193124A - 光学波长滤波器和光学信号分离器 - Google Patents

光学波长滤波器和光学信号分离器 Download PDF

Info

Publication number
CN1193124A
CN1193124A CN97119891A CN97119891A CN1193124A CN 1193124 A CN1193124 A CN 1193124A CN 97119891 A CN97119891 A CN 97119891A CN 97119891 A CN97119891 A CN 97119891A CN 1193124 A CN1193124 A CN 1193124A
Authority
CN
China
Prior art keywords
optical
port
coupling mechanism
optical signalling
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN97119891A
Other languages
English (en)
Other versions
CN1158559C (zh
Inventor
章絑宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN1193124A publication Critical patent/CN1193124A/zh
Application granted granted Critical
Publication of CN1158559C publication Critical patent/CN1158559C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29317Light guides of the optical fibre type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

光学信号分离器,其多个光波长滤波器各有接收光信号的第一输入端口,只输出信号中既定波长成分的第一输出端口和输出其它波长成分信号的第二输出端口。第二输出端口串联至相邻滤波器的第一输出端口。各滤波器接收有多个波长成分的光学信号,分离出有一波长成分的信号,并由第一输出端口输出此信号。经第二输出端口将其它波长成分的信号输至与其相连的相邻滤波器的输入端口。该光学信号分离器可用于低损耗高密度WDM传输装置中。

Description

光学波长滤波器和光学信号分离器
本发明涉及用于波长复分(WDM)传输系统接收器的一种光学波长滤波器和一种光学信号分离器,并特别涉及一种用于低损耗、高密度WDM传输系统的光学信号分离器。
WDM传输系统依据光学信号的波长特性,将光纤的波长区域复分为数个通道,同时传输数个波段的信号。在WDM传输系统中,经过多路传输具有数个波长成分的输入光学信号,在其接收器处进行信号分离并在其相应通道中加以识别。
图1为用于传统WDM传输系统接收器的光学信号分离器的方框图。
在图1中,用于传统WDM传输系统接收器的光学信号分离器,包括一个1×n耦合器1D0和第一至第n带通滤波器200-300。此处n代表所传输光学信号的通道数。
耦合器为一个用于对光学信号进行分支或耦合的无源装置,也即,用于将一个输入通道分支为数个输出通道或将数个输入通道耦合为一个输出通道。所述1×n耦合器100将具有多个波长成分例如λ1,λ2,…,λn的多重光学信号所产生的输入信号分支为n路光学信号Pout1,λ2,…,λn),并将其输出至n个相应端口。这里,各分支光学信号Pout1,λ2,…,λn)的功率为1×n耦合器100的输入信号的(1/n)。所述第一至第n带通滤波器200-300由上述n个端口接收分路光学信号Pout1,λ2,…,λn),仅通过其对应的波长成分,并分别输出具有波长成分λ1n的n路光学信号Pout1),Pout2),…,Poutn)。因此,该n路光学信号Pout1),Pout2),…,Poutn)的每一路功率都为输入光学信号Pin1,λ2…,λn)的(1/n)。
图2为图1所示1×n耦合器100的输入光学信号Pin1,λ2,…,λn)的波形图。此处,λ1n和P0分别代表输入光学信号Pin1,λ2,…,λn)的波长成分和功率值。
图3为由图1所示1×n耦合器100输出至各带通滤波器的分路光学信号Pout1,λ2,…,λn)功率的波形图。
在图3中,分路光学信号Pout1,λ2,…,λn)具有输入光学信号Pin1,λ2,…,λn)的(1/n)的功率,同时保持输入光学信号Pin1,λ2,…,λn)的波长成分。
图4A-4C为由图1所示第一,第二,和第n带通滤波器输出的光学信号Pout1),Pout2),和Poutn)的功率的波形图。此处,图中垂直轴表示光学信号的功率P,水平轴表示光学信号的波长λ。P0表示输入光学信号Pin1,λ2,…,λn)的功率值,λ1n表示在输入光学信号Pin(λ1,λ2,…,λn)中多重的波长成分。如图3所示,由1×n耦合器输出的分路光学信号Pout1,λ2,…,λn)的功率为输入光学信号Pin1,λ2,…,λn)的(1/n),即P0/n。因而,由所述第一至第n带通滤波器200-300输出的具有相应波长成分的各光学信号Pout1)、Pout2),…,Poutn)也具有输入光学信号Pin1,λ2,…,λn)的(1/n)的功率,即P0/n。
在传统WDM传输系统中,采用1×n耦合器用于在接收器处分离复用的光学信号,仅提供了1×n耦合器输入光学信号(1/n)的功率。
为补偿由1×n耦合器引起的功率损耗,用于传统WDM传输系统中接收器的光学信号分离器还包括一个光学放大器,用于在光学信号输入1×n耦合器之前对其进行放大以提高功率n倍。
图5为用于传统WDM传输系统接收器中的进一步包括光学放大器的光学信号分离器的方框图。
参照图5,所述光学信号分离器具有一个光学放大器400,一个1×n耦合器100,和第一至第n带通滤波器200-300。此处n表示所传输光学信号的通道数。
由光学放大器400接收的光学信号P11,λ2,…,λn)通过多重多波长成分例如λ1,λ2,…,λn的光学信号而产生。所述光学放大器400对输入光学信号P11,λ2,…,λn)进行放大,放大倍数为输入光学信号P11,λ2,…,λn)波长成分数的两倍以上,并输出一个放大的输入光学信号P21,λ2,…,λn)。所述1×n耦合器100接收该放大的输入光学信号P21,λ2,…,λn),对该放大的信号进行分支,并输出n路输入光学信号P31,λ2,…,λn)。这里,所述n路输入光学信号P31,λ2,…,λn)都具有放大的输入光学信号P21,λ2,…,λn)的(1/n)的功率,即等于或大于输入光学信号P11,λ2,…,λn)的输出功率值,并保持输入光学信号P11,λ2,…,λn)中含有的波长成分。所述第一至第n带通滤波器200-300由分路输入光学信号P31,λ2,…,λn)分离出其对应波长成分的光学信号P41),P42),…,P4n)。这里,光学信号P41),P42),…,P4n)的功率都大于输入光学信号P11,λ2,…,λn)的功率。
如上所述,传统WDM传输系统在如下方面产生不便,即为补偿1×n耦合器引起的功率损耗,用于接收器的光学信号分离器还应包括光学放大器。
为解决上述问题,本发明目的在于提供一种光学波长滤波器,用于只对特定波长成分的光学信号,以光学信号小功率损耗进行反射。
本发明的另一个目的在于提供一种小功率损耗的光学信号分离器,用于光学波长多重(WDM)传输系统中的接收器。
相应地,为实现上述第一目的,提供了一种光学滤波器,包括第一和第二耦合器以及第一和第二光学波长反射器。
所述第一耦合器具有第一至第四端口。所述第一端口接收一个具有多个波长成分的输入光学信号,将由该第一端口的输出光学信号分离并将分离的输出分别输出至第一至第四端口。所述第二端口将由第三和第四端口输出,经由所述第一和第二光学波长反射器反射并返回输入至第一耦合器的光学信号进行汇合并输出。
所述第一光学波长反射器具有一个输入端口和一个输出端口。所述输入端口接收来自第一耦合器经由所述第三端口的光学信号。所述输出端口将经所述输入端口接收的光学信号中具有既定波长成分的光学信号沿光传播方向反射回去,将此反射光学信号经由所述第三端口输出至所述第一耦合器,并将具有其它波长成分的输出信号加以输出。
所述第二光学波长反射器具有一个输入端口和一个输出端口。所述输入端口接收来自第一耦合器经由所述第四端口的光学信号。所述输出端口将经所述输入端口接收的光学信号中具有既定波长成分的光学信号沿光传播方向反射回去,将此反射的光学信号经由所述第四端口输出至所述第一耦合器,并将具有其它波长成分的光学信号加以输出。
所述第二耦合器具有第一至第四端口。所述第一和第二端口分别接收来自所述第一和第二光学波长反射器经由其输出端口的光学信号。所述第三端口输出由所述第一和第二端口接收的全部光学信号。
根据本发明的光学波长滤波器输出由所述第一耦合器的第二端口接收的光学信号,在所述第一耦合器的第一端口接收的输入光学信号波长成分中具有既定波长成分,并将输入信号波长成分中具有除上述既定波长成分之外的其它波长成分的光学信号输出至所述第二耦合器的第四端口。
为实现上述第二目的,提供了一种具有串联连接的多个光学波长滤波器的光学信号分离器。
各光学波长滤波器具有一个第一输入端口,第一和第二输出端口,第一至第三耦合器和第一至第四光学波长反射器。
所述第一输入端口接收具有多个波长成分的输入光学信号。所述第一输出端口仅输出在输入信号中具有既定波长成分的光学信号。所述第二输出端口输出具有所述既定波长成分之外的其它波长成分的光学信号,并与对应于所述第二输出端口的另一个第一输入端口相连。这样,具有除上述既定波长成分之外的其它波长成分的光学信号,由所述第二输出端口输出,并输入至对应于所述第二输出端口与之串联的另一个第一输入端口。因此,所述光学波长滤波器将具有不同波长成分的光学信号加以分离,并将其输出至相应的输出端口。
所述第一耦合器具有第一至第四端口。与相应光学波长滤波器的第一输入端口相连的所述第一端口接收输入光学信号。所述第三和第四端口将由第一端口接收的输入光学信号分离为两半,并分别输出这些分离输出。与所述第一输出端口相连的第二端口,将由第三和第四端口输出,并再次输入至所述第一耦合器的光学信号加以输出。
所述第一光学波长反射器具有一个输入端口和一个输出端口。所述输入端口接收来自第一耦合器经由其第三端口的光学信号。所述输出端口仅反射由所述输入端口接收的光学信号中具有既定波长成分的光学信号,将此反射光学信号经由其第三端口输出至所述第一耦合器,并将具有非既定波长成分的其它波长成分的光学信号加以输出。
所述第二光学波长反射器具有一个输入端口和一个输出端口。所述输入端口接收来自第一耦合器经由其第四端口的光学信号。用于只反射由所述输入端口接收的光学信号中具有既定波长成分的光学信号的所述输出端口,将此反射光学信号经由其第四端口输出至所述第一耦合器,并将具有非所述既定波长成分的其它波长成分的光学信号加以输出。
所述第二耦合器具有第一至第三端口。所述第一和第二端口分别接收来自所述第一和第二光学波长反射器经由其输出端口的光学信号。所述第三端口将由所述第一和第二端口接收的全部光学信号相加,并输出其结果。
所述第三耦合器具有第一至第四端口。所述第一端口与所述第一耦合器的第二端口相连的,接收由所述第一耦合器的第二端口输出的光学信号。所述第三和第四端口将由所述第一端口接收的输入光学信号分离为两半,并分别输出这些分离的输出。所述第二端口反向接收经由第三和第四端口输出的光学信号反射回的光学信号。所述第二端口与相应光学波长滤波器的第一输出端口相连。
所述第三光学波长反射器具有一个输入端口和一个输出端口。所述输入端口接收来自第三耦合器经由其第三端口的光学信号。所述输出端口沿光传播方向仅反射回由所述输入端口接收的光学信号中具有既定波长成分的光学信号,将此反射光学信号经由其第三端口输出至所述第三耦合器,并将具有其它波长成分的光学信号加以输出。
所述第四光学波长反射器具有一个输入端口和一个输出端口。所述输入端口接收来自第三耦合器经由其第四端口的光学信号。所述输出端口沿光传播方向仅反射回由所述输入端口接收的光学信号中具有既定波长成分的光学信号,将此反射光学信号经由其第四端口输出至所述第三耦合器,并将具有其它波长成分的光学信号加以输出。
为实现本发明的第二个目的,提供了一种光学信号分离器,包括多个彼此串联连接的光学波长滤波器,其中所述多个光学波长滤波器将具有各既定波长成分的光学信号分离,以便随后将其输出至所述第一端口,并将具有其它波长成分的光学信号输出至所述第二输出端口,以便随后输入至另一相应光学波长滤波器的第一输入端口。因此,根据本发明的光学信号分离器,可以多重地将具有不同波长成分的光学信号分离成各具有既定波长成分的光学信号,而没有功率损耗。
本发明的上述目的和优点,通过参照附图对其优选实施例进行详细说明将变得更加清楚,其中:
图1为用于传统波多重(WDM)传输系统中接收器的光学信号分离器的方框图;
图2为输入至图1所示1×n耦合器的光学信号功率的波形图;
图3为由图1所示1×n耦合器输出至第一至第n带通滤波器的光学信号功率的波形图;
图4A为由第一带通滤波器输出的光学信号功率的波形图;
图4B为由第二带通滤波器输出的光学信号功率的波形图;
图4C为由第n带通滤波器输出的光学信号功率的波形图;
图5为用于补偿1×n耦合器产生的功率损耗的用于传统WDM传输系统中接收器的光学信号分离器的方框图;
图6为根据本发明一个实施例的光学波长滤波器的方框图;
图7为图6所示第一和第二耦合器的示意图;
图8A显示了按照光学耦合区域长度经由图7所示耦合器的输入端口PI1接收并经由输出端口PO1输出的光学信号的一个输出成分;
图8B显示了按照光学耦合区域长度经由图7所示耦合器的输入端口PI1接收并经由输出端口PO2输出的光学信号的一个输出成分;
图8C显示了按照光学耦合区域长度如图8A和8B所示的经由输出端口PO1和PO2输出的光学信号的整个输出成分;
图9为根据本发明另一实施例的光学信号分离器的方框图;且
图10为图9所示第一光学波长滤波器的方框图。
图6为根据本发明一个实施例的光学波长滤波器的方框图。
参照图6,根据本发明实施例的光学波长滤波器具有第一和第二光学耦合器510和520,以及第一和第二光学波长反射器610和620。
所述第一和第二光学波长耦合器510和520为无源装置,用于根据光学信号的光学耦合现象分离或耦合光学信号。一般,根据分离和耦合光学信号的方法,即直接耦合和间接耦合,存在两种类型的耦合器。在间接耦合方式中,分离和耦合发生的波导路程的波导模式,在结构上互相结合,以使光学信号通过沿波导线路传播的光学信号电磁场结合的模域结构分离和结合。间接耦合方式根据如下事实,即每一含有一条光纤的介电单模波导路程,即使在按照折射率的芯层外也具有降低的瞬逝(Evanescent)电场。这就是说,通过使两条单模波导路程彼此邻接,可由相邻芯层的瞬逝电场激励波导路程并且分离和耦合光学信号。此处,根据理论,两相邻芯层并非作为相互独立的波导路程,而是作为一个具有多个波导模式的结合波导路程起作用,从而由这些模式之间的干涉产生光学耦合。在这种光学间接耦合方式中,其耦合系数决定于外部因素例如耦合距离、波长和温度。
上述第一和第二光学耦合器510和520可以利用基于间接耦合的光学耦合器的耦合系数随波长和耦合距离大幅变动的特性加以构造。
上述第一和第二光学波长反射器610和620可以通过周期性改变紫外线敏感光纤的折射率,将具有特定波长成分的光学信号由光学信号传播方向后向反射回去。这就是说,通过向光纤照射紫外线从而在很短时间内改变其折射率,反射器610和620可以仅将在布拉格(Bragg)条件下具有特定波长成分的光学信号由其传播方向后向反射回去。
图7为第一和第二光学耦合器510和520的示意图。
参照图7,所述第一和第二光学耦合器510和520为双向的,且各具有两条相邻的第一和第二波导路程550和560,第一和第二波导输入端口PI1和PI2,以及第一和第二波导输出端口PO1和PO2。这里,标记数570表示作为光学耦合区域的其光学耦合区域的长度。当光学信号沿第一波导路程550由第一波导输入端口PI1传输至第一波导输出端口PO1时,不发生光学耦合,而当光学信号经由第一波导输入端口PI1接收和经由第二波导输出端口PO2输出时,则发生光学耦合,从而输出的光学信号与经由第一波导输入端口PI1接收的光学信号具有-π/2的相位差。由第一波导输入端口PI1接收,经由第一和第二波导输出端口PO1和PO2输出的光学信号,决定于所述光学耦合区域的长度,即耦合系数的长度。此处,为实现所述第一和第二光学耦合器510和520,第一和第二波导输出端口PO1和PO2的输出具有的既定耦合系数长度,应使其为经由第一波导输入端口PI1接收的光学信号输出的一半。
为说明图7所示光学耦合器的操作,图8A-8C显示了经由第一和第二波导输入端口PI1和PI2接收并经由第一和第二波导输出端口PO1和PO2输出的光学信号的输出功率。
图8A为显示按照光学耦合区域长度经由第一波导输入端口PI1接收并经由第一波导输出端口PO1输出的光学信号的输出功率的波形图。
图8B为显示按照光学耦合区域长度经由第二波导输入端口PI2接收并经由第二波导输出端口PO2输出的光学信号的输出功率的波形图。
图8C显示了按照光学耦合区域长度经由第一输入端口PI1接收,按照耦合区域长度分支,并经由第一和第二输出端口PO1和PO2输出的光学信号的输出功率之和。此处,经由第一和第二输出端口PO1和PO2输出的光学信号的输出之和等于经由第一输入端口PI1接收的光学信号的输出。
参照图6,第一耦合器510设置第一至第四端口511-514。
第一端口511接收一个具有多个波长成分的光学信号I11,λ2,…,λn)。第三和第四端口513和514将经由第一端口511接收的光学信号I11,λ2,…,λn)的输出分离为相等的两半,并分别输出光学信号I21,λ2,…,λn)和光学信号I31,λ2,…,λn)。也就是说,光学信号I21,λ2,…,λn)和光学信号I31,λ2,…,λn)的输出各为光学信号I11,λ2,…,λn)输出的一半。这里,λ1,λ2,…,λn代表各光学信号I11,λ2,…,λn),I21,λ2,…,λn)和I31,λ2,…,λn)含有的波长成分。
经由第一端口511接收并经由第三端口513输出的光学信号I11,λ2,…,λn),沿波导路程传输时不经光学耦合,从而在光学信号I21,λ2,…,λn)和I31,λ2,…,λn)之间不产生相位差。另一方面,经由第一端口511接收并经由第四端口514输出的光学信号I11,λ2,…,λn),在相邻波导线路程之间经过光学耦合,从而在光学信号I21,λ2,…,λn)和I31,λ2,…,λn)之间产生-π/2的相位差。
第三端口513接收在输出光学信号I21,λ2,…,λn)的波长成分中由第一光学波长反射器610反射的具有既定波长成分例如λi的光学信号I4i)。第四端口514接收在输出光学信号I31,λ2,…,λn)的波长成分中由第二光学波长反射器620反射的具有既定波长成分例如λi的光学信号I5i)。此处,经由第三和第四端口513和514返回的光学信号I4i)和I5i)的相位和输出分别与光学信号I21,λ2,…,λn)和I31,λ2,…,λn)的相同。因此,光学信号I4i)具有光学信号I11,λ2,…λn)的相同相位与一半输出,而光学信号I5i)具有与光学信号I21,λ2,…,λn)差π/2的相位与一半输出。
经由第一耦合器510的第三端口513接收并经由第一端口511输出的光学信号I4i),因其沿波导路程传输而不产生相移,而经由第一耦合器510的第四端口514接收并经由第一端口511输出的光学信号I5i),因其在相邻波导路程之间的光学耦合区域经过光学耦合而产生-π/n的相移。因此,当光学信号I4i)和I5i)经由第一耦合器510的第一端口511输出时,其间会产生-π的相移。结果它们相互抵消而不产生输出。
当光学信号I4i)经由第一耦合器510的第三端口513接收并经由第二端口512输出时,因其在相邻波导路程间的光学耦合区域经过光学耦合,所以存在-π/2的相移。另一方面,当光学信号I5i)经由第一耦合器510的第四端口514接收并经由第二端口512输出时,因其沿波导路程传输而不存在任何相移。因此,当光学信号I4i)和I5i)经由第一耦合器510的第二端口512输出时,其间不存在相位差,从而将光学信号I4i)和I5i)叠加为光学信号I9i)。因此,光学信号I9i)的输出等于光学信号I11,λ2,…,λn)的输出。光学信号I9i)具有由第一和第二光学波长反射器610和620反射的既定波长成分例如λi
第一光学波长反射器610具有一个输入端口611和一个输出端口612。
输入端口611接收来自第一耦合器510的第三端口513的光学信号I21,λ2,…,λn)。输出端口612只将在经由输入端口611接收的光学信号I21,λ2,…,λn)的波长成分中具有既定波长成分例如λi的光学信号由光传播方向后向反射回去,将光学信号I4i)经由第三端口513输出至第一耦合器510,并将具有其它波长成分的光学信号I6(λ1,…,λi-1,λi+1,…,λn)经由输出端口612输出。
第二光学波长反射器610具有一个输入端口621和一个输出端口622。
输入端口621接收来自第一耦合器510的第四端口514的光学信号I31,λ2,…,λn)。输出端口622只将在经由输入端口621接收的光学信号I31,λ2,…,λn)的波长成分中具有既定波长成分例如λi的光学信号由光传播方向后向反射回去,将光学信号I5i)经由第四端口514输出至第一耦合器510,并将具有其它波长成分的光学信号I71,…,λi-1,λi+1…,λn)经由输出端口622输出。
第二耦合器520设置有第一至第三端口521,522,和523。
第一和第二端口521和522分别接收来自第一和第二光学波长反射器610和620经由其输出端口612和622的光学信号I61,…,λi-1,λi+1,…,λn)和I71,…,λi-1,λi+1,…,λn)。第三端口523将分别经由第一和第二输入端口521和522接收的光学信号I61,…,λi-1,λi+1,…,λn)和 I71,…,λi-1,λi+1,…,λn)的输出相加,并输出一个光学信号I81,…,λi-1,λi+1,…,λn)。光学信号I61,…,λi-1,λi+1,…,λn)的相位和输出值与光学信号I4i)的相等,而光学信号I71,…,λi-1,λi+1,…,λn)的相位和输出值与光学信号I5i)的相等。光学信号I61,…,λi-1,λi+1,…,λn)当其经由第二耦合器520的第三端口523输出时,在相邻波导线路间的光学耦合区域经过光学耦合,从而具有-π/2的相移。另一方面,光学信号I71,…,λi-1,λi+1,…,λn)当其经由第二耦合器520的第三端口523输出时,因其沿波导路程传输而没有相移。因此,由于光学信号I61…,λi-1,λi+1,…,λn)和I7(λ1,…,λi-1,λi+1,…λn),在经由第二耦合器520的第三端口523输出时具有相同相位,使得它们得以叠加。从而,经由第二耦合器520的第三端口523输出的光学信号I81,…,λi-1,λi+1…,λn)具有与光学信号I11,λ2,…,λn)相同的输出值。而且,在光学信号I11,λ2,…,λn)的波长成分λ1,λ2,…,λn中,光学信号I81,…,λi-1,λi+1…,λn)具有除既定波长成分例如λ1之外的其它波长成分。
如上所述,在根据本发明实施例的光学波长滤波器中,通过采用一个光学耦合器和一个纤维光栅反射滤波器,可以分离具有既定波长成分的光学信号,而没有输入光学信号的功率损耗。这里,通过控制纤维光栅反射滤波器的光栅周期,可根据用户需要设定既定波长值。
图9为根据本发明另一实施例的光学信号分离器的方框图。
参照图9,所述光学信号分离器设置有串联连接的第一至第n光学波长滤波器700,800,…,850和900。
第一至第n光学波长滤波器700,800,…,850,和900具有第一输入端口701,801,…,851,和901,第一输出端口702,802,…,852,和902,以及第二输出端口703,803,…,853,和903。
第一光学波长滤波器700的第一输入端口701接收一个具有多个波长成分例如λ1,λ2,λ3,…,λn的光学信号I(λ1,λ2,…,λn)。第一光学波长滤波器700的第一输出端口702仅输出在光学信号I(λ1,λ2,…,λn)的这些波长成分中具有一个波长成分例如λ1的光学信号I(λ1)。第一光学波长滤波器700的第二输出端口703将具有光学信号I(λ1,λ2,…,λn)的其它非λ1波长成分的光学信号I(λ2,…,λn),输出至第二光学波长滤波器800的第一输入端口801。类似地,在非λ1光学信号I(λ2,…,λn)的波长成分中,具有一个波长成分例如λ2的光学信号I(λ2),经由第二光学波长滤波器800的第一输出端口802输出,而具有非λ1和非λ2波长成分λ3,…,λn的光学信号I(λ3,…,λn),经由第二光学波长滤波器800的第二输出端口803输出。通过这种步骤,第n-1光学波长滤波器900的第一输入端口901接收具有波长成分λn-1和λn的光学信号I(λn-1,λn),第n-1光学波长滤波器900的第一输出端口902输出具有波长成分例如λn-1的光学信号I(λn-1),第n-1光学波长滤波器900的第二输出端口903输出具有其它波长成分λn的光学信号I(λn)。
图10为图9所示第一光学波长滤波器700的方框图。
参照图10,第一光学波长滤波器700设置有第一输入端口701,第一和第二输出端口702和703,第一至第三耦合器710,720,和730,以及第一至第四光学波长反射器740,750,760,和770。
第一输入端口701接收具有例如波长成分λ1,λ2,…,λn的光学信号I11,λ2,…,λn)。第一输出端口702输出在光学信号I11,λ2,…,λn)的这些波长成分中具有既定波长成分例如λ1的光学信号I141)。第二输出端口703输出具有其它非λ1波长成分λ2,λ3,…,λn的光学信号I82,λ3,…,λn)。
第一耦合器710含有第一至第四端口711,712,713,和714。
第一端口711接收光学信号I11,λ2,…,λn)。第三和第四端口713和714将经由第一端口711接收的光学信号I11,λ2,…,λn)的输出分离为相等的两半,并分别输出光学信号I21,λ2,…,λn)和光学信号I31,λ2,…,λn)。这里,λ1,λ2,…,λn代表各光学信号I11,λ2,…,λn),I21,λ2,…,λn)和I31,λ2,…,λn)的波长成分。
经由第一端口711接收并经由第三端口713输出的光学信号I11,λ2,…,λn),因其沿波导路程传输而不受到光学耦合,从而在光学信号I21,λ2,…,λn)和I11,λ2,…,λn)之间不产生相位差。经由第一端口711接收并经由第四端口714输出的光学信号I11,λ2,…,λn),在相邻波导路程之间受到光学耦合,从而在光学信号I31,λ2,…,λn)和I11,λ2,…,λn)之间产生-π/2的相位差。
第三端口713接收由第一光学波长反射器740反射回的具有既定波长成分例如λ1的光学信号I41)。第四端口714接收由第二光学波长反射器750反射回的具有既定波长成分例如λ1的光学信号I51)。此处,经由第三和第四端口713和714返回的光学信号I41)和I51)的相位和输出分别与光学信号I21,λ2,…,λn)和I31,λ2,…,λn)的相同。因此,光学信号I41)分别具有与光学信号I21,λ2,…,λn)和I31,λ2,…,λn)相同的相位和输出值,而光学信号I51)具有与光学信号I11,λ2,…,λn)差π/2的相位与一半输出。
经由第一耦合器710的第三端口713接收并经由第一端口711输出的光学信号I41),因其沿波导路程传输而不产生相移,而经由第一耦合器710的第四端口714接收并经由第一端口711输出的光学信号I51),因其在相邻波导路程之间的光学耦合区域经过光学耦合而产生-π/2的相移。因此,当光学信号I41)和I51)经由第一耦合器710的第一端口711输出时,其间会产生-π的相位差。结果,它们相互抵消而不产生输出。
经由第一耦合器710的第三端口713接收并经由第二端口712输出的光学信号I41),因其在相邻波导路程间的光学耦合区域经过光学耦合,所以存在-2/2的相移。另一方面,经由第一耦合器710的第四端口714接收并经由第二端口712输出的光学信号I51),因其沿波导路程传输而不存在相移。因此,当光学信号I41)和I51)经由第一耦合器710的第二端口712输出时,其间不存在相位差,从而将它们叠加为光学信号I91)。因此,光学信号I91)的输出等于光学信号I91,λ2,…,λn)的输出。光学信号I91)具有由第一和第二光学波长反射器740和750反射的既定波长成分例如λ1
第一光学波长反射器740具有一个输入端口741和一个输出端口742。
输入端口741接收来自第一耦合器710的第三端口713的光学信号I21,λ2,…,λn)。输出端口742将在波长成分中由光传播方向反射回的具有既定波长成分例如λ1的光学信号I41),经由第三端口713输出至第一耦合器710,并将具有其它波长成分的光学信号I62,…,λn)经由输出端口742输出。
第二光学波长反射器750具有一个输入端口751和一个输出端口752。
输入端口751接收来自第一耦合器710的第四端口714的光学信号I31,λ2,…,λn)。输出端口752将在波长成分中由光传播方向反射回的具有既定波长成分例如λ1的光学信号I51)经由第四端口714输出至第一耦合器710,并将具有其它波长成分的光学信号I72,…,λn)经由输出端口752输出。
第二耦合器720设置有第一至第三端口721,722,和723。
第一和第二端口721和722分别接收来自第一和第二光学波长反射器740和750经由其输出端口742和752的光学信号I62,…,λn)和I72,…,λn)。第三端口723将分别经由第一和第二输入端口721和722接收的光学信号I62,…,λn)和I72,…,λn)的输出相加,并输出一个光学信号I82,…,λn)。光学信号I62,…,λn)的相位和输出值与光学信号I41)的相等,而光学信号I72,…,λn)的相位和输出值与光学信号I51)的相等。光学信号I62,…,λn)当其经由第二耦合器720的第三端口723输出时,在相邻波导路程间的光学耦合区域受到光学耦合,从而具有-π/2的相移。另一方面,光学信号I72,…,λn)当其经由第二耦合器720的第三端口723输出时,因其沿波导路程传输而没有相移。因此,由于光学信号I62,…,λn)和I72,…,λn)在经由第二耦合器720的第三端口723输出时具有相同相位,使得它们得以叠加。从而,经由第二耦合器720的第三端口723输出的光学信号I82,…,λn)具有与光学信号I11,λ2,…,λn)相同的输出值。而且,在光学信号I11,λ2,…,λn)的波长成分中,光学信号I82,…,λn)具有除既定波长成分例如λ1之外的其它波长成分例如λ2,…,λn
第三耦合器730设置有第一至第四端口731,732,733,和734。
第一端口731接收由第一耦合器710的第二端口712输出的光学信号。第三和第四端口733和734将由第一端口731接收的光学信号I91)分离为相等的两半,并分别输出光学信号I101)和I111)。也就是说,光学信号I101)I111)各为光学信号I91)的一半。
经由第一端口731接收并经由第一端口513输出的光学信号I91),在沿波导路程传输时不受到光学耦合,从而在光学信号I101)和I91)之间不产生相移。另一方面,经由第一端口731接收并经由第四端口734输出的光学信号I91),在相邻波导路程之间的光学耦合区域受到光学耦合,从而在光学信号I111)和I91)之间产生-π/2的相移。
第三端口733接收在光学信号I101)的波长成分中由第三光学波长反射器760反射回的具有既定波长成分例如λ1的光学信号I121)。第四端口734接收在光学信号I111)的波长成分中由第四光学波长反射器770反射回的具有既定波长成分例如λ1的光学信号I131)。此处,经由第三和第四端口733和734返回的光学信号I121)和I131)的相位和输出分别与光学信号I101)和I111)的相同。因此,光学信号I121)具有与光学信号I91)相同的相位和一半输出,而光学信号I131)具有与光学信号I91)差π/2的相位与一半输出。
经由第三耦合器730的第三端口733接收并经由第一端口731输出的光学信号I121),因其沿波导路程传输而不产生相移,而经由第三耦合器730的第四端口734接收并经由第一端口731输出的光学信号I131),因其在相邻波导路程之间的光学耦合区域受到光学耦合而产生-π/n的相移。因此,当光学信号I121)和I131)经由第三耦合器730的第一端口731输出时,其间会产生-π的相位差。结果它们相互抵消而不产生输出。
当光学信号I121)经由第三耦合器730的第三端口733接收并经由第二端口732输出时,因其在相邻波导路程间的光学耦合区域受到光学耦合,所以存在-π/2的相移。另一方面,当光学信号I131)经由第三耦合器730的第四端口734接收并经由第二端口732输出时,因其沿波导路程传输而不存在相移。因此,当光学信号I121)和I131)经由第三耦合器730的第二端口732输出时,其间不存在相位差,从而将光学信号I121)和I131)叠加为光学信号I141)。因此,光学信号I141)的输出等于光学信号I91,λ2,…,λn)的输出。光学信号I141)具有由第三和第四光学波长反射器760和770反射的既定波长成分例如λ1
第一光学波长反射器760具有一个输入端口761和一个输出端口762。
输入端口761接收来自第三耦合器730的第三端口733的光学信号I101)。输出端口762只将在经由输入端口761接收的光学信号I101)的波长成分中具有既定波长成分例如λ1的光学信号由光传播方向反射回去,将光学信号I121)经由第三端口733输出至第三耦合器730,并将具有其它波长成分的光学信号经由输出端口762输出。
第四光学波长反射器770具有一个输入端口771和一个输出端口772。
输入端口771接收来自第三耦合器730的第四端口734的光学信号I111)。输出端口772只将在经由输入端口771接收的光学信号I111)的波长成分中具有既定波长成分例如λ1的光学信号由光传播方向反射回去,将光学信号I131)经由第四端口734输出至第三耦合器730,并将具有其它波长成分的光学信号经由输出端口772输出。
此处,第三耦合器730与第三和第四光学波长反射器760和770用于将具有不同于既定波长成分的可能剩余波长成分,从经由第二端口712输出至第一耦合器710的光学信号I91)中再次去除。
在本发明中,通过构造一个含有光学耦合器和光学波长分离器之光学波长滤波器的光学信号分离器,在用于通常WDM传输系统接收器的光学信号分离器中由1×n耦合引起的光学信号功率损耗很小,从而不需要传统光学信号分离器中为补偿光学信号功率损耗而采用的光学放大器。另外,由于可分离的通道数没有限制,本发明的光学信号分离器可用于高密度WDM传输系统以提高传输容量。
虽然参照了特别实施例对本发明进行了说明和描述,但本领域技术人员在本发明的精神和范围内可作出进一步的改动和变化。

Claims (40)

1、一种光学滤波器,包括:
一个第一耦合器,具有一个第一端口,用于接收一个具有多个波长成分的输入光学信号,第三和第四端口,用于分离由所述第一端口接收的所述输入光学信号的输出并分别输出这些分离的输出,和一个第二端口,用于输出由所述第三和第四端口输出的光学信号中反射回的光学信号;
一个第一光学波长反射器,具有一个输入端口,用于接收来自所述第一耦合器经由所述第三端口的光学信号,和一个输出端口,用于将经所述输入端口接收的光学信号中具有既定波长成分的光学信号由光传播方向反射回去,将此反射光学信号经由所述第三端口输出至所述第一耦合器,并将具有其它波长成分的输出信号加以输出;
一个第二光学波长反射器,具有一个输入端口,用于接收来自所述第一耦合器经由所述第四端口的光学信号,一个输出端口,用于将经所述输入端口接收的光学信号中具有既定波长成分的光学信号由光传播方向反射回去,将此反射光学信号经由所述第四端口输出至所述第一耦合器,并将具有其它波长成分的光学信号加以输出;
一个第二耦合器,具有第一和第二端口,用于接收来自所述第一和第二光学波长反射器经由其输出端口的光学信号,和一个第三端口,用于输出由所述第一和第二端口接收的全部光学信号;
其中,由所述第一耦合器经由其第二端口接收的光学信号,在所述第一耦合器经由其第一端口接收的输入光学信号波长成分和所述输入光学信号的输出中,具有既定波长成分,并且
由所述第二耦合器经由其第三端口接收的光学信号,具有在所述输入光学信号的波长成分中除所述既定补偿成分外的其它波长成分。
2、如权利要求1所述的光学波长滤波器,其中,所述第一耦合器将所述输入光学信号的输出分离为相等的两半,并分别经由其第三和第四端口输出这些分离的输出。
3、如权利要求1所述的光学波长滤波器,其中,所述第一耦合器中经由其第一端口接收的光学信号与向所述第一耦合器经由其第一端口接收并经由其第三端口输出的光学信号之间没有相位差。
4、如权利要求1所述的光学波长滤波器,其中,所述第一耦合器中经由其第一端口接收的光学信号与所述第一耦合器中经由其第一端口接收并经由其第四端口输出的光学信号之间存在-π/2的相位差。
5、如权利要求1所述的光学波长滤波器,其中,所述第二耦合器中经由其第一端口接收的光学信号与所述第一耦合器中经由其第一端口接收并经由其第三端口输出的光学信号之间存在-π/2的相位差。
6、如权利要求1所述的光学波长滤波器,其中,所述第二耦合器中经由其第二端口接收的光学信号与向所述第二耦合器经由其第二端口接收并经由其第三端口输出的光学信号之间没有相位差。
7、如权利要求1所述的光学波长滤波器,其中,所述第二耦合器中经由其第一和第二端口接收的光学信号之间存在-π/2的相位差,并且这两个信号在由所述第二耦合器经由其第三端口输出时具有相同相位并进而叠加。
8、如权利要求1所述的光学波长滤波器,其中,所述第一光学波长反射器为一个纤维光栅滤波器,用于通过在具有规则间隔的规则光栅周期中改变紫外线敏感纤维的折射率,仅将具有既定波长成分的光学信号由光学信号传播方向反射回去。
9、如权利要求2所述的光学波长滤波器,其中,由所述第一光学波长反射器的输入端口反射的光学信号和所述输入光学信号之间没有相位差。
10、如权利要求1所述的光学波长滤波器,其中,所述第二光学波长反射器为一个纤维光栅滤波器,用于通过在具有规则间隔的规则光栅周期中改变紫外线敏感纤维的折射率,仅将具有既定波长成分的光学信号由光学信号传播方向反射回去。
11、如权利要求10所述的光学波长滤波器,其中,由所述第二光学波长反射器的输入端口反射的光学信号和所述输入光学信号之间没有相位差。
12、如权利要求10所述的光学波长滤波器,其中,所述既定波长可通过在布拉格条件下控制所述光栅周期根据用户要求设定。
13、如权利要求1所述的光学波长滤波器,其中,所述第一耦合器中经由其第三和第四端口接收回的具有所述既定波长成分的光学信号,具有-π/2的相位差,并且在它们由所述第一耦合器经由其第二端口输出时,由于它们具有相同相位而通过补偿干涉作用得以耦合。
14、如权利要求1所述的光学波长滤波器,其中,所述第一耦合器中经由其第三和第四端口接收回的具有所述既定波长成分的光学信号,具有-π/2的相位差,并且在它们由所述第一耦合器经由其第一端口输出时,由于它们具有-π的相位差而互相抵消不产生输出。
15、如权利要求1所述的光学波长滤波器,还包括:
一个第三耦合器,具有一个第一端口,与所述第一耦合器的第二端口相连,用于接收光学信号,第三和第四端口,用于将由所述第一端口接收的光学信号分离为两半,并分别输出这些分离的输出,以及一个第二端口,用于接收经由所述第三和第四端口输出的光学信号反射回的光学信号;
一个第三光学波长反射器,具有一个输入端口,用于接收来自所述第三耦合器经由其第三端口的光学信号,以及一个输出端口,用于由光传播方向仅反射回由所述输入端口接收的光学信号中具有既定波长成分的光学信号,将此反射光学信号经由其第三端口输出至所述第三耦合器,并将具有其它波长成分的光学信号加以输出;和
一个第四光学波长反射器,具有一个输入端口,用于接收来自所述第三耦合器经由其第四端口的光学信号,以及一个输出端口,用于由光传播方向只反射回由所述输入端口接收的光学信号中具有既定波长成分的光学信号,将此反射光学信号经由其第四端口输出至所述第三耦合器,并将具有其它波长成分的光学信号加以输出,
从而具有不同于所述既定波长成分的波长成分,得以从由所述第一耦合器经由其第二端口输出的光学信号中再次去除。
16、一种光学信号分离器,具有一个第一输入端口,用于接收一个具有多个波长成分的输入光学信号,一个第一输出端口,用于只输出在所述输入信号中具有既定波长成分的光学信号,一个第二输出端口,用于输出具有所述既定波长成分之外的其它波长成分的光学信号,和多个串联连接并对应于所述第二输出端口与另一第一输入端口相连的光学波长滤波器,
其中,多个光学波长滤波器每一个包括:
一个第一耦合器,具有与所述第一输入端口相连的一个第一端口,用于接收输入光学信号,第三和第四端口,将由所述第一端口接收的输入光学信号分离为相等的两半,并分别输出这些分离的输出,和一个与所述第一输出端口相连的第二端口,用于将由所述第三和第四端口输出的光学信号反射的光学信号加以输出;
一个第一光学波长反射器,具有一个输入端口,用于接收来自所述第一耦合器经由其第三端口的光学信号,和一个输出端口,用于只反射由所述输入端口接收的光学信号中具有既定波长成分的光学信号,将此反射光学信号经由其第三端口输出至所述第一耦合器,并将具有不同于所述既定波长成分的其它波长成分的光学信号加以输出;
一个第二光学波长反射器,具有一个输入端口,用于接收来自所述第一耦合器经由其第四端口的光学信号,和一个输出端口,用于只反射由所述输入端口接收的光学信号中具有既定波长成分的光学信号,将此反射光学信号经由其第四端口输出至所述第一耦合器,并将具有不同于所述既定波长成分的其它波长成分的光学信号加以输出;和
一个第二耦合器,具有第一和第二端口,用于分别接收来自所述第一和第二光学波长反射器经由其输出端口的光学信号,和一个第三端口,用于输出由所述第一和第二端口接收的全部光学信号,
其中,从所述多个光学波长滤波器经由其第一输出端口的光学信号具有互不相同的既定波长成分。
17、如权利要求16所述的光学信号分离器,其中,所述第一耦合器将所述输入光学信号的输出分离为相等的两半,并经由其第三和第四端口输出这些分离的输出。
18、如权利要求16所述的光学信号分离器,其中,所述第一耦合器中经由其第一端口接收的光学信号与向所述第一耦合器经由其第一端口接收并经由其第三端口输出的光学信号之间没有相位差。
19、如权利要求16所述的光学信号分离器,其中,所述第一耦合器中经由其第一端口接收的光学信号与所述第一耦合器中经由其第一端口接收并经由其第四端口输出的光学信号之间存在-π/2的相位差。
20、如权利要求16所述的光学信号分离器,其中,所述第二耦合器中经由其第一端口接收的光学信号与所述第一耦合器中经由其第一端口接收并经由其第三端口输出的光学信号之间存在-π/2的相位差。
21、如权利要求16所述的光学信号分离器,其中,所述第二耦合器中经由其第二端口接收的光学信号与向所述第二耦合器经由其第二端口接收并经由其第三端口输出的光学信号之间没有相位差。
22、如权利要求16所述的光学信号分离器,其中,所述第二耦合器中经由其第一和第二端口接收的光学信号之间存在-π/2的相位差,并且这两个信号具有相同相位并进而耦合。
23、如权利要求16所述的光学信号分离器,其中,所述第一耦合器中经由其第三和第四端口接收回的具有所述既定波长成分的光学信号,具有-π/2的相位差,并且在它们由所述第一耦合器经由其第二端口输出时,由于它们具有相同相位而通过补偿干涉作用得以耦合。
24、如权利要求16所述的光学信号分离器,其中,所述第一耦合器中经由其第三和第四端口接收回的具有所述既定波长成分的光学信号,具有-π/2的相位差,并且在它们由所述第一耦合器经由其第一端口输出时,由于它们是有-π的相位差而互相抵消不产生输出。
25、如权利要求16所述的光学信号分离器,其中,所述第一光学波长反射器为一个纤维光栅滤波器,用于通过在具有规则间隔的规则光栅周期中改变紫外线敏感纤维的折射率,仅将具有既定波长成分的光学信号由光学信号传播方向反射回去。
26、如权利要求24所述的光学信号分离器,其中,由所述第一光学波长反射器的输入端口反射的光学信号和经由所述输入端口接收的所述输入光学信号之间没有相位差。
27、如权利要求16所述的光学信号分离器,其中,所述第二光学波长反射器为一个纤维光栅滤波器,用于通过在具有规则间隔的规则光栅周期中改变紫外线敏感纤维的折射率,仅将具有既定波长成分的光学信号由光学信号传播方向反射回去。
28、如权利要求26所述的光学信号分离器,其中,由所述第二光学波长反射器的输入端口反射的光学信号和经由所述输入端口接收的所述输入光学信号之间没有相位差。
29、如权利要求16所述的光学信号分离器,其中,所述多个波长滤波器各包括:
一个第三耦合器,具有一个第一端口,与所述第一耦合器的第二端口相连,用于接收光学信号,第三和第四端口,用于将由所述第一端口接收的光学信号分离为两半,并分别输出这些分离的输出,以及一个第二端口,用于接收经由所述第三和第四端口输出的光学信号反射回的光学信号;
一个第三光学波长反射器,具有一个输入端口,用于接收来自所述第三耦合器经由其第三端口的光学信号,以及一个输出端口,用于由光传播方向只反射回由所述输入端口接收的光学信号中具有既定波长成分的光学信号,将此反射光学信号经由其第三端口输出至所述第三耦合器,并将具有其它波长成分的光学信号加以输出;和
一个第四光学波长反射器,具有一个输入端口,用于接收来自所述第三耦合器经由其第四端口的光学信号,以及一个输出端口,用于由光传播方向只反射回由所述输入端口接收的光学信号中具有既定波长成分的光学信号,将此反射光学信号经由其第四端口输出至所述第三耦合器,并将具有其它波长成分的光学信号加以输出,
从而具有不同于所述既定波长成分的波长成分,得以从由所述第一耦合器经由其第二端口输出的光学信号中再次去除。
30、如权利要求28所述的光学信号分离器,其中,所述第三光学波长反射器可包含一个纤维光栅滤波器,用于通过在具有规则间隔的规则光栅周期中改变紫外线敏感纤维的折射率,仅将具有既定波长成分的光学信号由光学信号传播方向反射回去。
31、如权利要求29所述的光学信号分离器,其中,由所述第三光学波长反射器的输入端口反射的光学信号和所述输入光学信号之间没有相位差。
32、如权利要求28所述的光学信号分离器,其中,所述第四光学波长反射器可包含一个纤维光栅滤波器,用于通过在具有规则间隔的规则光栅周期中改变紫外线敏感纤维的折射率,仅将具有既定波长成分的光学信号由光学信号传播方向反射回去。
33、如权利要求31所述的光学信号分离器,其中,由所述第四光学波长反射器的输入端口反射的光学信号和所述输入光学信号之间没有相位差。
34、如权利要求31所述的光学信号分离器,其中,所述第一至第四波长反射器的光栅周期相同并且所述既定波长可通过在布拉格条件下控制所述光栅周期根据用户要求设定。
35、如权利要求28所述的光学信号分离器,其中,所述第三耦合器将所述输入光学信号的输出分离为相等的两半,并经由其第三和第四端口输出这些分离的输出。
36、如权利要求28所述的光学信号分离器,其中,所述第三耦合器中经由其第一端口接收的光学信号与向所述第三耦合器经由其第一端口接收并经由其第三端口输出的光学信号之间没有相位差。
37、如权利要求28所述的光学信号分离器,其中,所述第三耦合器中经由其第一端口接收的光学信号与所述第三耦合器中经由其第一端口接收并经由其第四端口输出的光学信号之间存在-π/2的相位差。
38、如权利要求28所述的光学信号分离器,其中,所述第三耦合器中经由其第三和第四端口接收回的具有所述既定波长成分的光学信号,具有-π/2的相位差,并且在它们由所述第三耦合器经由其第二端口输出时,由于它们具有相同相位而通过补偿干涉作用得以耦合。
39、如权利要求28所述的光学信号分离器,其中,所述第三耦合器中经由其第三和第四端口接收回的具有所述既定波长成分的光学信号,具有-π/2的相位差,并且在它们由所述第三耦合器经由其第一端口输出时,由于它们具有-π的相位差而互相抵消不产生输出。
40、如权利要求16所述的光学信号分离器,其中,所述光学波长滤波器(数目等于波长成分数-1)串联连接,以便通过波长复分方法对具有相应复分波长成分的光学信号进行信号分离。
CNB971198918A 1996-12-06 1997-12-06 光学波长滤波器和光信号分离器 Expired - Fee Related CN1158559C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR62477/96 1996-12-06
KR62477/1996 1996-12-06
KR1019960062477A KR100207602B1 (ko) 1996-12-06 1996-12-06 광 전력의 손실을 방지하는 광 파장 필터 및 이를 이용한 광 디멀티플렉서

Publications (2)

Publication Number Publication Date
CN1193124A true CN1193124A (zh) 1998-09-16
CN1158559C CN1158559C (zh) 2004-07-21

Family

ID=19486209

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB971198918A Expired - Fee Related CN1158559C (zh) 1996-12-06 1997-12-06 光学波长滤波器和光信号分离器

Country Status (8)

Country Link
US (1) US6208440B1 (zh)
JP (1) JPH10221560A (zh)
KR (1) KR100207602B1 (zh)
CN (1) CN1158559C (zh)
DE (1) DE19754148A1 (zh)
FR (1) FR2756934B1 (zh)
GB (1) GB2320152B (zh)
RU (1) RU2188512C2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608719B1 (en) 2000-03-24 2003-08-19 Wuhan Research Institute Of Posts And Telecommunications, Mii Comb wavelength division multiplexer
CN101203784B (zh) * 2005-06-08 2010-06-23 威瑞森全球商务有限责任公司 无损可调谐滤波器
US8050559B2 (en) 2006-08-21 2011-11-01 Juniper Networks, Inc. Multi-chassis router with multiplexed optical interconnects

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980068452A (ko) * 1997-02-19 1998-10-15 김광호 Wdm전송 시스템의 디멀티플렉서
EP1043847B1 (en) * 1998-10-26 2010-04-14 Nippon Telegraph and Telephone Corporation Wavelength-division multiplex transmission network device using a transceiver having a 2-input/2-output optical switch
FI990238A (fi) 1999-02-08 2000-08-09 Nokia Networks Oy OptinenADd/drop-laite
KR100573282B1 (ko) * 1999-10-01 2006-04-24 한국전자통신연구원 파장분할다중 광통신시스템을 위한 광결합 분기 다중화기
GB0013366D0 (en) * 2000-06-01 2000-07-26 Vipswitch Inc Optical communicator
US6839517B2 (en) 2001-02-12 2005-01-04 Agere Systems Inc. Apparatus and method for transmitting optical signals through a single fiber optical network
US7116905B2 (en) * 2002-03-27 2006-10-03 Fujitsu Limited Method and system for control signaling in an open ring optical network
US7231148B2 (en) * 2002-03-28 2007-06-12 Fujitsu Limited Flexible open ring optical network and method
US6842562B2 (en) * 2002-05-30 2005-01-11 Fujitsu Network Communications, Inc. Optical add/drop node and method
KR100442658B1 (ko) * 2002-08-14 2004-08-02 삼성전자주식회사 파장분할다중 광통신 시스템의 광원 발생장치
US7894418B2 (en) * 2002-08-15 2011-02-22 The Boeing Company Mixed analog and digital chip-scale reconfigurable WDM network
US7092587B1 (en) * 2002-08-16 2006-08-15 Raytheon Company Multichannel optical demultiplexer with varying angles of incidence to the light bandpass filters
US7154082B2 (en) * 2004-08-20 2006-12-26 Pgs Americas, Inc. Frequency division and/or wavelength division multiplexed recursive fiber optic telemetry scheme for an optical sensor array
US7450851B2 (en) * 2004-08-27 2008-11-11 Fujitsu Limited System and method for modularly scalable architecture for optical networks
DE102006044858A1 (de) * 2006-09-22 2008-03-27 Siemens Ag Benutzereinheit für ein passives optisches Netzwerk
US10514296B2 (en) * 2015-07-29 2019-12-24 Samsung Electronics Co., Ltd. Spectrometer including metasurface
US11867556B2 (en) 2015-07-29 2024-01-09 Samsung Electronics Co., Ltd. Spectrometer including metasurface
RU2744517C1 (ru) * 2020-03-27 2021-03-11 Федеральное государственное унитарное предприятие «Государственный научно-исследовательский институт авиационных систем» (ФГУП «ГосНИИАС») Двухконтурная система передачи информации в реальном времени на базе полностью оптической спектрально-уплотнённой бортовой сети

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048909A (en) * 1990-07-27 1991-09-17 At&T Bell Laboratories Adiabatic reflection apparatus
IT1265017B1 (it) * 1993-08-10 1996-10-17 Cselt Centro Studi Lab Telecom Commutatore ottico selettivo in lunghezza d'onda.
US5657406A (en) * 1994-09-23 1997-08-12 United Technologies Corporation Efficient optical wavelength multiplexer/de-multiplexer
US5446809A (en) * 1994-09-23 1995-08-29 United Technologies Corporation All fiber wavelength selective optical switch
FR2725529B1 (fr) * 1994-10-11 1996-11-22 Alcatel Nv Coupleur optique selectif en longueur d'onde
DE69620414T2 (de) * 1995-08-04 2002-11-14 Alcatel Sa Optischer einfügungs- und abtrennmultiplexer
JP3463717B2 (ja) * 1995-08-24 2003-11-05 三菱電機株式会社 波長多重光伝送装置および波長多重光伝送システム
US5875272A (en) * 1995-10-27 1999-02-23 Arroyo Optics, Inc. Wavelength selective optical devices
JP3654383B2 (ja) * 1995-12-07 2005-06-02 Kddi株式会社 光アド/ドロップ多重素子
US5721796A (en) * 1996-06-21 1998-02-24 Lucent Technologies Inc. Optical fiber cross connect with active routing for wavelength multiplexing and demultiplexing
JP4041177B2 (ja) * 1996-07-09 2008-01-30 富士通株式会社 光分岐挿入装置及び光分岐挿入装置を有する光伝送システム
US5940556A (en) * 1997-03-07 1999-08-17 Ifos Fiber-optic mode-routed add-drop filter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608719B1 (en) 2000-03-24 2003-08-19 Wuhan Research Institute Of Posts And Telecommunications, Mii Comb wavelength division multiplexer
CN101203784B (zh) * 2005-06-08 2010-06-23 威瑞森全球商务有限责任公司 无损可调谐滤波器
US8050559B2 (en) 2006-08-21 2011-11-01 Juniper Networks, Inc. Multi-chassis router with multiplexed optical interconnects
US8428458B2 (en) 2006-08-21 2013-04-23 Juniper Networks, Inc. Multi-chassis router with multiplexed optical interconnects
US8699878B2 (en) 2006-08-21 2014-04-15 Juniper Networks, Inc. Multi-chassis device with multiplexed optical interconnects

Also Published As

Publication number Publication date
KR100207602B1 (ko) 1999-07-15
GB9725583D0 (en) 1998-02-04
GB2320152A (en) 1998-06-10
FR2756934B1 (fr) 2003-06-13
GB2320152B (en) 2001-04-04
CN1158559C (zh) 2004-07-21
KR19980044384A (ko) 1998-09-05
JPH10221560A (ja) 1998-08-21
US6208440B1 (en) 2001-03-27
FR2756934A1 (fr) 1998-06-12
RU2188512C2 (ru) 2002-08-27
DE19754148A1 (de) 1998-06-18

Similar Documents

Publication Publication Date Title
CN1158559C (zh) 光学波长滤波器和光信号分离器
JP3284659B2 (ja) 波長多重光通信用光スイッチング装置
US7623788B2 (en) Optical wavelength division multiplexing transmitter
US20230224040A1 (en) Wavelength division multiplexer/demultiplexer, photonic integrated chip, and optical module
CN101813805B (zh) 一种双环谐振的四路可重构光插分复用器结构
CN1400749A (zh) 一种新型光子晶体波分复用器件
CN1152715A (zh) 具有平衡光程的声光可调波导开关
CN110941048B (zh) 基于多模干涉原理的高消光比粗波分复用/解复用器
US7215884B2 (en) Optical demultiplexer having bragg diffration grating and optical communication module using the optical demultiplexer
CN108663748B (zh) 基于单个线缺陷谐振腔的双信道下路滤波器
US7418168B2 (en) Optical add/drop module
JP2000199830A (ja) 光通信装置
CN1308432A (zh) 多路复用/多路分路光线路
CN1372734A (zh) 可调谐的光滤波器
GB0111822D0 (en) Signal addition to a wave division multiplex system
CN114924357B (zh) 一种基于级联马赫-曾德干涉仪结构的波分复用光延时线
TWM637833U (zh) 可降低旁通損失的光纖網路訊號接取模組
JPH0197905A (ja) 光合分波器
JP4846180B2 (ja) 波長分割多重(wdm)光ネットワーク
EP0836254A4 (en) OPTICAL FILTER, THEIR PRODUCTION PROCESS AND AN AMPLIFIER THEREFORE
CN1287541C (zh) 波分复用(wdm)光网络
AU731587B2 (en) Optical devices and methods
JPH09189824A (ja) 波長分割多重伝送装置
US20020009253A1 (en) Gain equalizer
CN114563844A (zh) 一种新型级联式微球腔滤波器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee