CN1182067A - 催化氢化 - Google Patents

催化氢化 Download PDF

Info

Publication number
CN1182067A
CN1182067A CN97122478A CN97122478A CN1182067A CN 1182067 A CN1182067 A CN 1182067A CN 97122478 A CN97122478 A CN 97122478A CN 97122478 A CN97122478 A CN 97122478A CN 1182067 A CN1182067 A CN 1182067A
Authority
CN
China
Prior art keywords
hydrogenation
amorphous metal
metal alloy
solvent
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN97122478A
Other languages
English (en)
Other versions
CN1066425C (zh
Inventor
M·詹森
C·雷伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
D Sm IP Assets Limited
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of CN1182067A publication Critical patent/CN1182067A/zh
Application granted granted Critical
Publication of CN1066425C publication Critical patent/CN1066425C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/008Processes carried out under supercritical conditions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B35/00Reactions without formation or introduction of functional groups containing hetero atoms, involving a change in the type of bonding between two carbon atoms already directly linked
    • C07B35/02Reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/62Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by hydrogenation of carbon-to-carbon double or triple bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及一种在无定型金属合金催化剂上和溶剂中催化氢化有机化合物的方法,其中该氢化反应在溶剂的近临界或超临界条件下进行。无定型金属合金可以通过骤冷具有低共熔固化点的合金熔体来制备。通过在氢分压为5~400巴下进行氢化反应得到突出的时空产率和催化活性的长期稳定性。

Description

催化氢化
本发明涉及一种在溶剂的近临界或超临界条件下在无定形金属合金催化剂上催化氢化有机化合物的方法。
在现有技术中无定形金属合金也被称为金属玻璃。例如可以通过在冷却的旋转铜轮上骤冷熔融的合金来制备它们。根据铜轮表面的特性和精确的工艺操作条件可以得到薄金属带(在铜表面是光滑的情况下)或片状颗粒即所谓的鳞片(在铜表面粗糙的情况下)。金属带或鳞片的厚度为5~50μm,优选为10~30μm,特别是约20μm。在较大的层厚度下不能快速、充足地散热,这样随着厚度的不断增大形成晶体合金结构。
所得到的金属玻璃是无孔的。因此它们的表面仅仅由它们的外几何表面构成。在金属带或鳞片特别优选的厚度20μm的情况下,该表面只是约0.5m2/g。另一方面,例如活性镍粉末催化剂的金属比表面积大于100m2/g和担载在活性炭上的细分散钯的金属比表面积大于40m2/g。
因为其小的金属表面积,至今金属玻璃不能作为催化剂用于工业方法中。然而,已经对它们的催化活性进行了广泛的研究,经常发现它们具有高的转化频率(每反应中心和单位时间的活性)。现有技术中对金属玻璃上的催化作用的概述可以在Springer 1994年出版的H.Beck和H.J.Guntherodt编辑的〖应用物理概论〗(“Topics in Applied Physics”)第72卷第121~162页的A.Baiker的文章“在催化反应中的玻璃金属”“Glassy Metalsin Catalysis”中找到。
特别是已经发现金属玻璃可以催化大量的氢化反应,例如在90~450℃的温度和低于10巴的压力下氮、乙烯或丁二烯的氢化(欧洲专利0173088B1)。
催化活性取决于金属玻璃各自的合金组成。例如,已经发现Pd81Si19玻璃特别适合于将炔类选择氢化为链烯烃[A.Molnar,G.V.Smith和M.Bartok;J.Catal.101,67-72(1986)]。这些氢化是在室温和大气压的氢气压下进行的。
尽管金属玻璃基本上适合于催化氢化反应,但是它们小的金属表面积、低的热稳定性和在制备中在金属玻璃表面上稳定的氧化层的形成是它们在工业氢化反应方法中使用的严重障碍(D.Gasser和A.Baiker,应用催化(Applied Catalysis),48,279-294(1989))。此外,存在的危险性是氢的作用将使金属玻璃变得易粉碎而最终导致它们的粉化。
本发明的目的是提供一种在金属玻璃上催化氢化有机化合物的工业方法,该方法克服了现有技术中存在的在工业氢化方法中金属玻璃使用的障碍并且允许具有高时空产率和催化活性具有好的长期稳定性的氢化反应。
本发明的目的是这样实现的,即在金属玻璃(无定形金属合金催化剂)的存在下和在处于溶剂的近临界或超临界条件〖通常熟悉的术语“近临界”和“超临界”例如参见Elsevier科学出版社1996年出版Ph.Rudolf von Rohr和Ch.Trepp编辑的“高压化学工程(High Pressure ChemicalEngineering)”第191~197页的文章“在使用近临界液体的逆流萃取中密度、粘度和界面张力的相互关系(Interaction of Density,Viscosityand Interfacial Tension in Countercurrent Extraction with Near-Critical Fluids)”,该文献在此引入以供参考〗的溶剂中进行有机化合物的氢化。因此,根据本发明的方法是在无定形金属合金催化剂上和在溶剂中催化氢化有机化合物的方法;该方法包括在该溶剂的近临界或超临界条件下进行氢化反应。
优选地,在氢分压为5~400巴(0.5-40MPa)下进行氢化反应。
通常所使用的反应温度是室温~300℃,因此它们类似于在相应的常规氢化反应的情况下使用的反应温度。
来自于具有低共熔熔点的合金混合物的金属玻璃在本发明的方法中用作催化剂。在该合金混合物已知的相图中可以发现该低共熔混合物。如上所述,通过骤冷合金熔体可以得到金属玻璃的无定形结构。优选使用来自于钯、铁、铜、镍和钒该组的金属和来自于钛、锆、硅、锗、铌、硼、磷、锑和铋该组的金属的合金。
已知仅仅在合金组合物与合金组份低共熔混合物相吻合或与这些低共熔混合物非常接近的情况下才得到金属玻璃。能够在本发明的方法中使用的优选合金的典型组成是Pd81Si19、Fe24Zr76、Fe91Zr9、Ni64Zr36、Ni64Ti34和Fe85B15。Pd81Si19是特别优选的被使用的无定形金属合金。所使用的合金的实际组成与这些理想组成的偏差至多为约2%(±2%)。在较大偏差的情况下,存在金属玻璃具有结晶区含量增大的危险。
在本发明的范围中,已经发现通过提高氢分压到高于5巴的值,可以以这样的方式提高金属玻璃的催化活性,即尽管金属表面积小,但是时空产率可能等于或好于使用具有大得多的金属表面积的常规载体催化剂得到的该值,然而,惊奇的是不会发生可怕的氢蚀致脆。如上所述,氢分压优选是不超过400巴(40MPa)。
为了实施本发明的方法,可以使用带状或片状的金属玻璃。以片状形式使用是优选的。通常片状和带状的厚度是5~50μm,优选为10~30μm,特别是约20μm。因为在骤冷中热扩散不够快,厚度大于50μm时不再得到完全无定形的金属合金。优选地,使用平均面积为0.5~30mm2的鳞片。这样的鳞片可以在金属玻璃的制备过程中得到或随后通过研磨带状物得到。
在进行本发明的方法时,溶剂的适当选择取决于欲氢化的原料。特别是可以使用芳族和脂族烃,例如苯、甲苯、丙烷或丁烷;二氧化碳;醇类,例如甲醇或乙醇;或它们的混合物。
在该方法中优选使用超临界二氧化碳(临界温度为约31℃和临界压力为约73巴(7.3MPa)),任选与丙烷或丁烷的混合使用作为溶剂。根据德国专利申请(DOS)4405029A1超临界二氧化碳在氢化反应中具有突出的性能。它不仅对于氢而且对于许多有机化合物具有好的溶解性。在其超临界的状态中,在相对高的密度下它具有低的粘度。在流过反应器之后它一般可以通过减压以简单的方式从产物中分离出而不致污染环境,并且可以再利用。
在其它方面,可以使用常规方法中已知的技术。因此,可以在固体床反应器中进行氢化反应,从而可以以逆流或平行流的形式使用氢。该方法优选地用于连续氢化反应。
根据本发明的方法可以用于有机化合物所有的常规氢化反应中。使用该方法不仅可以实施非选择性氢化反应,而且可以实施选择氢化反应。例子是脂肪酸双键的选择或完全氢化、脂肪酸氢化为脂肪醇、糖类的氢化、卤代硝基芳族化合物氢化为卤代胺、芳族化合物的环上氢化和非常普通的炔类选择氢化为链烯烃。根据本发明的方法优选用于将3,7,11,1 5-四甲基-1-十六碳炔-3-醇(脱氢异植醇)氢化为3,7,11,15-四甲基-1-十六碳烯-3-醇(异植醇)。
并不是所有的金属玻璃都同样好地适合于所有列举的反应。对于特定反应的催化活性取决于所选择的金属合金的组成。最适合的金属玻璃的选择取决于在相应的常规氢化方法中使用的催化剂。因此,例如具有组成为Pd81Si19的金属玻璃特别适合于所有的在现有技术中使用钯催化剂的氢化反应,例如炔类选择氢化为链烯烃。正如从常规的催化剂中已知的一样,为了提高选择性可以使金属玻璃选择性地中毒。出于该目的经常单独或结合使用铅和硫化合物例如乙酸铅或1,2-双-(2-羟基乙硫基)乙烷。
根据本发明铅化合物特别适合于使在炔类选择氢化为链烯烃中使用的含钯催化剂中毒,一般是优选的用于该目的的中毒化合物。铅(铅原子:Pb)的使用量与表面上钯原子(Pd)的数目有关:已经发现Pd∶Pb的原子比为约2∶1是最适合的。正如所知道的一样,使用一氧化碳化学吸附作用可以有效的测定Pd。为了提高在炔类氢化为链烯烃中使用的钯的选择性,作为铅的替代物可以使用其它的含过渡金属的化合物例如锌、锡、锰和铜化合物,以及对钯有配位功能的化合物例如硫化合物特别是硫醚、硫醇、和二甲基亚砜;胺例如吡啶、γ-可力丁、喹啉、喹哪啶和哌啶;膦类;和一氧化碳。根据本发明中毒硫化合物特别适合于在脱氢异植醇选择氢化为异植醇中使用。例如,当1,2-双-(2-羟基乙硫基)乙烷用于该目的时,合适的是以原料的量计该化合物的用量是约0.005-约0.1重量百分比。
与常规载体催化剂或活化的金属催化剂的使用相比,金属玻璃在本发明的方法中具有许多优点。金属玻璃是无孔的。因此,使用这些催化剂时,不会产生在常规、多孔催化剂体系的孔隙中出现的特别慢的扩散速度的问题。通常,该扩散速度比反应速度慢的多,这意味着在催化反应中形成的产物通常在催化剂上停留过长的时间。当进行选择反应时,上述事实是种缺陷。在无孔的情况下,当然金属玻璃不会发生这种问题。
金属玻璃的准金属导热率不仅在放热反应的情况下而且在吸热反应的情况下也是特别有利的。与常规的钯载体催化剂相比,在本发明的方法中,例如Pd81Si19的使用导致反应器床中的温度均匀;而在常规的钯载体催化剂中,因为一般氧化载体材料(例如铝、硅和钛氧化物)的低导热率从而在反应器中产生过热。为了好的导热,必须采取措施以避免这样的过热,例如通过溶剂充分地稀释原料。
下面的实施例说明本发明的方法。附图1表示用于有机化合物连续氢化的管式反应器。
实施例1
将丙二烯6,10,14-三甲基-4,5-十五碳二烯-2-酮在附图1所示的管式反应器中连续氢化为6,10,14-三甲基-十五烷-2-酮。管式反应器由不锈钢管1组成,在其内表面具有2.5mm厚的聚四氟乙烯涂层。反应器的净内径是20mm。在反应器中装入74克片状的无定形Pd81Si19作为催化剂2。在液氮的温度下研磨带状材料得到上述片状材料,该片状材料的平均直径是5mm,它们的厚度是20μm和它们的表面放热率是2.5g/cm3
催化剂层放置在两块玻璃料5和6中间。搅拌器7安装在反应器的顶部。
用二氧化碳(CO2)作为溶剂在140巴(14MPa)的压力下进行氢化反应。在反应器中的条件下二氧化碳以超临界的状态存在。
将原料3、氢和二氧化碳从顶部加入反应器并通至催化剂填料之上。在催化剂填料上使用加热外罩4将反应混合物加热到所需的反应温度140~200℃。在反应混合物通过催化剂填料之后,在冷凝器8中冷却该反应混合物,并且通过降压从溶剂二氧化碳和未消耗的氢中分离出产物。
通过气相色谱法(GC)分析产物混合物。表1中给出连续氢化1630分钟的这些测定的结果。其中,每小时在反应器中加入2.04摩尔的原料和21.42摩尔的氢。产物6,10,14-三甲基-十五烷-2-酮的时空产率是123摩尔每升每小时(mol/lh)。
                        表1
    时间[分钟]     CO2[g/h]     温度[℃]     产物[GC%]
    05014022528034039544548052056564576588510051125124513651505154515851630     120012001200120012001200120012009009009009006003000300600900600000     192192192192192181181181166166166166166160154159162165163142142142     88.988.989.288.989.088.088.186.887.586.086.386.686.188.288.387.985.984.987.288.688.089.0
实施例2
为了将炔3,7,11,15-四甲基-1-十六碳炔-3-醇(脱氢异植醇)氢化为链烯烃3,7,11,15-四甲基-1-十六碳烯-3-醇(异植醇),使用实施例1中的反应器。在反应器中装入80克研磨的Pd81Si19。每小时加入1080克的二氧化碳作为溶剂。反应压力是140巴(14MPa)。
表2中给出了产物混合物的气相色谱法分析的结果以及同时形成的烷烃3,7,11,15-四甲基-十六烷-3-醇相应的时空产率。
                                            表2
                  氢化反应条件              产物混合物的分析
  时间分钟   H2摩尔/小时    炔烃摩尔/小时     温度℃     炔烃GC%     链烯烃GC%         链烷烃GC%        RTY
  6710218920228329236137589109195207265274318327392398430527   1.81.82.72.73.63.64.54.52.32.31.51.51.11.11.11.11.11.11.11.1     0.360.360.540.540.720.720.900.900.900.900.900.900.900.901.261.261.621.620.900 90     129129135135141141147147149149149149143143144144145145131131     0.00.00.00.00.00.00.00.00.00.01.31.55.49.822.626427.227.011 511.3     0.50.40.40.40.30.40.50.30.40.420.822.927.832.933.934.133.533.429.329.9     96.996.896.696.595.996.395.595.195.595.874.772.433.854.541.037.036.937.156.856.2     2222333344445454
RTY:时空产率mol/lh
实施例3
在上述的管式反应器(附图1)中将脱氢异植醇选择氢化为异植醇。为了该目的,按如下步骤用铅化合物使Pd81Si19催化剂中毒。在室温下用过饱和的乙酸铅的乙醇溶液没过研磨的金属玻璃3小时。在倾出该溶液之后,在真空中干燥鳞片,然后在氢气气氛下储存3小时,随后用去离子水和丙酮冲洗。
为了进行氢化反应,在反应器中加入48.3这样处理过的鳞片。表3中给出了反应条件和产物混合物的分析结果。
                                                 表3
                      氢化反应条件              产物混合物的分析
  时间分钟   CO2g/h   H2摩尔/小时   原料摩尔/小时   温度℃   原料GC%        链烯烃GC%        RTY     链烷烃GC%
  801953304304809522036043048090200305400470235325415475   1200120012001200120012001200120012001200840840840840840840840840840   3.23.02.82.72.53.23.02.82.72.52.82.72.52.42.32.72.72.72.7   1.61.61.61.61.61.61.61.61.61.61.61.61.61.61.61.61.51.41.3   84848484837978787774979796979695918884   0.00.00.00.00.00.20.20.50.84.20.50.00.00.00.40.70.30.10.1   87.990.290.990.891.190.991.291.090.988.687.889.590.390.791.189.390.591.190.3     75757575757575757575757575757575706560     9.86.76.26.16.26.76.55.85.95.39.58.28.67.07.18.17.26.87.6
RTY:时空产率mol/lh
实施例4
为了进一步提高实施例3的氢化反应的选择性,再次使用铅中毒的Pd81Si19合金作为催化剂。此外,使用硫化合物使催化剂中毒。为此,在原料混合物中加入1,2-双-(2-羟基乙硫基)乙烷。精确的操作条件和结果列于表4中;因此它是在钯载体催化剂上进行氢化反应的对照例。
对比实施例
类似于实施例4,在常规的钯载体催化剂上将脱氢异植醇氢化为异植醇。该催化剂在有机官能化的聚硅氧烷载体上包含4重量%的钯以及4重量%的铅。这种催化剂描述在德国专利4110706中。从表4中可以得到操作条件和结果。
                     表4
            脱氢异植醇连续氢化为异植醇
    实施例4     对比实施例
催化剂催化剂量      [g]催化剂体积    [cm3]Pd-有效面积  [m2]原料/量       [g/h]+1wt.%  硫   cpd.CO2          [g/l]H2-压力      [bar]温度          [℃]产率          [%]时空产率      [kg/lh]     Pd81Si194420O.54606601401109723     4wt.%Pd+4wt.%Pb34120404301980140110974

Claims (10)

1、一种在无定形金属合金催化剂上和溶剂中催化氢化有机化合物的方法,该方法包括在溶剂的近临界或超临界条件下进行氢化。
2、根据权利要求1的方法,其特征在于在氢分压为5~400巴(0.5-40MPa)下进行氢化。
3、根据权利要求1或2的方法,其特征在于使用来自于钯、铁、铜、镍和钒该组的金属和来自于钛、锆、硅、锗、铌、硼、磷、锑和铋该组的金属的合金作为无定形金属合金。
4、根据权利要求3的方法,其特征在于无定形金属合金是Pd81Si19、Fe24Zr76、Fe91Zr9、Ni64Zr36、Ni64Ti34或Fe85B15,优选是Pd81Si19
5、根据权利要求1~4任一项的方法,其特征在于使用层厚度是5~50μm,优选为10~30μm,特别是约20μm的带状或片状形式的无定形金属合金。
6、根据权利要求1~5任一项的方法,其特征在于使用平均面积为0.5~30mm2的片状无定形金属合金。
7、根据权利要求1~6任一项的方法,其特征在于用铅或硫化合物或它们的混合物使无定形金属合金中毒。
8、根据权利要求1~7任一项的方法,其特征在于使用芳族和脂族烃,例如苯、甲苯、丙烷或丁烷;二氧化碳;醇类,例如甲醇或乙醇;或它们的混合物,优选使用超临界二氧化碳作为溶剂。
9、根据权利要求1~8任一项的方法,其特征在于氢化反应是连续进行的。
10、根据权利要求1~9任一项的方法,其特征在于3,7,11,15-四甲基-1-十六碳炔-3-醇(脱氢异植醇)被氢化为3,7,11,15-四甲基-1-十六碳烯-3-醇(异植醇)。
CN97122478A 1996-11-11 1997-11-10 催化氢化 Expired - Fee Related CN1066425C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP96118038.7 1996-11-11
EP96118038 1996-11-11

Publications (2)

Publication Number Publication Date
CN1182067A true CN1182067A (zh) 1998-05-20
CN1066425C CN1066425C (zh) 2001-05-30

Family

ID=8223388

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97122478A Expired - Fee Related CN1066425C (zh) 1996-11-11 1997-11-10 催化氢化

Country Status (10)

Country Link
US (1) US6002047A (zh)
EP (1) EP0841314B1 (zh)
JP (1) JPH10168021A (zh)
CN (1) CN1066425C (zh)
AT (1) ATE233233T1 (zh)
BR (1) BR9705452A (zh)
DE (1) DE59709382D1 (zh)
DK (1) DK0841314T3 (zh)
ES (1) ES2191142T3 (zh)
ID (1) ID18866A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483774B (zh) * 2008-08-20 2015-05-11 Dsm Ip Assets Bv 新穎選擇性氫化觸媒及其用途
CN106582636A (zh) * 2015-10-14 2017-04-26 中国石油化工股份有限公司 复合催化剂床

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19962907A1 (de) 1999-12-23 2001-07-05 Basf Ag Verfahren zur Herstellung von C¶10¶-C¶30¶-Alkenen durch partielle Hydrierung von Alkinen an Festbett-Palladium-Trägerkatalysatoren
DE10125613A1 (de) * 2001-05-25 2002-11-28 Basf Ag Kolloidkatalysierte Wasserstoffübertragung in überkritischer Phase
WO2003033548A1 (en) 2001-10-16 2003-04-24 Sekisui Chemical Co., Ltd. Process for producing modified polymer, apparatus for producing modified polymer, and modified polymer
US7034084B2 (en) * 2002-07-08 2006-04-25 Bridgestone Corporation Process and apparatus for the hydrogenation of polymers under supercritical conditions
JP4581078B2 (ja) * 2003-04-18 2010-11-17 独立行政法人産業技術総合研究所 フェノール類の水素化方法
JP5105296B2 (ja) * 2005-12-02 2012-12-26 エヌ・イーケムキャット株式会社 官能基選択的水素化触媒、及び官能基選択的水素化方法
WO2012121156A1 (ja) * 2011-03-09 2012-09-13 和光純薬工業株式会社 アルキン誘導体の部分水素化反応
US8822370B2 (en) * 2011-05-16 2014-09-02 Uop Llc Substantially non-porous substrate supported noble metal-and lanthanide-containing catalysts
CN109395753B (zh) * 2018-09-26 2021-07-16 昆明理工大学 一种加氢反应催化剂的制备方法及应用
WO2020239720A1 (en) * 2019-05-27 2020-12-03 Dsm Ip Assets B.V. Selective hydrogenation of alkynols to alkenols in the presence of a phosphorus compound

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH660130A5 (de) * 1984-07-27 1987-03-31 Lonza Ag Verfahren zur herstellung von katalytisch wirksamen, glasig erstarrten metallen.
US4645849A (en) * 1985-01-22 1987-02-24 General Electric Company Hydrogenation of unsaturated hydrocarbons with cyclometallated transition metal catalysts
US4918254A (en) * 1989-02-06 1990-04-17 Ethyl Corporation Nickel catalyzed displacement reaction
WO1994006738A1 (en) * 1992-09-14 1994-03-31 Unichema Chemie B.V. Process for the production of alcohols
DE4405029C2 (de) * 1994-02-17 1996-04-04 Degussa Verfahren zum Härten von ungesättigten Fetten, Fettsäuren oder Fettsäureestern
US5464613A (en) * 1994-06-17 1995-11-07 Ecolab, Inc. Fat-based pest bait
AU694929B2 (en) * 1994-07-01 1998-08-06 Magnus Harrod Hydrogenation of substrate and products manufactured according to the process
GB9607917D0 (en) * 1996-04-17 1996-06-19 Swan Thomas & Co Ltd Supercritical hydrogenation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483774B (zh) * 2008-08-20 2015-05-11 Dsm Ip Assets Bv 新穎選擇性氫化觸媒及其用途
CN106582636A (zh) * 2015-10-14 2017-04-26 中国石油化工股份有限公司 复合催化剂床
CN106582636B (zh) * 2015-10-14 2019-04-12 中国石油化工股份有限公司 复合催化剂床

Also Published As

Publication number Publication date
EP0841314A1 (de) 1998-05-13
DK0841314T3 (da) 2003-06-10
ES2191142T3 (es) 2003-09-01
CN1066425C (zh) 2001-05-30
JPH10168021A (ja) 1998-06-23
BR9705452A (pt) 2000-02-08
DE59709382D1 (de) 2003-04-03
ID18866A (id) 1998-05-14
EP0841314B1 (de) 2003-02-26
ATE233233T1 (de) 2003-03-15
US6002047A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
CN1066425C (zh) 催化氢化
AU602208B2 (en) Process and catalyst for hydrogenation of carboxylic acids and their anhydrides to alcohols and/or esters
EP0069409B1 (en) Process for the preparation of a 5-alkyl-butyrolactone
WO1989010911A1 (en) The production of alcohols and ethers by the catalysed hydrogenation of esters
WO2012078384A1 (en) Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
EP1053231A2 (en) Process for the production of gamma-butyrolactone
Srinivas et al. Selectivity dependence on the alloying element of carbon supported Pt-alloy catalysts in the hydrogenation of phenol
NO852979L (no) Fremgangsmaate ved fremstilling av katalytisk virksomme, glassaktig stivnede metaller.
WO1999035139A1 (en) Process for the production of gamma-butyrolactone
CN103596909B (zh) 烷烃非均相催化气相氧化制备脂肪酮和/或其他含氧化合物
US6472575B2 (en) Process for producing adamantane
US4798911A (en) Catalyst composition and method for selective dehydrogenation
EP3770141B1 (en) Method for preparing 2-cyclohexyl cyclohexanol
US8822746B2 (en) Ordered cobalt-aluminum and iron-aluminum intermetallic compounds as hydrogenation catalysts
KR19980070678A (ko) 숙신산 무수물의 제조 방법
JP2565561B2 (ja) 7ーオクテンー1ーアールの製造法
JPS6260378B2 (zh)
JP3555201B2 (ja) 脂環式ジケトン化合物の製造方法
Takahashi et al. Benzene hydrogenation activity of nickel catalysts prepared from amorphous Ni-Zr alloys
JP2636028B2 (ja) パーヒドロアセナフテンの製造法
US6132695A (en) Supported metal alloy catalysts
CA1053249A (en) Process for the synthesis of dibenzofuran
US4308211A (en) Process for the preparation of anthraquinone
Cao et al. Hydrogenation catalyzed by silica-supported polystannazane-palladium and platinum complexes
JPH0529018B2 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: DSM IP ASSET CO., LTD.

Free format text: FORMER OWNER: FUEL HA FUMAN-LALUOQI LTD.

Effective date: 20040302

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20040302

Address after: Holland Heerlen

Patentee after: D Sm IP Assets Limited

Address before: Basel

Patentee before: F. Hoffmann-La Roche AG

C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee