CN118086476A - 经修饰的酶 - Google Patents

经修饰的酶 Download PDF

Info

Publication number
CN118086476A
CN118086476A CN202410267583.8A CN202410267583A CN118086476A CN 118086476 A CN118086476 A CN 118086476A CN 202410267583 A CN202410267583 A CN 202410267583A CN 118086476 A CN118086476 A CN 118086476A
Authority
CN
China
Prior art keywords
seq
helicase
polynucleotide
helicases
dda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410267583.8A
Other languages
English (en)
Inventor
马克·布鲁斯
安德鲁·约翰·赫伦
露丝·莫伊西
绍博尔奇·苏罗尔斯
伊丽莎白·杰恩·华莱士
詹姆斯·怀特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oxford Nanopore Technology Public Co ltd
Original Assignee
Oxford Nanopore Technology Public Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB201318464A external-priority patent/GB201318464D0/en
Priority claimed from PCT/GB2014/050175 external-priority patent/WO2014135838A1/en
Priority claimed from GB201404718A external-priority patent/GB201404718D0/en
Priority claimed from GBGB1406151.9A external-priority patent/GB201406151D0/en
Application filed by Oxford Nanopore Technology Public Co ltd filed Critical Oxford Nanopore Technology Public Co ltd
Publication of CN118086476A publication Critical patent/CN118086476A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/60Detection means characterised by use of a special device
    • C12Q2565/631Detection means characterised by use of a special device being a biochannel or pore
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y306/00Hydrolases acting on acid anhydrides (3.6)
    • C12Y306/04Hydrolases acting on acid anhydrides (3.6) acting on acid anhydrides; involved in cellular and subcellular movement (3.6.4)
    • C12Y306/04012DNA helicase (3.6.4.12)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明涉及一种新的表征目标多核苷酸的方法。所述方法使用孔和Dda解旋酶。Dda解旋酶控制所述目标多核苷酸穿过所述孔的移动。本发明还涉及经修饰的Dda解旋酶,其能用于控制多核苷酸的移动并特别适合用于测序多核苷酸。

Description

经修饰的酶
本申请是申请日为2014年9月10日,申请号为201480069741.3,发明名称为“经修饰的酶”的中国发明专利申请的分案申请。
技术领域
本发明涉及一种新的表征目标多核苷酸的方法。所述方法使用孔和DNA依赖性ATP酶(Dda)解旋酶。所述解旋酶控制目标多核苷酸穿过所述孔的移动。本发明还涉及一种修饰的Dda解旋酶,其可以用于控制所述多核苷酸的移动并特别有利于测序多核苷酸。
背景技术
目前需要一种具有广泛的应用范围的快速且廉价的多核苷酸(如DNA或RNA)测序和鉴定技术。现有的技术是缓慢的且昂贵的,这主要由于它们依赖于扩增技术以产生大量的多核苷酸,且需要大量特定的用于信号检测的荧光化学物质。
跨膜孔(纳米孔)作为用于聚合物和各种小分子的直接的、电生物传感器,具有很大的潜力。特别是,目前作为一种有潜力的DNA测序技术的纳米孔受到了许多关注。
当跨纳米孔施加电势时,当分析物如核苷酸短暂地停留在桶(barrel)中一定时间段时,会产生电流的变化。所述核苷酸的纳米孔检测能产生已知信号和持续时间的电流变化。在“链测序”方法中,单个多核苷酸链穿过所述孔并能实现对核苷酸的鉴定。链测序可包括使用核苷酸处理蛋白,诸如解旋酶,以控制所述多核苷酸穿过所述孔的移动。
发明内容
本发明人已经证明了Dda解旋酶能控制多核苷酸穿过孔的移动,尤其当施加电势如电压时。所述解旋酶能以可控的且逐步的方式逆着或顺着由所施加电压产生的场的方向移动目标多核苷酸。
本发明人还出乎意料地鉴定了具有提高的控制多核苷酸穿过孔的移动的能力的特定Dda突变体。该突变体通常包括位于(i)塔结构域和/或(ii)销结构域和/或(iii)1A(RecA型马达)结构域中的一个或多个修饰。
相应地,本发明提供了一种Dda解旋酶,其中在(i)塔结构域和/或(ii)销结构域和/或(iii)1A(RecA型马达)结构域中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸,其中所述解旋酶保留其控制多核苷酸移动的能力。
本发明还提供了:
-一种Dda解旋酶,在所述解旋酶中,在钩结构域和/或2A(RecA型马达)结构域中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸,其中所述解旋酶保留其控制多核苷酸移动的能力;
-一种Dda解旋酶,其被修饰以减少其表面负电荷,其中所述解旋酶保留其控制多核苷酸移动的能力;
-第一多肽,包括来自Dda解旋酶的销结构域和1A(RecA型马达)结构域,不包括来自所述Dda解旋酶的任何其它结构域,其中所述销结构域和/或1A(RecA型马达)结构域中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸;
-第二多肽,包括来自Dda解旋酶的2A(RecA型马达)结构域、塔结构域和钩结构域,不包括来自所述Dda解旋酶的任何其它结构域,其中所述塔结构域中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸;
-一种解旋酶,包括共价连接到本发明的第二多肽的本发明的第一多肽,其中所述解旋酶具有控制多核苷酸移动的能力;
-一种构建体,包括本发明的Dda解旋酶或解旋酶以及额外的多核苷酸结合部分,其中所述解旋酶连接到所述多核苷酸结合部分并且所述构建体具有控制多核苷酸移动的能力;
-一种多核苷酸,包括编码本发明的解旋酶、本发明的多肽或本发明的构建体的序列;
-一种载体,包括可操作性连接到启动子的本发明的多核苷酸;
-一种宿主细胞,包括本发明的载体;
-一种制备本发明的解旋酶、本发明的多肽或本发明的构建体的方法,其包括表达发明的多核苷酸、用本发明的载体转染细胞或培养本发明的宿主细胞;一种控制多核苷酸移动的方法,包括将所述多核苷酸与本发明的Dda解旋酶或构建体接触并由此控制多核苷酸的移动;
-一种表征目标多核苷酸的方法,包括(a)将目标多核苷酸与跨膜孔以及本发明的Dda解旋酶或构建体接触使得所述解旋酶控制目标多核苷酸穿过所述孔的移动,并且(b)随着所述多核苷酸相对于所述孔移动,获取一个或多个测量值,其中所述测量值代表所述目标多核苷酸的一个或多个特征,并由此表征所述目标多核苷酸;
-一种形成用于表征目标多核苷酸的传感器的方法,包括在(a)孔和(b)本发明的Dda解旋酶或构建体之间形成复合体并由此形成用于表征目标多核苷酸的传感;
-用于表征目标多核苷酸的传感器,包括在(a)孔和(b)本发明的Dda解旋酶或构建体之间的复合体;
-本发明的Dda解旋酶或构建体在控制目标多核苷酸穿过所述孔的移动中的应用;
-一种用于表征目标多核苷酸的试剂盒,包括(a)孔和(b)本发明的Dda解旋酶或构建体;
-一种用于表征样本中的目标多核苷酸的装置,包括(a)多个孔和(b)多个本发明的Dda解旋酶或构建体;以及
连接到多核苷酸的两个或多个解旋酶的系列,其中所述两个或多个解旋酶的至少一个是本发明的Dda解旋酶。
附图说明
图1显示了当解旋酶(T4 Dda–E94C/A360C(具有突变E94C/A360C的SEQ ID NO:8))控制λDNA构建体(0.2nM,SEQ ID NO:60其3’末端连接到4个iSpC3间隔区,该间隔区连接到SEQ ID NO:61的5’末端,该SEQ ID NO:61的3’末端连接到SEQ ID NO:62,该构建体的SEQID NO:61区域与SEQ ID NO:63(其具有3’胆固醇系链)杂交)穿过纳米孔(MS(B1-G75S/G77S/L88N/Q126R)8MspA(SEQ ID NO:2,具有突变G75S/G77S/L88N/Q126R))移位时的示例电流轨迹(y轴坐标=电流(pA,20到120),x轴坐标=时间(s,3500到8000))。
图2显示了图1的电流轨迹图中所示的解旋酶控制的DNA移动的区域的放大图(y轴坐标=上轨迹和下轨迹的电流(pA,上轨迹20到80,下轨迹20到60),x轴坐标=上轨迹和下轨迹的时间(s,上轨迹2995到3020,下轨迹8140到8170))。A)显示了解旋酶控制的DNA移动的起点,并且B)显示了解旋酶控制的DNA移动的终点。
图3显示了测试解旋酶结合到线性(A)单链DNA或环形(B)单链DNA的荧光测试图。(A)显示了一个用于测试T4 Dda–E94C/A360C(具有E94C/A360C突变的SEQ ID NO:8)解旋酶结合线性单链DNA的能力的常规的荧光底物。该44个核苷酸(44nt)单链DNA底物(1nM终浓度,SEQ ID NO:64,标记为W)具有在SEQ ID NO:64的37位置连接到SEQ ID NO:64的37位的胸腺嘧啶碱基(环形标记的X)的羧基荧光素(FAM)。随着所述解旋酶(标记为Y)在缓冲液(25mM磷酸钾,151.5mM KCl,pH8.0,10mM MgCl2)中结合到所述DNA底物,荧光各向异性(与溶液中DNA底物的翻滚速度相关的性质)提高。需要提高各向异性的解旋酶的量越低,DNA和解旋酶之间的亲和力越紧。在情况1,没有酶结合时,DNA底物表现出更快的翻滚和低的各向异性,而在情况2,酶结合到DNA底物时,DNA底物表现出变慢的翻滚和高的各向异性(这由大的蛋白质分子结合到DNA时质量增加引起)。黑条标记为Z,对应增加的解旋酶浓度(该黑条越粗,解旋酶浓度越高)。
图4显示了在60min孵育期末期随着T4 Dda–E94C/A360C(具有E94C/A360C突变的SEQ ID NO:8)量的增加,线性和环形单链DNA寡核苷酸(SEQ ID NO:64或65)的各向异性的变化(y轴坐标=各向异性(空白底物的,50到200),x轴坐标=T4 Dda浓度(nM,0.01到1000))。具有黑环的数据对应线性ssDNA构建体。具有空方框的数据对应环形ssDNA构建体。
图5显示了在60min孵育后,T4 Dda–E94C/A360C(具有E94C/A360C突变的SEQ IDNO:8)结合到线性或环形单链DNA的平衡解离常数(Kd)。该图通过使用Graphpad Prism软件将图4中所示数据拟合单相解离结合曲线获得(y轴坐标=解离常数Kd(nM,0到12),x轴坐标=参考序号,其中参考序号1对应于线性单链DNA寡核苷酸,参考序号2对应于环形单链DNA寡核苷酸)。
图6显示了当解旋酶(TrwC Cba(SEQ ID NO:66))控制DNA(0.2nM,SEQ ID NO:67通过其3’末端连接到四个iSpC3间隔区,所述间隔区连接到SEQ ID NO:61的5’末端,所述SEQID NO:61在其3’末端连接到4个5-硝基吲哚,所述4个5-硝基吲哚的最后一个连接到SEQ IDNO:68的5’末端,另外SEQ ID NO:63与SEQ ID NO:61杂交)穿过纳米孔(MS(B1-G75S/G77S/L88N/Q126R)8MspA(具有G75S/G77S/L88N/Q126R突变的SEQ ID NO:2))移位时的示例电流轨迹(y轴坐标=电流(pA,上轨迹50到200,下轨迹55到75),x轴坐标=时间(s,上轨迹11420到11620,下轨迹11524到11527))。上轨迹显示了两个解旋酶控制的DNA移动,并且下轨迹显示了上轨迹中标记为X的区域的放大图。随着解旋酶使DNA移动穿过纳米孔,检测的电流水平标记为a到k。当TrwC Cba控制穿过所述纳米孔的移位时,所述DNA后退并因此对应于b,c,h和i的水平被多次观察到。
图7显示了当解旋酶(T4 Dda E94C/A360C(具有E94C/A360C突变的SEQ ID NO:8))控制DNA(0.2nM,SEQ ID NO:67通过其3’末端连接到4个iSpC3间隔区,所述间隔区连接到SEQ ID NO:61的5’末端,SEQ ID NO:61在其3’末端连接到4个5-硝基吲哚中,所述4个5-硝基吲哚的最后一个连接到SEQ ID NO:68的5’末端,另外SEQ ID NO:63与SEQ ID NO:61杂交)穿过纳米孔(MS(B1-G75S/G77S/L88N/Q126R)8MspA(具有G75S/G77S/L88N/Q126R突变的SEQ ID NO:2))移位时的示例电流轨迹(y轴坐标=电流(pA,上轨迹50到250,下轨迹55到75),x轴坐标=时间(s,上轨迹300到700,下轨迹572到577))。上轨迹显示了三个解旋酶控制的DNA移动,并且下轨迹显示了上轨迹中标记为X的区域的放大图。随着解旋酶使DNA移动穿过纳米孔,检测的电流水平并标记为a到k。当T4 Dda E94C/A360C(具有E94C/A360C突变的SEQ ID NO:8)控制穿过所述纳米孔的移位时,所述DNA没有后退并因此对应于水平a到i的单电流水平被观察到。
图8显示了实施例1到4使用的λDNA构建体的图。SEQ ID NO:60(标记为A)在其3’末端连接到4个iSpC3间隔区(标记为B)。所述4个iSpC3间隔区连接到SEQ ID NO:61(标记为C)的5’末端。SEQ ID NO:61连接到4个iSpC3间隔区(标记为D),该4个iSpC3间隔区在其5’末端连接到SEQ ID NO:62(标记为E)。SEQ ID NO:61与SEQ ID NO:63(标记为F,其具有3’胆固醇系链)杂交。图中标记区域E的两个分开的部分突出显示为区域1(显示为实灰线)和区域2(显示为虚灰线)并且是实施例4中所涉及的。
图9显示了当解旋酶(T4 Dda–E94C/A360C/C109A/C136A(具有E94C/A360C/C109A/C136A和随后的(ΔM1)G1G2突变的SEQ ID NO:8)控制DNA(0.1nM,SEQ ID NO:67通过其3’末端连接到4个iSpC3间隔区,所述4个iSpC3间隔区连接到SEQ ID NO:61的5’末端,SEQ IDNO:61在其3’末端连接到4个5-硝基吲哚间隔区,所述4个5-硝基吲哚间隔区连接到SEQ IDNO:69的5’末端,该构建体的SEQ ID NO:61区域与SEQ ID NO:63(其具有3’胆固醇系链)杂交)穿过MspA纳米孔移位时的示例电流轨迹(两个轨迹都具有以下轴坐标——y轴坐标=电流(pA),x轴坐标=时间(s))。两个轨迹显示了多解旋酶控制的DNA移动。
图10显示了当解旋酶(T4 Dda–E94C/A360C/C114A/C171A/C421D(具有E94C/A360C/C114A/C171A/C421D和随后的(ΔM1)G1G2突变的SEQ ID NO:8))控制DNA(0.1nM,SEQID NO:67通过其3’末端连接到4个iSpC3间隔区,所述4个iSpC3间隔区连接到SEQ ID NO:61的5’末端,SEQ ID NO:61在其3’末端连接到4个5-硝基吲哚间隔区,所述4个5-硝基吲哚间隔区连接到SEQ ID NO:69的5’末端,该构建体的SEQ ID NO:61区域与SEQ ID NO:63(其具有3’胆固醇系链)杂交)穿过MspA纳米孔移位时的示例电流轨迹(两个轨迹都具有以下轴坐标——y轴坐标=电流(pA),x轴坐标=时间(s))。两个轨迹显示了多解旋酶控制的DNA移动。
图11显示了当突变体T4 Dda–E94C/A360C在6小时5分钟实验运行过程中变化时,解旋酶如何控制DNA的移动速度(y轴坐标=每秒的事件,x轴坐标=时间(小时))。标记有星(*)的条形图对应解旋酶控制λDNA构建体(示于图8)的区域2穿过纳米孔的移动速度,没有星的条形图对应于解旋酶控制λDNA构建体(示于图8)的区域1穿过纳米孔的移动速度。实施例中使用每秒的事件用作对DNA移动穿过纳米孔的移位速度的测量。
图12显示了当突变体T4 Dda–E94C/A360C/C114A/C171A/C421D在6小时5分钟实验运行过程中变化时,解旋酶如何控制DNA的移动速度(y轴坐标=每秒的事件,x轴坐标=时间(小时))。标记有星(*)的条形图对应解旋酶控制λDNA构建体(示于图8)的区域2穿过纳米孔的移动速度,没有星的条形图对应于解旋酶控制λDNA构建体(示于图8)的区域1穿过纳米孔的移动速度。实施例中使用每秒的事件用作对DNA移动穿过纳米孔的移位速度的测量。
图13显示了突变体T4 Dda–E94C/A360C/C109A/C136A在6小时5分钟实验运行过程中变化时,解旋酶如何控制DNA的移动速度(y轴坐标=每秒的事件,x轴坐标=时间(小时))。标记有星(*)条形图对应解旋酶控制λDNA构建体(示于图8)的区域2穿过纳米孔的移动速度,没有星的条形图对应于解旋酶控制λDNA构建体(示于图8)的区域1穿过纳米孔的移动速度。实施例中使用每秒的事件用作对DNA移动穿过纳米孔的移位速度的测量。
图14显示了实施例5中使用的DNA构建体的图。标记A对应于25iSpC3间隔区,其在3’末端连接到SEQ ID NO:70(标记为B)。标记B在其3’末端连接到4个iSp18间隔区(标记为C)。所述4个iSp18间隔区连接到SEQ ID NO:61(标记为D)的5’末端。SEQ ID NO:61连接到4个5-硝基吲哚(标记为E),所述4个5-硝基吲哚在其5’末端连接到SEQ ID NO:71(标记为F)。SEQ ID NO:61与SEQ ID NO:63(标记为G)杂交。SEQ ID NO:63具有6个iSp18间隔区,2个胸腺嘧啶和1个连接在其3’末端的3’胆固醇TEG。
图15显示了当解旋酶(T4 Dda–E94C/C109A/C136A/A360C/W378A(具有
E94C/C109A/C136A/A360C/W378A)突变的SEQ ID NO:8)控制DNA构建体Z(示于图8)穿过MspA纳米孔移位时的示例电流轨迹(y轴坐标=电流(pA,10to 120),x轴坐标=时间(s,210.5to 287))。
图16显示了图15中电流轨迹所示的解旋酶控制的DNA移动的区域的放大图(y轴坐标=电流(pA,上轨迹20到95,中轨迹28.3到72.7以及下轨迹20到95),x轴坐标=时间(s,上轨迹211.3到214.4,中轨迹212.9到213.7以及下轨迹283.2到286.2)。A)显示了解旋酶控制的DNA移动的开始,B)显示了轨迹A的区域放大图,C)显示了解旋酶控制的DNA移动的结束。
图17显示了实施例6中使用的DNA构建体X。DNA构建体X的区段a对应于25iSpC3间隔区,该间隔区连接到SEQ ID NO:70(标记为b)的5’末端。区段b是与解旋酶T4 Dda–E94C/A360C或T4 Dda–E94C/C109A/C136A/A360C(取决于实验)(标记为c)结合的构建体X的区域。区段b的长度对应于两个酶的足迹(结合区域),如其足够长允许两个酶结合到该区域。区段d对应于4个iSp18间隔区。区段e对应于SEQ ID NO:61。区段f对应于4个5’-硝基吲哚。区段g对应于SEQ ID NO:72(该链的该区段被称为DNA构建体X的区域3)。区段h(由黑点显示)对应于4个iSpC3间隔区,该间隔区连接到SEQ ID NO:73(标记为i,其被称为DNA构建体X的区域4)的5’末端。区段j对应于SEQ ID NO:74并且区段k对应于连接到5’胆固醇TEG的SEQ IDNO:75。可以区分区域3和4,因为随着它们移位穿过纳米孔,它们产生不同的特征电流。进一步的,所述区段h间隔区(4个iSpC3间隔区)在电流轨迹中产生电流尖刺,这有助于鉴定从区域3到区域4的过渡。
图18显示了当解旋酶T4 Dda–E94C/A360C(具有E94C/A360C突变的SEQ ID NO:24)控制DNA构建体X(详见图17)穿过MspA纳米孔移位时的示例图。x轴对应于运动指数,y轴对应于电流(pA)。针对移动穿过孔的每个DNA链,测量电流随时间的变化。移动的DNA导致所测量的电流水平的逐步变化。将观察到的电流水平拟合从而得到每个步骤的平均的电流,并且所述电流水平被分配一递增运动指数点。因此相对于运动指数的平均电流非常接近于原始电流信号,并用于表征移位的DNA。图A和B各自显示了在解旋酶的控制下单个DNA链移动穿过纳米孔,标记区域3和4对应于DNA构建体X(参见图17)的区域3和4的移位。轨迹A显示了当构建体X在单个T4 Dda–E94C/A360C解旋酶控制下移位穿过所述孔时所观察到的运动指数。轨迹B显示了当构建体X在两个T4 Dda–E94C/A360C解旋酶的控制下移位穿过所述孔时所观察到的运动指数。因为区域3和4大约具有相同长度,因此观察到的每个区域的运动指数预期将具有近似相同数目的运动指数的点。图A显示了相比于区域3,区域4的运动指数的点的数目显著减少,因此,从区域4获得的信息少于从区域3获得的。然而,图B中(其中构建体X的运动通过两个T4 Dda–E94C/A360C解旋酶控制)显示了区域4中运动指数的更多个点,其表明从区域4获得的信息量与区域3近似相同。因此,使用两个解旋酶控制构建体X的运动提供了改进的运动,这是因为其相比于单个解旋酶控制运动时从区域4获得了更多的信息。
图19显示了当解旋酶T4 Dda–E94C/C109A/C136A/A360C(具有E94C/C109A/C136A/A360C突变的SEQ ID NO:24)控制DNA构建体X(详见图17)穿过MspA纳米孔移位时的示例图。x轴对应于运动指数(参见图18描述运动指数的图解说明),y轴对应于电流(pA)。图A和B各自显示了在解旋酶的控制下单个DNA链移动穿过纳米孔,标记区域3和4对应于DNA构建体X(参见图17)的区域3和4的移位。轨迹A显示了当构建体X在单个T4 Dda–E94C/C109A/C136A/A360C控制下移位穿过所述孔时所观察到的运动指数。轨迹B显示了当构建体X在两个T4Dda–E94C/C109A/C136A/A360C解旋酶的控制下移位穿过所述孔时所观察到的运动指数。因为区域3和区域4具有近似相同长度,因此观察到的每个区域的运动指数预期应具有近似相同数目的运动指数点。图A显示了相比于区域3,区域4的运动指数点的数目显著减少,因此,从区域4获得的信息少于从区域3获得的信息。然而,图B(其中构建体X在两个T4 Dda–E94C/C109A/C136A/A360C解旋酶的控制下移动)显示了在两个区段中近似相同数目的运动指数的点,因此从区域4获得了与区域3近似相同数量的信息。使用两个解旋酶控制构建体X的运动提供了改善的运动,这是因为相比于单个解旋酶控制运动时从区域4获得了更多的信息。
图20显示了实施例7和8中使用的DNA构建体Z。DNA构建体Z的区段m对应于40个iSpC3间隔区,所述40个iSpC3间隔区连接到SEQ ID NO:76(标记为n)的5’末端。区段n是构建体Z的与解旋酶T4 Dda–E94C/C109A/C136A/A360C或T4 Dda–E94C/C109A/C136A/A360C/W378A结合的区域。区段n的长度对应于1个酶的足迹(结合区域),如其足够长以允许一个酶结合到该区域。标记为d的区段对应于4个iSp18间隔区。区段o对应于SEQ ID NO:77,该区段的一部分是构建体Z的与解旋酶T4 Dda–E94C/C109A/C136A/A360C/W378A结合的区域。区段p对应于SEQ ID NO:78(该链的该区段的一部分被称为DNA构建体Z的区域5)。区段h(由黑点显示)对应于4个iSpC3间隔区,所述4个iSpC3间隔区连接到SEQ ID NO:79(标记为q)的5’末端。区段r对应于SEQ ID NO:78(标记为r,其被称为DNA构建体Z的区域6)的互补序列。区段s对应于SEQ ID NO:74。区段k对应于连接到5’胆固醇TEG(标记为l)的SEQ ID NO:75。区段t对应于SEQ ID NO:80。区分区域5和6是可能的,这是因为随着它们移位穿过纳米孔它们产生了不同的特征。进一步的,所述区段h的间隔区(4个iSpC3间隔区)在电流轨迹中产生电流尖刺,其帮助鉴定从区域5到区域6的过渡。
图21显示了解旋酶T4 Dda–E94C/C109A/C136A/A360C(区段(A),具有E94C/C109A/C136A/A360C突变的SEQ ID NO:24)或解旋酶T4 Dda–E94C/C109A/C136A/A360C和T4 Dda–E94C/C109A/C136A/A360C/W378A(区段(B))控制DNA构建体Z(图20)穿过MspA纳米孔移位时的示例图。x轴对应于运动指数,y轴对应于电流(pA)。对于移动穿过孔的每个DNA链,测量电流随时间的变化。移动的DNA导致测量的电流水平的逐步变化。将观察到的电流水平拟合以得到每个步骤的平均电流,并且所述电流水平被分配一递增运动指数点。因此相对于运动指数的平均电流非常接近于原始电流信号,被用于表征移位的DNA。图(A)和(B)各自显示了在解旋酶的控制下移动穿过纳米孔的单个DNA链,标记区域5和6对应于DNA构建体Z(参见图20)的区域5和6的移位。轨迹A显示了当构建体Z在单个T4 Dda–E94C/C109A/C136A/A360C解旋酶控制下移位穿过所述孔时所观察到的运动指数。轨迹B显示了当构建体Z在T4 Dda–E94C/C109A/C136A/A360C和T4 Dda–E94C/C109A/C136A/A360C/W378A的控制下移位穿过所述孔时所观察到的运动指数。因为区域5和6具有近似相同长度,因此观察到的每个区域的运动指数应预期具有近似相同数目的运动指数的点。图A显示了相比于区域5,区域6的运动指数的点的数目显著减少,因此,从区域6获得的信息少于从区域5获得的信息。然而,图B(其中构建体Z在T4 Dda–E94C/C109A/C136A/A360C和T4 Dda–E94C/C109A/C136A/A360C/W378A的控制下移动)显示了区域6中更多的运动指数的点,这表明从区域6获得了与区域5近似相同数量的信息。使用两个不同解旋酶控制构建体Z的运动提供了改进的运动,因为相比于单个解旋酶控制的运动从区域6获得了更多的信息。
图22显示了使用单个解旋酶T4 Dda–E94C/C109A/C136A/A360C/W378A(区段(a),具有E94C/C109A/C136A/A360C/W378A突变的SEQ ID NO:24)或两个T4 Dda–E94C/C109A/C136A/A360C/W378A解旋酶(区段(b))控制DNA构建体Z(图20)穿过MspA纳米孔移位的示例图。x轴对应于运动指数,y轴对应于电流(pA)。对于移动穿过孔的每个DNA链,测量电流随时间的变化。移动的DNA导致测量的电流水平的逐步变化。将观察到的电流水平拟合以获得每个步骤的平均电流,并为所述电流水平分配一递增运动指数点。因此相对于运动指数的平均电流非常接近于原始电流信号,并用于表征移位的DNA。图(A)和(B)显示了在一个或两个解旋酶的控制下移动穿过纳米孔的单个DNA链,标记区域5和6对应于DNA构建体Z(参见图20)的区域5和6的移位。轨迹A显示了当构建体Z在单个T4 Dda–E94C/C109A/C136A/A360C/W378A解旋酶控制下移位穿过所述孔时所观察到的运动指数。轨迹B显示了当构建体Z在两个T4 Dda–E94C/C109A/C136A/A360C/W378A解旋酶控制下移位穿过所述孔时所观察到的运动指数。因为区域5和6具有近似相同长度,因此所观察到的每个区域的运动指数预期应具有近似相同数目的运动指数的点。图A显示了相比于区域5,区域6的运动指数的点的数目显著减少,因此,从区域6获得的信息少于从区域5获得的信息。然而,图B(其中构建体Z在两个T4 Dda–E94C/C109A/C136A/A360C/W378A解旋酶控制下移动)显示了区域6中更多的运动指数的点,其表明从区域6获得了与区域5近似相同数量的信息。因此,使用两个解旋酶控制构建体Z的运动提供了改进的运动,这是因为相比于单个解旋酶控制的运动,从区域6获得了更多的信息。
图23示出了可用于解旋酶和多核苷酸结合部分杂交的互补多核苷酸的示意图。
图24示出了可用于解旋酶-Phi29构建体的DNA的示意图。
图25示出了优选的本发明的Dda解旋酶(SEQ ID NO:8到23)的比对示意图。
序列表的说明
SEQ ID NO:1显示了编码MS-B1突变体MspA单体的密码子优化的多核苷酸序列。该突变体缺少信号序列,并包含下列突变:D90N,D91N,D93N,D118R,D134R和E139K。
SEQ ID NO:2显示了MspA单体的MS-B1突变体的成熟形式的氨基酸序列。该突变体缺少信号序列,并包含下列突变:D90N,D91N,D93N,D118R,D134R和E139K。
SEQ ID NO:3显示了编码α-溶血素-E111N/K147N(α-HL-NN;Stoddart等人,PNAS,2009;106(19):7702-7707)的一个单体的多核苷酸序列。
SEQ ID NO:4显示了α-HL-NN的一个单体的氨基酸序列。
SEQ ID NO:5到7显示了MspB,C和D的氨基酸序列。
SEQ ID NO:8到23显示了表1和2所示的Dda解旋酶的氨基酸序列。
SEQ ID NO:24显示了优选的HhH结构域的氨基酸序列。
SEQ ID NO:25显示了来自噬菌体RB69的ssb的氨基酸序列,其由gp32基因编码。
SEQ ID NO:26显示了来自噬菌体T7的ssb的氨基酸序列,其由gp2.5基因编码。
SEQ ID NO:27显示了来自疱疹病毒1的UL42持续合成因子的氨基酸序列。
SEQ ID NO:28显示了PCNA的亚基1的氨基酸序列。
SEQ ID NO:29显示了PCNA的亚基2的氨基酸序列。
SEQ ID NO:30显示了PCNA的亚基3的氨基酸序列。
SEQ ID NO:31显示了Phi29 DNA聚合酶的氨基酸序列。
SEQ ID NO:32显示了来自疱疹病毒1的UL42持续合成因子的氨基酸序列(1-319位)。
SEQ ID NO:33显示了来自噬菌体RB69的ssb的氨基酸序列,即SEQ ID NO:25,其C端被去除(gp32RB69CD)。
SEQ ID NO:34显示了来自噬菌体T7的ssb的氨基酸序列(1-210位)(gp2.5T7-R211Del)。其全长蛋白质示于SEQ ID NO:96中。
SEQ ID NO:35显示了Hel308 Hla的第5结构域的氨基酸序列。
SEQ ID NO:36显示了Hel308 Hvo的第5结构域的氨基酸序列。
SEQ ID NO:37显示了(HhH)2结构域的氨基酸序列。
SEQ ID NO:38显示了(HhH)2-(HhH)2结构域的氨基酸序列。
SEQ ID NO:39显示了人线粒体SSB(HsmtSSB)的氨基酸序列。
SEQ ID NO:40显示了来自Phi29 DNA聚合酶的p5蛋白质的氨基酸序列。
SEQ ID NO:41显示了来自大肠杆菌(E.coli.)的野生型SSB的氨基酸序列。
SEQ ID NO:42显示了来自噬菌体T4的ssb的氨基酸序列,其由gp32基因编码。
SEQ ID NO:43显示了EcoSSB-CterAla的氨基酸序列。
SEQ ID NO:44显示了EcoSSB-CterNGGN的氨基酸序列。
SEQ ID NO:45显示了EcoSSB-Q152del的氨基酸序列。
SEQ ID NO:46显示了EcoSSB-G117del的氨基酸序列。
SEQ ID NO:47显示了拓扑异构酶V Mka(坎氏甲烷嗜热菌(MethanopyrusKandleri))的氨基酸序列。
SEQ ID NO:48显示了拓扑异构酶V Mka(坎氏甲烷嗜热菌)的结构域H-L的氨基酸序列。
SEQ ID NO:49显示了突变体S(大肠杆菌(Escherichia coli))的氨基酸序列。
SEQ ID NO:50显示了Sso7d(硫磺矿硫化叶菌(Sufolobus solfataricus))的氨基酸序列。
SEQ ID NO:51显示了Sso10b1(硫磺矿硫化叶菌(Sulfolobus solfataricus)P2)的氨基酸序列。
SEQ ID NO:52显示了Sso10b2(硫磺矿硫化叶菌(Sulfolobus solfataricus)P2)的氨基酸序列。
SEQ ID NO:53显示了色氨酸阻遏子(大肠杆菌(Escherichia coli))的氨基酸序列。
SEQ ID NO:54显示了λ阻遏子(肠杆菌噬菌体(Enterobacteria phage)λ)的氨基酸序列。
SEQ ID NO:55显示了组蛋白泉古菌Cren7 Sso(Histone crenarchaea Cren7Sso)的氨基酸序列。
SEQ ID NO:56显示了人组蛋白(智人(Homo sapiens))的氨基酸序列。
SEQ ID NO:57显示了dsbA(肠杆菌噬菌体(Enterobacteria phage)T4)的氨基酸序列。
SEQ ID NO:58显示了Rad51(智人(Homo sapiens))的氨基酸序列。
SEQ ID NO:59显示了PCNA滑动钳(Citromicrobium bathyomarinum JL354)的氨基酸序列。
SEQ ID NO:60显示了实施例1中使用的多核苷酸序列。SEQ ID NO:60通过其3’末端连接到4个iSpC3间隔区,所述间隔区连接到SEQ ID NO:61的5’末端。
SEQ ID NO:61显示了实施例1,3,4和6中使用的多核苷酸序列。
SEQ ID NO:62显示了实施例1中使用的多核苷酸序列。SEQ ID NO:62通过其5’末端连接到3个iSpC3间隔区,所述间隔区连接到SEQ ID NO:61的3’末端。
SEQ ID NO:63显示了实施例1中使用的多核苷酸序列,该序列在3’末端具有连接到2个胸腺嘧啶残基和1个3’胆固醇TEG的6个iSp18间隔区。
SEQ ID NO:64显示了实施例2中使用的多核苷酸序列。该序列具有连接到该序列中37位处的胸腺嘧啶的羧基荧光素(FAM)。
SEQ ID NO:65显示了实施例2中使用的环状多核苷酸序列。该序列具有羧基荧光素(FAM),该羧基荧光素连接到该序列的一个胸腺嘧啶。
SEQ ID NO:66显示了Trwc Cba解旋酶的氨基酸序列。
SEQ ID NO:67显示了实施例3和4中使用的多核苷酸序列。
SEQ ID NO:68显示了实施例3中使用的多核苷酸序列。SEQ ID NO:68通过其5’末端连接到4个5-硝基吲哚,所述4个5-硝基吲哚连接到SEQ ID NO:61的3’末端。
SEQ ID NO:69显示了实施例4中使用的多核苷酸序列。
SEQ ID NO:70显示了实施例5和6中使用的多核苷酸序列。
SEQ ID NO:71显示了实施例5中使用的多核苷酸序列。
SEQ ID NO:72显示了实施例6中使用的多核苷酸序列。
SEQ ID NO:73显示了实施例6中使用的多核苷酸序列。
SEQ ID NO:74显示了实施例6,7和8中使用的多核苷酸序列。
SEQ ID NO:75显示了实施例6,7和8中使用的多核苷酸序列。
SEQ ID NO:76显示了实施例7和8中使用的多核苷酸序列。
SEQ ID NO:77显示了实施例7和8中使用的多核苷酸序列。
SEQ ID NO:78显示了实施例7和8中使用的多核苷酸序列。
SEQ ID NO:79显示了实施例7和8中使用的多核苷酸序列。
SEQ ID NO:80显示了实施例7和8中使用的多核苷酸序列。
SEQ ID NO:81显示了实施例1中使用的多核苷酸序列的片段1(1…14100)。
SEQ ID NO:82显示了实施例1中使用的多核苷酸序列的片段2(14101…28020)。
SEQ ID NO:83显示了实施例1中使用的多核苷酸序列的片段3(28021…42180)。
SEQ ID NO:84显示了实施例1中使用的多核苷酸序列的片段4(42181…56400)。
SEQ ID NO:85显示了实施例1中使用的多核苷酸序列的片段5(56401…70020)。
SEQ ID NO:86显示了实施例1中使用的多核苷酸序列的片段6(70021…84000)。
SEQ ID NO:87显示了实施例1中使用的多核苷酸序列的片段7(84001…97138)。
SEQ ID NO:81至87构成了实施例1中使用的多核苷酸序列SEQ ID NO:62。
具体实施方式
应理解,公开的产品和方法的不同应用可以根据本领域的具体需求而调整。可以理解本文中使用的术语仅是为了描述本发明的具体实施方式的目的,而不意对本发明的限制。
另外,除非本文另有明确规定,否则本说明书和随附的权利要求中所使用的单数形式的“一”、“一个”和“所述”包括复数指代。因此,例如,涉及“一个解旋酶”时包括“多个解旋酶”,涉及“修饰”时包括两个或多个所述修饰,涉及“跨膜蛋白孔”时包括两个或多个所述孔,等。
本文所引用的所有公开物、专利和专利申请,无论在前文或在后文,均以引用的方式全文引入。
修饰的Dda解旋酶
本发明提供了修饰的Dda解旋酶。一个或多个具体修饰在下文详细讨论。所述修饰允许修饰的解旋酶更长时间保持与多核苷酸的结合。所述修饰的解旋酶保留其控制多核苷酸移动的能力。换句话,所述修饰的解旋酶仍能控制多核苷酸的移动。所述解旋酶控制多核苷酸的移动的程度通常由所述修饰改变,如下文所详述的。
本发明的Dda解旋酶是经修饰的。所述修饰的解旋酶通常是相比于相应的野生型解旋酶或天然解旋酶是修饰的。本发明的解旋酶是人工的或非天然的。
解旋酶与多核苷酸结合或不结合的能力可使用任何本领域已知的方法确定。合适的结合/不结合分析法包括,但不限于,天然聚丙烯酰胺凝胶电泳(PAGE)、荧光各向异性法、量热法和表面等离子体共振法(SPR,诸如BiacoreTM)。当然,解旋酶从多核苷酸上解旋的能力可通过测量解旋酶控制多核苷酸移动的时间来确定。这也可以使用本领域任何已知的方法确定。解旋酶控制多核苷酸移动的能力通常在例如下文所述的纳米孔系统中分析。解旋酶控制多核苷酸移动的能力可以如实施例中所述进行测定。
本发明的修饰的解旋酶是一种在链测序过程中控制多核苷酸移动的有用工具。所述Dda解旋酶能以至少两种活动操作模式(当给解旋酶提供促进移动的所有必要组分,如ATP和Mg2+时)以及一种非活动操作模式(当没有给解旋酶提供促进移动的必要组分时)控制DNA的移动。当提供了促进移动的所有必要组分时,Dda解旋酶沿着DNA以5’-3’的方向移动,但DNA在纳米孔中的定向(取决于DNA的哪个末端被捕获)意味着酶可以用于逆着所施加的场的方向将DNA移出纳米孔,或顺着施加的场的方向将DNA移进纳米孔。当DNA的3’末端被捕获时,解旋酶逆着由电势所施加的场的方向工作,将螺旋状的DNA拉出纳米孔并拉入顺式隔间。然而,当DNA以5’向下被捕获进纳米孔时,解旋酶顺着由电势所施加的场的方向工作,将螺旋状的DNA推入纳米孔并进入反式隔间。当没有给Dda解旋酶提供促进移动的必要组分时,当DNA被施加的场拉进所述孔时,Dda解旋酶能结合到DNA并作为减缓DNA移动的制动器。在非活动模式下,DNA是以3’还是5’端向下被捕获不重要,是施加的场将DNA朝着反侧拉进纳米孔,而所述酶用作制动器。当在非活动模式下,解旋酶对DNA的移动的控制可以多种方式描述,包括棘轮、滑动和制动。
在对多核苷酸,尤其是500个核苷酸或更多个核苷酸的测序过程中存在的问题是控制多核苷酸移动的分子马达可能会从多核苷酸上解脱。这允许多核苷酸在施加的场的方向上以不受控的方式被迅速拉动穿过所述孔。本发明的修饰的解旋酶不太可能从被测序的多核苷酸上解旋或解脱。当修饰的解旋酶控制所述多核苷酸穿过纳米孔移动时,所述修饰的解旋酶能提供增加的多核苷酸读取长度。在本发明的修饰的解旋酶的控制下将整个多核苷酸移动穿过纳米孔的能力允许对待评估的多核苷酸以比已知方法提高的精度和速度进行表征,诸如其序列。当链长度增加以及需要具有提高的进行性(processivity)的分子马达时,这变得更加重要。本发明的修饰的解旋酶对于控制500个核苷酸或更多核苷酸,例如1000个核苷酸,5000,10000,20000,50000,100000或更多个核苷酸的移动特别有效。
另外,使用根据本发明的修饰的解旋酶意味着可以使用更低的解旋酶浓度。例如,在实施例3中,使用1nM的本发明的修饰的解旋酶。相比而言,在实施例3中,使用1μM的不是本发明的修饰的Dda解旋酶的TrwC Cba。
本发明的修饰的解旋酶也是等温聚合酶链反应(PCR)的有用工具。在这种方法中,双链DNA的链首先被本发明的解旋酶分开并被单链DNA(ssDNA)-结合蛋白覆盖。在第二步中,两个序列特异性的引物通常杂交到DNA模板的每个边缘。然后可使用DNA聚合酶延伸退火到模板的引物以制备双链DNA,然后两个新合成的DNA产物可以通过本发明的解旋酶用作底物,进入下一轮反应。因此,同步链反应发生,导致选择的目标序列的指数式扩增。
修饰的解旋酶具有控制多核苷酸移动的能力。所述解旋酶控制多核苷酸移动的能力可以通过本领域任何已知方法分析。例如可将所述解旋酶与多核苷酸接触,可以使用标准方法测定多核苷酸的位置。修饰的解旋酶控制多核苷酸移动的能力通常在如下文所述的,尤其是如实施例中所述的纳米孔系统中进行分析。
本发明的修饰的解旋酶可以被分离,被基本上分离,纯化或基本上纯化。如果解旋酶完全不含任何其他组分诸如脂质、多核苷酸、孔单体或其他蛋白质,该解旋酶是被分离或纯化的。如果解旋酶与不干扰其预期用途的载体或稀释剂混合,该解旋酶是基本上被分离的。例如,如果解旋酶以含有小于10%,小于5%,小于2%或小于1%的其他组分诸如脂质、多核苷酸、孔单体或其他蛋白质的形式存在,该解旋酶是基本上分离的或基本上纯化的。
任何Dda解旋酶可以根据本发明进行修饰。优选的Dda解旋酶如下文所述。
Dda解旋酶通常含有以下5个结构域,1A(RecA型马达)结构域,2A(RecA型马达)结构域,塔结构域,销结构域和钩结构域(Xiaoping He等,2012,Structure;20:1189-1200)。这些结构域可以使用以下方法鉴定:蛋白质模型法,晶体态的蛋白质的x-射线衍射测量法(Rupp B(2009).Biomolecular Crystallography:Principles,Practice andApplication to Structural Biology.New York:Garl and Science.),蛋白质溶液的核磁共振(NMR)光谱法(Mark Rance;Cavanagh,John;Wayne J.Fairbrother;Arthur W.HuntIII;Skelton,NNicholas J.(2007).Protein NMR spectroscopy:principles andpractice(2nd ed.).Boston:Academic Press.)或冷动水合态蛋白质的冷冻电子显微镜法(van Heel M,Gowen B,Matadeen R,Orlova EV,Finn R,Pape T,Cohen D,Stark H,Schmidt R,Schatz M,Patwardhan A(2000)."Single-particle electron cryo-microscopy:towards atomic resolution.".Q Rev Biophys.33:307–69)。通过上述方法确定的蛋白质的结构信息在蛋白数据库(PDB)是公开可获得的。
蛋白质模型揭示了这样的事实:在同系物中蛋白质结构比蛋白质序列更为保守。因此,生产蛋白质的原子级分辨率模型有赖于鉴定一个或多个蛋白质结构,这些蛋白质结构可能类似于查询序列的结构。为了评估是否存在合适的蛋白质结构用作”模板”来建立蛋白质模型,对蛋白质数据库(PDB)进行搜索。如果蛋白质结构与查询序列具有合理水平序列同一性,该该蛋白质结构被认为是合适的模板。如果该模板存在,则将该模板序列与查询序列”比对”,即,将查询序列的残基映射到模板的残基上。然后使用序列比对与模板结构来制造查询序列的结构模型。因此,蛋白质模型的质量取决于序列比对与模板结构的的质量。
塔结构域和/或销结构域和/或1A结构域的修饰
在一个具体实施方式中,本发明的Dda解旋酶是这样的解旋酶,其中在(i)塔结构域和/或(ii)销结构域和/或(iii)1A(RecA型马达)结构域中引入了至少一个半胱氨酸残基(即一个或多个半胱氨酸残基)和/或至少一个非天然氨基酸(即一个或多个非天然氨基酸),其中所述解旋酶保留其控制多核苷酸移动的能力。可以向塔结构域、销结构域、1A结构域、塔结构域和销结构域、塔结构域和1A结构域或塔结构域、销结构域和1A结构域中引入至少一个半胱氨酸残基和/或至少一个非天然氨基酸。
本发明的Dda解旋酶优选是这样的解旋酶,其中在(i)塔结构域和(ii)销结构域和/或(iii)1A(RecA型马达)结构域中,即塔结构域和销结构域、塔结构域和1A结构域或塔结构域、销结构域和1A结构域中,引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。
可以在每个结构域中引入任意数量的半胱氨酸残基和/或非天然氨基酸。例如,可以引入1,2,3,4,5,6,7,8,9,10或更多个半胱氨酸残基,和/或可以引入1,2,3,4,5,6,7,8,9,10或更多个非天然氨基酸。可以仅引入一个或多个的半胱氨酸残基。可以仅引入一个或多个的非天然氨基酸。可以引入一个或多个的半胱氨酸残基和一个或多个的非天然氨基酸的组合。
优选所述至少一个半胱氨酸残基和/或至少一个非天然氨基酸通过取代引入。进行取代的方法为本领域已知的。
这些修饰不会阻止解旋酶结合多核苷酸。这些修饰降低多核苷酸从解旋酶解旋或解脱的能力。换句话,所述一个或多个修饰通过防止Dda解旋酶从多核苷酸链上解离来提高Dda解旋酶的进行性。所述酶的热稳定性通常也通过所述一个或多个修饰而提高,使得其具有提高的结构稳定性,这对于链测序是有利的。
非天然氨基酸为不是天然存在于Dda解旋酶中的氨基酸。所述非天然氨基酸优选为不是组氨酸,丙氨酸,异亮氨酸,精氨酸,亮氨酸,天冬酰胺,赖氨酸,天冬氨酸,蛋氨酸,半胱氨酸,苯丙氨酸,谷氨酸,苏氨酸,谷氨酰胺,色氨酸,甘氨酸,缬氨酸,脯氨酸,丝氨酸或酪氨酸。所述非天然氨基酸更优选不是上述20种氨基酸中的任何一个或硒半胱氨酸。
本发明中使用的优选的非天然氨基酸包括,但不限于,4-叠氮-L-苯丙氨酸(Faz),4-乙酰基-L-苯丙氨酸,3-乙酰基-L-苯丙氨酸,4-乙酰乙酰基-L-苯丙氨酸,O-烯丙基-L-酪氨酸,3-(苯基硒烷基)-L-丙氨酸,O-2-丙炔-1-基-L-酪氨酸,4-(二羟基硼基)-L-苯丙氨酸,4-[(乙基硫烷基)羰基]-L-苯丙氨酸,(2S)-2-氨基-3-{4-[(丙烷-2-基硫烷基)羰基]苯基}丙酸,(2S)-2-氨基-3-{4-[(2-氨基-3-硫烷基丙酰基)氨基]苯基}丙酸,O-甲基-L-酪氨酸,4-氨基-L-苯丙氨酸,4-氰基-L-苯丙氨酸,3-氰基-L-苯丙氨酸,4-氟-L-苯丙氨酸,4-碘-L-苯丙氨酸,4-溴-L-苯丙氨酸,O-(三氟甲基)酪氨酸,4-硝基-L-苯丙氨酸,3-羟基-L-酪氨酸,3-氨基-L-酪氨酸,3-碘-L-酪氨酸,4-异丙基-L-苯丙氨酸,3-(2-萘基)-L-丙氨酸,4-苯基-L-苯丙氨酸,(2S)-2-氨基-3-(萘-2-基氨基)丙酸,6-(甲基硫烷基)正亮氨酸,6-氧-L-赖氨酸,D-酪氨酸,(2R)-2-羟基-3-(4-羟基苯基)丙酸,(2R)-2-氨基辛酸酯3-(2,2'-二吡啶-5-基)-D-丙氨酸,2-氨基-3-(8-羟基-3-喹啉基)丙酸,4-苯甲酰-L-苯丙氨酸,S-(2-硝基苄基)半胱氨酸,(2R)-2-氨基-3-[(2-硝基苄基)硫烷基]丙酸,(2S)-2-氨基-3-[(2-硝基苄基)氧基]丙酸,O-(4,5-二甲氧基-2-硝基苄基)-L-丝氨酸,(2S)-2-氨基-6-({[(2-硝基苄基)氧基]羰基}氨基)己酸,O-(2-硝基苄基)-L-酪氨酸,2-硝基苯丙氨酸,4-[(E)-苯基二氮烯基]-L-苯丙氨酸,4-[3-(三氟甲基)-3H-双吖丙啶基-3-基]-D-苯丙氨酸(4-[3-(Trifluoromethyl)-3H-diaziren-3-yl]-D-phenylalanine),2-氨基-3-[[5-(二甲基氨基)-1-萘基]磺酰基氨基]丙酸,(2S)-2-氨基-4-(7-羟基-2-氧-2H-色烯-4-基)丁酸,(2S)-3-[(6-乙酰基萘烯基-2-基)氨基]-2-氨基丙酸,4-(羧基甲基)苯丙氨酸,3-硝基-L-酪氨酸,O-磺基-L-酪氨酸,(2R)-6-乙酰氨基-2-氨基己酸酯,1-甲基组氨酸,2-氨基壬酸,2-氨基癸酸,L-同质半胱氨酸,5-硫烷基正缬氨酸,6-硫烷基-L-正亮氨酸,5-(甲基硫烷基)-L-正缬氨酸,N6-{[(2R,3R)-3-甲基-3,4-二氢-2H-吡咯-2-基]羰基}-L-赖氨酸,N6-[(苄基氧基)羰基]赖氨酸,(2S)-2-氨基-6-[(环戊基羰基)氨基]己酸,N6-[(环戊基氧基)羰基]-L-赖氨酸,(2S)-2-氨基-6-{[(2R)-四氢呋喃-2-基羰基]氨基}己酸,(2S)-2-氨基-8-[(2R,3S)-3-乙炔基四氢呋喃-2-基]-8-氧基辛酸,N6-(叔丁氧基羰基)-L-赖氨酸,(2S)-2-羟基-6-({[(2-甲基-2-丙烷基)氧基]羰基}氨基)己酸,N6-[(烯丙基氧基)羰基]赖氨酸,(2S)-2-氨基-6-({[(2-叠氮苄基)氧基]羰基}氨基)己酸,N6-L-脯氨酰基-L-赖氨酸,(2S)-2-氨基-6-{[(丙-2-炔-1--基氧基)羧基]氨基}己酸和N6-[(2-叠氮乙氧基)羧基]-L-赖氨酸。最优选的非天然氨基酸为4-叠氮-L-苯丙氨酸(Faz)。
表1列出了优选的根据本发明可被修饰的Dda解旋酶。
/>
/>
以下表2(分为两部分)鉴定了构成每个Dda同系物(SEQ ID NO:8-23)中每个结构域的残基。
同系物 SEQ ID NO 1A 2A
Dda-Rma-DSM 9 M1-I84+R113-Y211 R212-E294+G422-S678
Dda-Csp 10 M1-L147+S166-V240 R241-N327+A449-G496
Dda-Sru 11 M1-L90+E108-H173 R174-D260+A371-V421
Dda-Sgo 12 M1-L115+N136-V205 R206-K293+I408-L500
Dda-Vph12B8 13 M1-L96+F114-V194 R195-D287+V394-Q450
Dda-Vph 14 M1-L77+V96-V166 R167-T249+L372-N421
Dda-Aph65 15 M1-M81+L99-M171 R172-T254+L381-K434
Dda-AphCC2 16 M1-M68+M86-M158 R159-T241+L367-K420
Dda-Cph 17 M1-L87+A108-M181 R182-T262+L393-V443
Dda-Kph 18 M1-L87+A108-M181 R182-T262+L392-V442
Dda-SphIME13 19 M1-L85+T103-K176 R177-N257+L387-V438
Dda-AphAc42 20 M1-L91+V109-M183 R184-T265+L393-I442
Dda-SphSP18 21 M1-L87+M105-M179 R180-T261+L393-V442
Dda-Yph 22 M1-L86+V104-K178 R179-T260+L390-I439
Dda-SphS16 23 M1-L86+V104-M178 R179-T260+L391-V441
Dda-1993 8 M1-L85+V103-K177 R178-T259+L390-V439
同系物 SEQ ID NO:
Dda-Rma-DSM 9 G295-N309+F316-Y421 Y85-L112 A310-L315
Dda-Csp 10 V328-P342+N360-Y448 K148-N165 V343-L359
Dda-Sru 11 A261-T275+T285-Y370 G91-E107 W276-L284
Dda-Sgo 12 G294-I307+T314-Y407 G116-T135 R308-Y313
Dda-Vph12B8 13 V288-E301+N307-N393 G97-P113 M302-W306
Dda-Vph 14 S250-P264+E278-S371 K78-E95 V265-I277
Dda-Aph65 15 K255-P269+T284-S380 K82-K98 V270-F283
Dda-AphCC2 16 D242-P256+T271-S366 K69-K85 V257-F270
Dda-Cph 17 T263-P277+N295-P392 K88-K107 L278-Y294
Dda-Kph 18 D263-P277+N295-A391 K88-K107 L278-Y294
Dda-SphIME13 19 A258-P272+N290-P386 K86-G102 L273-F289
Dda-AphAc42 20 L266-P280+N298-A392 K92-D108 L281-F297
Dda-SphSP18 21 D262-P276+N294-A392 K88-E104 H277-F293
Dda-Yph 22 D261-P275+N293-A389 K87-E103 L276-F292
Dda-SphS16 23 E261-P275+T293-A390 K87-E103 L276-F292
Dda-1993 8 D260-P274+N292-A389 K86-E102 L275-F291
本发明的解旋酶优选包括SEQ ID NO:8的变体,其中在(i)塔结构域(残基D260-P274和N292-A389)和/或(ii)销结构域(残基K86-E102)和/或(iii)1A结构域(残基M1-L85和V103-K177)中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。所述至少一个半胱氨酸残基和/或至少一个非天然氨基酸优选引入所述塔结构域的残基N292-A389中。
本发明的解旋酶优选包括SEQ ID NO:9的变体,其中在(i)塔结构域(残基G295-N309和F316-Y421)和/或(ii)销结构域(残基Y85-L112)和/或(iii)1A结构域(残基M1-I84和R113-Y211)中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。所述至少一个半胱氨酸残基和/或至少一个非天然氨基酸优选引入所述塔结构域的残基F316-Y421中。
本发明的解旋酶优选包括SEQ ID NO:10的变体,其中在(i)塔结构域(残基V328-P342和N360-Y448)和/或(ii)销结构域(残基K148-N165)和/或(iii)1A结构域(残基M1-L147和S166-V240)中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。所述至少一个半胱氨酸残基和/或至少一个非天然氨基酸优选引入所述塔结构域的残基N360-Y448中。
本发明的解旋酶优选包括SEQ ID NO:11的变体,其中在(i)塔结构域(残基A261-T275和T285-Y370)和/或(ii)销结构域(残基G91-E107)和/或(iii)1A结构域(残基M1-L90和E108-H173)中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。所述至少一个半胱氨酸残基和/或至少一个非天然氨基酸优选引入所述塔结构域的残基T285-Y370中。
本发明的解旋酶优选包括SEQ ID NO:12的变体,其中在(i)塔结构域(残基G294-I307和T314-Y407)和/或(ii)销结构域(残基G116-T135)和/或(iii)1A结构域(残基M1-L115和N136-V205)中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。所述至少一个半胱氨酸残基和/或至少一个非天然氨基酸优选引入所述塔结构域的残基T314-Y407中。
本发明的解旋酶优选包括SEQ ID NO:13的变体,其中在(i)塔结构域(残基V288-E301和N307-N393)和/或(ii)销结构域(残基G97-P113)和/或(iii)1A结构域(残基M1-L96和F114-V194)中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。所述至少一个半胱氨酸残基和/或至少一个非天然氨基酸优选引入所述塔结构域的残基N307-N393中。
本发明的解旋酶优选包括SEQ ID NO:14的变体,其中在(i)塔结构域(残基S250-P264和E278-S371)和/或(ii)销结构域(残基K78-E95)和/或(iii)1A结构域(残基M1-L77和V96-V166)中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。所述至少一个半胱氨酸残基和/或至少一个非天然氨基酸优选引入所述塔结构域的残基E278-S371中。
本发明的解旋酶优选包括SEQ ID NO:15的变体,其中在(i)塔结构域(残基K255-P269和T284-S380)和/或(ii)销结构域(残基K82-K98)和/或(iii)1A结构域(残基M1-M81和L99-M171)中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。所述至少一个半胱氨酸残基和/或至少一个非天然氨基酸优选引入所述塔结构域的残基T284-S380中。
本发明的解旋酶优选包括SEQ ID NO:16的变体,其中在(i)塔结构域(残基D242-P256和T271-S366)和/或(ii)销结构域(残基K69-K85)和/或(iii)1A结构域(残基M1-M68和M86-M158)中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。所述至少一个半胱氨酸残基和/或至少一个非天然氨基酸优选引入所述塔结构域的残基T271-S366中。
本发明的解旋酶优选包括SEQ ID NO:17的变体,其中在(i)塔结构域(残基T263-P277和N295-P392)和/或(ii)销结构域(残基K88-K107)和/或(iii)1A结构域(残基M1-L87和A108-M181)中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。所述至少一个半胱氨酸残基和/或至少一个非天然氨基酸优选引入所述塔结构域的残基N295-P392中。
本发明的解旋酶优选包括SEQ ID NO:18的变体,其中在(i)塔结构域(残基D263-P277和N295-A391)和/或(ii)销结构域(残基K88-K107)和/或(iii)1A结构域(残基M1-L87和A108-M181)中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。所述至少一个半胱氨酸残基和/或至少一个非天然氨基酸优选引入所述塔结构域的残基N295-A391中。
本发明的解旋酶优选包括SEQ ID NO:19的变体,其中在(i)塔结构域(残基A258-P272和N290-P386)和/或(ii)销结构域(残基K86-G102)和/或(iii)1A结构域(残基M1-L85和T103-K176)中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。所述至少一个半胱氨酸残基和/或至少一个非天然氨基酸优选引入所述塔结构域的残基N290-P386中。
本发明的解旋酶优选包括SEQ ID NO:20的变体,其中在(i)塔结构域(残基L266-P280和N298-A392)和/或(ii)销结构域(残基K92-D108)和/或(iii)1A结构域(残基M1-L91和V109-M183)中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。所述至少一个半胱氨酸残基和/或至少一个非天然氨基酸优选引入所述塔结构域的残基N298-A392中。
本发明的解旋酶优选包括SEQ ID NO:21的变体,其中在(i)塔结构域(残基D262-P276和N294-A392)和/或(ii)销结构域(残基K88-E104)和/或(iii)1A结构域(残基M1-L87和M105-M179)中引入中至少一个半胱氨酸残基和/或至少一个非天然氨基酸。所述至少一个半胱氨酸残基和/或至少一个非天然氨基酸优选引入所述塔结构域的残基N294-A392中。
本发明的解旋酶优选包括SEQ ID NO:22的变体,其中在(i)塔结构域(残基D261-P275和N293-A389)和/或(ii)销结构域(残基K87-E103)和/或(iii)1A结构域(残基M1-L86和V104-K178)中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。所述至少一个半胱氨酸残基和/或至少一个非天然氨基酸优选引入所述塔结构域的残基N293-A389中。
本发明的解旋酶优选包括SEQ ID NO:23的变体,其中在(i)塔结构域(残基E261-P275和T293-A390)和/或(ii)销结构域(残基K87-E103)和/或(iii)1A结构域(残基M1-L86和V104-M178)中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。所述至少一个半胱氨酸残基和/或至少一个非天然氨基酸优选引入所述塔结构域的残基T293-A390中。
本发明的解旋酶优选包括SEQ ID NO:8-23中的任一个的变体,其中在(i)塔结构域和(ii)销结构域和/或1A结构域中的每一个中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。本发明的解旋酶更优选包括SEQ ID NO:8-23中任一个的变体,其中在(i)塔结构域,(ii)销结构域和(iii)1A结构域中的每一个中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。可以如上所述引入任何数目和组合的半胱氨酸残基和非天然氨基酸。
本发明的解旋酶优选包括SEQ ID NO:8的变体,其包括(或仅包括)(i)E94C和/或A360C;(ii)E93C和/或K358C;(iii)E93C和/或A360C;(iv)E93C和/或E361C;(v)E93C和/或K364C;(vi)E94C和/或L354C;(vii)E94C和/或K358C;(viii)E93C和/或L354C;(ix)E94C和/或E361C;(x)E94C和/或K364C;(xi)L97C和/或L354C;(xii)L97C和/或K358C;(xiii)L97C和/或A360C;(xiv)L97C和/或E361C;(xv)L97C和/或K364C;(xvi)K123C和/或L354C;(xvii)K123C和/或K358C;(xviii)K123C和/或A360C;(xix)K123C和/或E361C;(xx)K123C和/或K364C;(xxi)N155C和/或L354C;(xxii)N155C和/或K358C;(xxiii)N155C和/或A360C;(xxiv)N155C和/或E361C;(xxv)N155C和/或K364C;(xxvi)(i)到(xxv)中任一个和G357C;(xxvii)(i)到(xxv)中任一个和Q100C;(xxviii)(i)到(xxv)中任一个和I127C;(xxix)(i)到(xxv)中任一个和Q100C和I127C;(xxx)E94C和/或F377C;(xxxi)N95C;(xxxii)T91C;(xxxiii)Y92L,E94Y,Y350N,A360C和Y363N;(xxxiv)E94Y和A360C;(xxxv)A360C;(xxxvi)Y92L,E94C,Y350N,A360Y和Y363N;(xxxvii)Y92L,E94C和A360Y;(xxxviii)E94C和/或A360C和F276A;(xxxix)E94C和/或L356C;(xl)E93C和/或E356C;(xli)E93C和/或G357C;(xlii)E93C和/或A360C;(xliii)N95C和/或W378C;(xliv)T91C和/或S382C;(xlv)T91C和/或W378C;(xlvi)E93C和/或N353C;(xlvii)E93C和/或S382C;(xlviii)E93C和/或K381C;(xlix)E93C和/或D379C;(l)E93C和/或S375C;(li)E93C和/或W378C;(lii)E93C和/或W374C;(liii)E94C和/或N353C;(liv)E94C和/或S382C;(lv)E94C和/或K381C;(lvi)E94C和/或D379C;(lvii)E94C和/或S375C;(lviii)E94C和/或W378C;(lix)E94C和/或W374C;(lx)E94C和A360Y;(lxi)E94C,G357C和A360C或(lxii)T2C,E94C和A360C。在(i)到(lxii)中的任一个,和/或中优选和。
本发明的解旋酶优选包括SEQ ID NO:9-23中任一个的变体,其在与SEQ ID NO:8中(i)到(lxii)的任一个所限定的位置对应的位置处包括一个半胱氨酸残基。SEQ ID NO:9-23的任一个中与SEQ ID NO:8的位置对应的位置可以使用如图25所示的SEQ ID NO:8到23的比对进行鉴定。本发明的解旋酶优选包括SEQ ID NO:11的变体,其包括(或仅包括)(a)D99C和/或L341C,(b)Q98C和/或L341C或(d)Q98C和/或A340C。本发明的解旋酶优选包括SEQID NO:15的变体,其包括(或仅包括)D90C和/或A349C。本发明的解旋酶优选包括SEQ IDNO:21的变体,其包括(或仅包括)D96C和/或A362C。
本发明的解旋酶优选包括(i)到(lxii)的任一个所限定的SEQ ID NO:8-23中任一个的变体,其中在一个或多个所述的具体位置处引入Faz代替半胱氨酸。可以在每个具体的位置处引入Faz代替半胱氨酸。本发明的解旋酶优选包括SEQ ID NO:8的变体,其包括(或仅包括)(i)E94Faz和/或A360C;(ii)E94C和/或A360Faz;(iii)E94Faz和/或A360Faz;(iv)Y92L,E94Y,Y350N,A360Faz和Y363N;(v)A360Faz;(vi)E94Y和A360Faz;(vii)Y92L,E94Faz,Y350N,A360Y和Y363N;(viii)Y92L,E94Faz和A360Y;(ix)E94Faz和A360Y;和(x)E94C,G357Faz和A360C。
本发明的解旋酶优选进一步包括销结构域的一个或多个的单个氨基酸缺失。可以进行任意数目的单个氨基酸缺失,诸如1,2,3,4,5,6,7,8,9,10或更多个。所述解旋酶更优选包括SEQ ID NO:8的变体,其包括E93的缺失,E95的缺失或E93与E95的缺失。所述解旋酶更优选包括SEQ ID NO:8的变体,其包括(或仅包括)(a)E94C,N95的缺失以及A360C;(b)E93的缺失,E94的缺失,N95的缺失以及A360C;(c)E93的缺失,E94C,N95的缺失和A360C或(d)E93C,N95的缺失和A360C。本发明的解旋酶优选包括SEQ ID NO:9-23中任一个的变体,其包括对应于SEQ ID NO:8中E93的位置的缺失,对应于SEQ ID NO:8中E95的位置的缺失,或对应于SEQ ID NO:8中E93和E95位置的缺失。
本发明的解旋酶优选进一步包括钩结构域的一个或多个的单个氨基酸缺失。可以进行任意数目的单个氨基酸缺失,诸如1,2,3,4,5,6,7,8,9,10或更多个。所述解旋酶更优选包括SEQ ID NO:8的变体,其包括位置T278到S287中任意数目位置的缺失。所述解旋酶更优选包括SEQ ID NO:8的变体,其包括(a)E94C,Y279到K284的缺失和A360C,(b)E94C,T278,Y279,V286和S287的缺失和A360C,(c)E94C,I281和K284缺失并用单个G替代和A360C,(d)E94C,K280和P2845缺失并用单个G替代和A360C,或(e)Y279到K284缺失,E94C,F276A和A230C。本发明的解旋酶优选包括SEQ ID NO:9到23中任一个的变体,其包括对应于SEQ IDNO:8的位置278到287中的任意数量位置的缺失。
本发明的解旋酶优选进一步包括销结构域的一个或多个的单个氨基酸缺失和钩结构域的一个或多个的单个氨基酸缺失。
本发明的解旋酶优选为其中在钩结构域和/或2A(类RecA)结构域中进一步引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸的解旋酶。可以如上文所述,向上述塔、销和1A结构域中引入任意数量和组合的半胱氨酸残基和非天然氨基酸。
本发明的解旋酶优选包括SEQ ID NO:8的变体,其中在钩结构域(残基L275-F291)和/或2A(类RecA)结构域(残基R178-T259和L390-V439)中进一步引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。
本发明的解旋酶优选包括SEQ ID NO:9的变体,其中在钩结构域(残基A310-L315)和/或2A(类RecA)结构域(残基R212-E294和G422-S678)中进一步引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。
本发明的解旋酶优选包括SEQ ID NO:10的变体,其中在钩结构域(残基V343-L359)和/或2A(类RecA)结构域(残基R241-N327和A449-G496)中进一步引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。
本发明的解旋酶优选包括SEQ ID NO:11的变体,其中在钩结构域(残基W276-L284)和/或2A(类RecA)结构域(残基R174-D260和A371-V421)中进一步引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。
本发明的解旋酶优选包括SEQ ID NO:12的变体,其中在钩结构域(残基R308-Y313)和/或2A(类RecA)结构域(残基R206-K293和I408-L500)中进一步引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。
本发明的解旋酶优选包括SEQ ID NO:13的变体,其中在钩结构域(残基M302-W306)和/或2A(类RecA)结构域(残基R195-D287和V394-Q450)中进一步引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。
本发明的解旋酶优选包括SEQ ID NO:14的变体,其中在钩结构域(残基V265-I277)和/或2A(类RecA)结构域(残基R167-T249和L372-N421)中进一步引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。
本发明的解旋酶优选包括SEQ ID NO:15的变体,其中在钩结构域(残基V270-F283)和/或2A(类RecA)结构域(残基R172-T254和L381-K434)中进一步引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。
本发明的解旋酶优选包括SEQ ID NO:16的变体,其中在钩结构域(残基V257-F270)和/或2A(类RecA)结构域(残基R159-T241和L367-K420)中进一步引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。
本发明的解旋酶优选包括SEQ ID NO:17的变体,其中在钩结构域(残基L278-Y294)和/或2A(类RecA)结构域(残基R182-T262和L393-V443)中进一步引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。
本发明的解旋酶优选包括SEQ ID NO:18的变体,其中在钩结构域(残基L278-Y294)和/或2A(类RecA)结构域(残基R182-T262和L392-V442)中进一步引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。
本发明的解旋酶优选包括SEQ ID NO:19的变体,其中在钩结构域(残基L273-F289)和/或2A(类RecA)结构域(残基R177-N257和L387-V438)中进一步引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。
本发明的解旋酶优选包括SEQ ID NO:20的变体,其中在钩结构域(残基L281-F297)和/或2A(类RecA)结构域(残基R184-T265和L393-I442)中进一步引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。
本发明的解旋酶优选包括SEQ ID NO:21的变体,其中在钩结构域(残基H277-F293)和/或2A(类RecA)结构域(残基R180-T261和L393-V442)中进一步引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。
本发明的解旋酶优选包括SEQ ID NO:22的变体,其中在钩结构域(残基L276-F292)和/或2A(类RecA)结构域(残基R179-T260和L390-I439)中进一步引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。
本发明的解旋酶优选包括SEQ ID NO:23的变体,其中在钩结构域(残基L276-F292)和/或2A(类RecA)结构域(残基R179-T260和L391-V441)中进一步引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。
本发明的解旋酶优选包括SEQ ID NO:8的变体,其包括(i)I181C;(ii)Y279C;(iii)I281C;和(iv)E288C的一个或多个。所述解旋酶可以包括(i)到(iv)的任意组合,诸如(i);(ii);(iii);(iv);(i)和(ii);(i)和(iii);(i)和(iv);(ii)和(iii);(ii)和(iv);(iii)和(iv);或(i),(ii),(iii)和(iv)。所述解旋酶更优选包括SEQ ID NO:8的变体,其包括(或仅包括)(a)E94C,I281C和A360C或(b)E94C,I281C,G357C和A360C。本发明的解旋酶优选包括SEQ ID NO:9-23中任一个的变体,其在对应于SEQ ID NO:8的(i)到(iv),(a)和(b)所限定位置的一个或多个位置处包括半胱氨酸残基。所述解旋酶可以包括任意的这些突变体,其中在一个或多个所述具体位置处(或每个具体位置处)引入Faz代替半胱氨酸。
本发明的解旋酶进一步被修饰以降低其表面负电荷。可以与上述Dda结构域相同的方式鉴定表面残基。表面负电荷通常是表面带负电的氨基酸,诸如天冬氨酸(D)和谷氨酸(E)。
所述解旋酶优选被修饰以通过下述中和一个或多个表面负电荷:通过用一个或多个带正电荷的氨基酸、不带电荷的氨基酸、非极性氨基酸和/或芳香族氨基酸取代一个或多个带负电荷的氨基酸,或通过将一个或多个的带正电荷的氨基酸引入,优选临近一个或多个带负电荷的氨基酸引入。适合的带正电荷的氨基酸包括,但不限于,组氨酸(H),赖氨酸(K)和精氨酸(R)。不带电荷的氨基酸没有净电荷。适合的不带电荷的氨基酸包括,但不限于,半胱氨酸(C),丝氨酸(S),苏氨酸(T),蛋氨酸(M),天冬酰胺(N)和谷氨酰胺(Q)。非极性氨基酸具有非极性侧链。适合的非极性氨基酸包括,但不限于,甘氨酸(G),丙氨酸(A),脯氨酸(P),异亮氨酸(I),亮氨酸(L)和缬氨酸(V)。芳香族氨基酸具有芳香族侧链。适合的芳香族氨基酸包括,但不限于,组氨酸(H),苯丙氨酸(F),色氨酸(W)和酪氨酸(Y)。
优选的取代包括,但不限于,用R取代E,用K取代E,用N取代E,用K取代D,以及用R取代D。
本发明的解旋酶优选包括SEQ ID NO:8的变体并且所述一个或多个带负电荷的氨基酸为D5,E8,E23,E47,D167,E172,D202,D212和E273中的一个或多个。可以中和任意数量的这些氨基酸,诸如这些氨基酸中的1,2,3,4,5,6,7或8个。可以中和任意的组合。本发明的解旋酶优选包括SEQ ID NO:9到23中任一个的变体并且所述一个或多个带负电荷的氨基酸对应于SEQ ID NO:8中的D5,E8,E23,E47,D167,E172,D202,D212和E273中的一个或多个。对应于SEQ ID NO:8中的D5,E8,E23,E47,D167,E172,D202,D212和E273的SEQ ID NO:9到23中的氨基酸可以使用如图25所示的比对确定。本发明的解旋酶优选包括SEQ ID NO:8的变体,其包括(或仅包括)(a)E94C,E273G和A360C或(b)E94C,E273G,N292G和A360C。
本发明的解旋酶优选通过去除一个或多个天然半胱氨酸残基进行进一步修饰。任意数量的天然半胱氨酸残基可以被去除。SEQ ID NO:9到23中每一个的半胱氨酸残基的数量示于表1中(#C)。所述一个或多个半胱氨酸残基优选通过取代去除。所述一个或多个半胱氨酸残基优选用丙氨酸(A),丝氨酸(S)或缬氨酸(V)取代。本发明的解旋酶优选包括SEQ IDNO:8的变体并且所述一个或多个天然半胱氨酸残基为C109,C114,C136,C171和C412中的一个或多个。可以去除任意数量和组合的这些半胱氨酸残基。例如,SEQ ID NO:8的变体可以包括{C109};{C114};{C136};{C171};{C412};{C109和C114};{C109和C136};{C109和C171};{C109和C412};{C114和C136};{C114和C171};{C114和C412};{C136和C171};{C136和C412};{C171和C412};{C109,C114和C136};{C109,C114和C171};{C109,C114和C412};{C109,C136和C171};{C109,C136和C412};{C109,C171和C412};{C114,C136和C171};{C114,C136和C412};{C114,C171和C412};{C136,C171和C412};{C109,C114,C136和C171};{C109,C114,C136和C412};{C109,C114,C171和C412};{C109,C136,C171和C412};{C114,C136,C171和C412};或{C109,C114,C136,C171和C412}。
本发明的解旋酶优选为其中仅在塔结构域中引入了至少一个半胱氨酸残基(即一个或多个半胱氨酸残基)和/或至少一个非天然氨基酸(即一个或多个非天然氨基酸)的解旋酶。适合的修饰如上文所述。
本发明的解旋酶优选包括SEQ ID NO:8的突变体,包括(或仅包括)以下突变:
-E93C和K364C;
-E94C和K364C;
-E94C和A360C;
-L97C和E361C;
-L97C和E361C和C412A;
-K123C和E361C;
-K123C,E361C和C412A;
-N155C和K358C;
-N155C,K358C和C412A;
-N155C和L354C;
-N155C,L354C和C412A;
-ΔE93,E94C,ΔN95和A360C;
-E94C,ΔN95和A360C;
-E94C,Q100C,I127C和A360C;
-L354C;
-G357C;
-E94C,G357C和A360C;
-E94C,Y279C和A360C;
-E94C,I281C和A360C;
-E94C,Y279Faz和A360C;
-Y279C和G357C;
-I281C和G357C;
-E94C,Y279C,G357C和A360C;
-E94C,I281C,G357C和A360C;
-E8R,E47K,E94C,D202K和A360C;
-D5K,E23N,E94C,D167K,E172R,D212R和A360C;
-D5K,E8R,E23N,E47K,E94C,D167K,E172R,D202K,D212R和A360C;
-E94C,C114A,C171A,A360C和C412D;
-E94C,C114A,C171A,A360C和C412S;
-E94C,C109A,C136A和A360C;
-E94C,C109A,C114A,C136A,C171A,A360C和C412S;
-E94C,C109V,C114V,C171A,A360C和C412S;
-C109A,C114A,C136A,G153C,C171A,E361C和C412A;
-C109A,C114A,C136A,G153C,C171A,E361C和C412D;
-C109A,C114A,C136A,G153C,C171A,E361C和C412S;
-C109A,C114A,C136A,G153C,C171A,K358C和C412A;
-C109A,C114A,C136A,G153C,C171A,K358C和C412D
-C109A,C114A,C136A,G153C,C171A,K358C和C412S;
-C109A,C114A,C136A,N155C,C171A,K358C和C412A;
-C109A,C114A,C136A,N155C,C171A,K358C和C412D;
-C109A,C114A,C136A,N155C,C171A,K358C和C412S;
-C109A,C114A,C136A,N155C,C171A,L354C和C412A;
-C109A,C114A,C136A,N155C,C171A,L354C和C412D;
-C109A,C114A,C136A,N155C,C171A,L354C和C412S;
-C109A,C114A,K123C,C136A,C171A,E361C和C412A;
-C109A,C114A,K123C,C136A,C171A,E361C和C412D;
-C109A,C114A,K123C,C136A,C171A,E361C和C412S;
-C109A,C114A,K123C,C136A,C171A,K358C和C412A;
-C109A,C114A,K123C,C136A,C171A,K358C和C412D;
-C109A,C114A,K123C,C136A,C171A,K358C和C412S;
-C109A,C114A,C136A,G153C,C171A,E361C和C412A;
-E94C,C109A,C114A,C136A,C171A,A360C和C412D;
-E94C,C109A,C114V,C136A,C171A,A360C和C412D;
-E94C,C109V,C114A,C136A,C171A,A360C和C412D;
-L97C,C109A,C114A,C136A,C171A,E361C和C412A;
-L97C,C109A,C114A,C136A,C171A,E361C和C412D;或
-L97C,C109A,C114A,C136A,C171A,E361C和C412S。
钩结构域和/或2A结构域的修饰
在一个具体实施方式中,本发明的Dda解旋酶为其中在钩结构域和/或2A(RecA型马达)结构域中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸的解旋酶,其中所述解旋酶保留其控制多核苷酸移动的能力。在所述钩结构域和2A(RecA型马达)结构域中优选引入至少一个半胱氨酸残基和/或至少一个非天然氨基酸。
可以在每个结构域中引入任意数量的半胱氨酸残基和/或非天然氨基酸。例如,可以引入1,2,3,4,5,6,7,8,9,10或更多个半胱氨酸残基和/或可以引入1,2,3,4,5,6,7,8,9,10或更多个非天然氨基酸。可以仅引入一个或多个半胱氨酸残基。可以仅引入一个或多个非天然氨基酸。可以引入一个或多个半胱氨酸残基和一个或多个非天然氨基酸的组合。
优选通过取代引入所述至少一个半胱氨酸残基和/或至少一个非天然氨基酸。取代的方法是本领域已知的。钩结构域和/或2A(RecA型马达)结构域的合适修饰如上文所述。
本发明的解旋酶优选为SEQ ID NO:8的变体,包括(或仅包括)(a)Y279C,I181C,E288C,Y279C和I181C,(b)Y279C和E288C,(c)I181C和E288C或(d)Y279C,I181C和E288C。本发明的解旋酶优选包括SEQ ID NO:9到23中任一个的变体,其在对应于SEQ ID NO:8中(a)到(d)所限定的一个或多个位置处包括一突变。
表面修饰
在一个具体实施方式中,修饰所述Dda解旋酶以减少其表面负电荷,其中所述解旋酶保留其控制多核苷酸移动的能力。适合的修饰如上文所述。可以中和任意数量的表面负电荷。
本发明的解旋酶优选包括SEQ ID NO:8的变体,包括(或仅包括)以下突变:
-E273G;
-E8R,E47K和D202K;
-D5K,E23N,D167K,E172R和D212R;
-D5K,E8R,E23N,E47K,D167K,E172R,D202K和D212R。
其他修饰的解旋酶
在一个具体实施方式中,本发明的Dda解旋酶包括SEQ ID NO:8的变体,包括(或仅包括):
-A360K;
-Y92L和/或A360Y;
-Y92L,Y350N和Y363N;
-Y92L和/或Y363N;或
-Y92L。
其他修饰
除了上文所述的具体突变,SEQ ID NO:8的变体可以包括(或仅包括)一个或多个以下突变:
/>
本发明的Dda解旋酶优选包括SEQ ID NO:8的变体,其包括(或仅包括):
/>
本发明的解旋酶优选包括SEQ ID NO:8的变体,其包括(或仅包括)(a)
E94C/A360C/W378A,(b)E94C/A360C/W378AW378A和随后(ΔM1)G1G2(即M1缺失以及然后添加G1和G2),(c)E94C/A360C/C109A/C136A/W378A或(d)E94C/A360C/C109A/C136A/W378A和随后(ΔM1)G1G2(即M1缺失以及然后添加G1和G2)。
变体
Dda解旋酶的变体是具有下述氨基酸序列的酶:所述氨基酸序列从野生型解旋酶的氨基酸序列变化而来并保留多核苷酸结合活性。特别的,SEQ ID NO:8到23中任一个的变体是具有下述氨基酸序列的酶:所述氨基酸序列从SEQ ID NO:8到23中任一个的氨基酸序列变化而来并保留多核苷酸结合活性。多核苷酸结合活性可使用本领域已知方法确定。适合的方法包括,但不限于荧光各向异性法,色氨酸荧光法和电泳迁移位移试验法(EMSA)。例如,变体结合单链多核苷酸的能力可以如实施例中所描述的进行确定。
变体保留解旋酶活性。这可以使用多种方式测定。例如,变体沿多核苷酸移位的能力可使用电生理学法,荧光分析法或ATP水解法测定。
所述变体可以包括促进对编码解旋酶的多核苷酸的处理或促进该多核苷酸在高盐浓度和/或室温下的活性的多种修饰。
基于氨基酸同一性,对于SEQ ID NO:8到23中任一个氨基酸序列的整个长度,变体优选与该序列具有至少20%的同一性。更优选的是,基于氨基酸同一性,所述变体多肽与SEQ ID NO:8到23中任一个氨基酸序列的整个序列,可以具有至少30%,至少40%,至少45%,至少50%,至少55%,至少60%,至少65%,至少70%,至少75%,至少80%,至少85%,至少90%和更优选至少95%,97%或99%的同一性。在100或更多,例如150,200,300,400或500或更多个连续氨基酸长度上,可以具有至少为70%,例如至少80%,至少85%,至少90%或至少95%的氨基酸同一性(严格同源性)。同源性如下所述进行确定。所述变体可以按以下针对SEQ ID NO:2和4所描述的多种方式中的任意一种与野生型序列进行区分。特别的,除了以上讨论的多种修饰,SEQ ID NO:8到23中任一个的变体可以包括如下所述的一个或多个取代,一个或多个缺失和/或一个或多个添加。
SEQ ID NO:8到23中任一个的优选变体在氨基-(N-)端和/或羧基(C-)端具有非天然氨基酸,诸如Faz。SEQ ID NO:8到23中任一个的优选变体在氨基-(N-)端和/或羧基(C-)端具有半胱氨酸残基。SEQ ID NO:8到23中任一个的优选变体在氨基-(N-)端具有半胱氨酸残基并在羧基(C-)端具有非天然氨基酸,例如Faz,或者在氨基-(N-)端具有非天然氨基酸,例如Faz并在羧基(C-)端具有半胱氨酸残基。
SEQ ID NO:8的优选变体包括一个或多个,诸如所有的,下列修饰:E54G,D151E,I196N和G357A。
SEQ ID NO:8到23中任一个的最优选的变体具有(除了本发明的修饰外)N-末端蛋氨酸(M)缺失并用两个甘氨酸残基(GG)替换。其在实施例中显示为(ΔM1)G1G2。例如,SEQID NO:8的优选变体包括(或仅包括):
-E94C,A360C和随后(ΔM1)G1G2;和
-E94C,C109A,C136A,A360C和随后(ΔM1)G1G2。
Dda解旋酶片段
本发明还提供了Dda解旋酶的片段,其可以用于制备本发明的解旋酶。在第一个具体实施方式中,所述多肽包括来自Dda解旋酶的销结构域和1A(RecA型马达)结构域并且不包括来自Dda解旋酶的任何其他结构域,其中在销结构域和/或1A(RecA型马达)结构域中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。所述结构域优选衍生自SEQ IDNO:8到23中任一个解旋酶。这些解旋酶的相关结构域在以上表2中限定。所述销结构域和/或1A结构域可以上述针对本发明的解旋酶所论述的任意方式进行修饰。特别的,所述多肽可以包括以上所限定的任意的销结构域和1A结构域的变体,以及以上所限定的任意的销结构域和/或1A结构域的突变体。
在第二个具体实施方式中,所述多肽包括来自Dda解旋酶的2A(RecA型马达)结构域,塔结构域和钩结构域并且不包括来自Dda解旋酶的任何其他结构域,其中在塔结构域中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。所述结构域优选可衍生自SEQID NO:8到23中的任意解旋酶。这些解旋酶的相关结构域在以上表2中限定。所述塔结构域可以上述针对本发明的解旋酶所论述的任意方式进行修饰。特别的,所述多肽可以包括以上所限定的任意的塔结构域的变体,以及以上所限定的任意的塔结构域的突变体。
除了以上讨论的具体的修饰,本发明的多肽可以包括如下针对SEQ ID NO:2和4所述的一个或多个取代,一个或多个缺失和/或一个或多个添加。
本发明还提供了一种解旋酶,其包括共价连接到第二具体实施方式的多肽的第一具体实施方式的多肽,其中所述解旋酶具有控制多核苷酸移动的能力。所述解旋酶控制多核苷酸移动的能力可以如上所述进行确定。
不连接
在一个优选的具体实施方式中,在本发明的修饰的Dda解旋酶中引入的半胱氨酸和/或非天然氨基酸均相互不连接。
连接两个或更多个引入的半胱氨酸和/或非天然氨基酸
在另一个优选的具体实施方式中,在本发明的修饰的Dda解旋酶中引入的两个或更多个半胱氨酸和/或非天然氨基酸相互连接。这通常会降低本发明的解旋酶从多核苷酸上解脱的能力。
可以使任何数目和组合的两个或更多个引入的半胱氨酸和/或非天然氨基酸相互连接。例如,可以使3,4,5,6,7,8或更多个半胱氨酸和/或非天然氨基酸相互连接。一个或多个半胱氨酸可以与一个或多个半胱氨酸连接。一个或多个半胱氨酸可以与一个或多个非天然氨基酸诸如Faz连接。一个或多个非天然氨基酸诸如Faz可以与一个或多个非天然氨基酸诸如Faz连接。
可以任何方式连接两个或更多个半胱氨酸和/或非天然氨基酸。所述连接可以是暂时的,例如非共价连接。即使短暂连接也能降低多核苷酸从解旋酶上的解脱。
所述两个或更多半胱氨酸和/或非天然氨基酸优选通过亲和性分子连接。适合的亲和性分子为本领域已知的。所述亲和性分子优选为(a)互补的多核苷酸(国际专利申请No.PCT/GB10/000132(公布号为WO 2010/086602),(b)抗体或其片段以及互补的表位(Biochemistry第6版,W.H.Freeman和co(2007)第953-954页),(c)肽拉链(O'Shea等人,Science 254(5031):539-544),(d)能通过β-片增大(β-sheet augmentation)而相互作用(Remaut和Waksman Trends Biochem.Sci.(2006)31 436-444),(e)能进行氢键合,π-堆叠或形成盐桥,(f)轮烷(Xiang Ma和He Tian Chem.Soc.Rev.,2010,39,70-80),(g)适配子和互补蛋白质(James,W.in Encyclopedia of Analytical Chemistry,R.A.Meyers(Ed.)第4848–4871页,John Wiley&Sons Ltd,Chichester,2000)或(h)半-螯合剂(Hammerstein等人J Biol Chem.2011April 22;286(16):14324–14334)。对于(e),氢键合发生在连接到电负性原子的质子与另一个电负性原子之间。π-堆叠需要两个芳香族环以两个环的平面是平行的方式堆叠在一起。盐桥在可以将它们的电子离域在几个原子上的基团之间,例如天冬氨酸和精氨酸之间。
两个或更多个部分可以通过六组氨酸(hexa-his)标签或Ni-NTA短暂连接。
两个或更多个半胱氨酸和/或非天然氨基酸优选是永久连接的。在本发明中,如果该连接在使用解旋酶时没有断开或者不经使用者的介入(诸如使用还原剂打开–S-S-键)不能断开,则该连接是永久性的。
两个或更多个半胱氨酸和/或非天然氨基酸优选是共价连接的。两个或更多个半胱氨酸和/或非天然氨基酸可以使用本领域已知的任何方法共价连接。
所述两个或更多个半胱氨酸和/或非天然氨基酸可以通过它们的天然存在的氨基酸共价连接,所述它们的天然存在的氨基酸,诸如半胱氨酸,苏氨酸,丝氨酸,天冬氨酸,天冬酰胺,谷氨酸和谷氨酰胺。天然存在的氨基酸可以经修饰以促进连接。例如,天然存在的氨基酸可以通过酰化、磷酸化、糖基化或法尼基化而修饰。其他适合的修饰为本领域已知的。对天然存在的氨基酸的修饰可以是翻译后修饰。两个或更多个半胱氨酸和/或非天然氨基酸可以通过引入其序列中的氨基酸进行连接。所述氨基酸优选通过取代而引入。引入的氨基酸可以为促进连接的半胱氨酸或非天然氨基酸。适合的非天然氨基酸包括,但不限于,4-叠氮基-L-苯丙氨酸(Faz),Liu C.C.和Schultz P.G.,Annu.Rev.Biochem.,2010,79,413-444的图1中包括的序号1-71的氨基酸中的任意一个,或以下列出的氨基酸中的任意一个。所述引入的氨基酸可以如上所述进行修饰。
在优选的具体实施方式中,所述两个或更多个半胱氨酸和/或非天然氨基酸使用连接器连接。连接器分子在下面更详细描述。一个适合的连接方法为半胱氨酸连接。这将在下面更详细描述。所述两个或更多个半胱氨酸和/或非天然氨基酸优选使用一个或多个连接器,诸如两个或三个连接器连接。所述一个或多个连接器可以被设计为用于减少如上所述的开口的尺寸,或闭合所述开口。如果使用一个或多个连接器闭合如上所述的开口,则至少所述一个或多个连接器中的一部分优选定位为使得其在所述多核苷酸被解旋酶结合时不与所述多核苷酸平行。更优选的是,所有的连接器都以此方式定位。如果使用一个或多个连接器闭合如上所述的开口,则至少所述一个或多个连接器中的一部分优选以不平行于所述多核苷酸的方向——当所述多核苷酸被解旋酶结合时——跨所述开口。更优选的是,所有的连接器以这种方式跨所述开口。在这些具体实施方式中,至少所述一个或多个连接器中的一部分可以与所述多核苷酸垂直。上述定位有效闭合所述开口,使得所述多核苷酸不能通过所述开口从所述解旋酶解离。
每个连接器可以具有两个或更多个功能性末端,诸如两个、三个或四个功能性末端。连接器中适合的末端构型在本领域是已知的。
所述一个或多个连接器的一个或多个末端优选共价连接到所述解旋酶。如果一个末端是共价连接的,则所述一个或多个连接器可以如上所述短暂连接所述两个或更多个半胱氨酸和/或非天然氨基酸。如果两个或所有的末端是共价连接的,则所述一个或多个连接器可以永久连接所述两个或更多个半胱氨酸和/或非天然氨基酸。
所述一个或多个连接器优选为氨基酸序列和/或化学交联剂。
适合的氨基酸连接器,诸如肽连接器,是本领域已知的。氨基酸或肽连接器的长度、柔性和亲水性通常设计为使得其减小开口的尺寸,但不干扰解旋酶的功能。优选的柔性肽连接器为2到20,诸如4,6,8,10或16个丝氨酸和/或甘氨酸的长度。更优选的柔性连接器包括(SG)1,(SG)2,(SG)3,(SG)4,(SG)5,(SG)8,(SG)10,(SG)15或(SG)20其中S为丝氨酸和G为甘氨酸。优选的刚性连接器为2到30,诸如4,6,8,16或24个脯氨酸的长度。更优选的刚性连接器包括(P)12其中P为脯氨酸。连接器的氨基酸序列优选包括多核苷酸结合部分。该部分以及与其用途相关的优点在下文描述。
适合的化学交联剂是本领域已知的。适合的化学交联剂包括但不限于,包括以下官能团的化学交联剂:马来酰亚胺,活性酯,琥珀酰亚胺,叠氮化物,炔烃(诸如二苯并环辛炔醇(DIBO或DBCO),二氟环炔烃和线性炔烃),磷化氢(诸如这些非踪迹性和无踪迹性的施陶丁格连接中使用的那些),卤代乙酰化物(诸如碘代乙酰胺),碳酰氯型试剂,磺酰氯试剂,异硫氰酸酯,酰基卤,肼,二硫化物,乙烯基砜,氮丙啶和光敏性试剂(诸如芳基叠氮化物,二氮丙啶)。
在氨基酸与官能团之间的反应可以是自发的,诸如半胱氨酸/马来酰亚胺,或可能需要外部试剂,诸如用于叠氮化物与线性炔烃之间的连接的Cu(I)。
连接器可以包括跨所需要距离伸长的任何分子。连接器的长度可以从一个碳(碳酰氯型连接器)到多个埃变化。线性分子的实例包括但不限于,聚乙二醇(PEGs),多肽,多糖,脱氧核糖核酸(DNA),肽核酸(PNA),苏糖核酸(TNA),甘油核酸(GNA),饱和的和不饱和的烃,聚酰胺。这些连接器可以是惰性的或反应性的,特别的,它们可以在限定的位置被化学剪切,或可以用荧光团或配体进行自我修饰。所述连接器优选耐二硫苏糖醇(DTT)。
优选的交联剂包括2,5-二氧吡咯烷-1-基3-(吡啶-2-基二硫烷基)丙酸酯,2,5-二氧吡咯烷-1-基4-(吡啶-2-基二硫烷基)丁酸酯和2,5-二氧吡咯烷-1-基8-(吡啶-2-基二硫烷基)辛酸酯,二-马来酰亚胺PEG 1k,二-马来酰亚胺PEG 3.4k,二-马来酰亚胺PEG 5k,二-马来酰亚胺PEG 10k,双(马来酰亚胺基)乙烷(BMOE),双-马来酰亚胺基己烷(BMH),1,4-双-马来酰亚胺基丁烷(BMB),1,4双-马来酰亚胺基-2,3-二羟基丁烷(BMDB),BM[PEO]2(1,8-双-马来酰亚胺基二甘醇),BM[PEO]3(1,11-双-马来酰亚胺基三甘醇),三[2-马来酰亚胺基乙基]胺(TMEA),DTME二硫双马来酰亚胺基乙烷,双-马来酰亚胺PEG3,双-马来酰亚胺PEG11,DBCO-马来酰亚胺,DBCO-PEG4-马来酰亚胺,DBCO-PEG4-NH2,DBCO-PEG4-NHS,DBCO-NHS,DBCO-PEG-DBCO 2.8kDa,DBCO-PEG-DBCO 4.0kDa,DBCO-15原子-DBCO,DBCO-26原子-DBCO,DBCO-35原子-DBCO,DBCO-PEG4-S-S-PEG3-生物素,DBCO-S-S-PEG3-生物素,DBCO-S-S-PEG11-生物素,(3-(2-吡啶基二硫)丙酸琥珀酰亚胺酯(SPDP)和马来酰亚胺-PEG(2kDa)-马来酰亚胺(α,ω-双-马来酰亚胺基聚(乙二醇))。最优选的交联剂为马来酰亚胺-丙基-SRDFWRS-(1,2-二氨基乙烷)-丙基-马来酰亚胺。
一个或多个连接器可以被剪切。这将在下面详细讨论。
两个或更多个半胱氨酸和/或非天然氨基酸可以使用两个不同的相互特异的连接器连接。连接器中的一个连接到一部分并且连接器中的另一个连接到另一部分。所述连接器应反应形成本发明的修饰的解旋酶。可以使用国际专利申请No.PCT/GB10/000132(公布号为WO 2010/086602)中描述的杂交连接器连接所述两个或更多个半胱氨酸和/或非天然氨基酸。特别的,可以使用两个或更多个连接器——每个包括一杂交区域和能够形成共价键的基团——连接所述两个或更多个半胱氨酸和/或非天然氨基酸。所述连接器中的杂交区域杂交并连接所述两个或更多个半胱氨酸和/或非天然氨基酸。所连接的半胱氨酸和/或非天然氨基酸然后通过在所述基团间形成共价键而偶联。国际专利申请No.PCT/GB10/000132(公布号为WO 2010/086602)中公开的任意的具体连接器可在本发明中使用。
所述两个或更多个半胱氨酸和/或非天然氨基酸可以是经修饰的并然后使用化学交联剂连接,该交联剂对于所述的两个修饰都是特异性的。可以使用上述任何交联剂。
所述连接器可以是被标记的。适合的标签包括,但不限于荧光分子(诸如Cy3或555),放射性同位素,如125I,35S,酶,抗体,抗原,多核苷酸和配体诸如生物素。该标签使得可以对连接器的量进行定量。所述标签也可以是可剪切的纯化标签诸如生物素或用以在鉴定方法中显示的特定序列,诸如蛋白质本身不含有但能通过胰蛋白酶消化而释放的肽。
连接两个或更多个半胱氨酸的优选方法为通过半胱氨酸连接。该连接可以通过双官能化学交联剂或通过具有末端存在的半胱氨酸残基的氨基酸连接器介导。
任何双官能连接器的长度,反应性,特异性,刚性和溶解性可以设计为确保充分减小所述开口的尺寸并且保留所述解旋酶的功能。适合的连接器包括双马来酰亚胺交联剂,诸如1,4-双(马来酰亚胺基)丁烷(BMB)或双(马来酰亚胺基)己烷。双官能连接器的一个缺点是,如果优选在特异性位点连接,需要解旋酶不进一步含有表面易接近的(surfaceaccessible)半胱氨酸残基,因为双官能连接器与表面易接近的半胱氨酸残基的结合可能难以控制并可能会影响底物结合或活性。如果解旋酶确实含有几个易接近的半胱氨酸残基,可能会需要对解旋酶进行修饰以去除这些半胱氨酸残基并同时确保这些修饰不会影响解旋酶的折叠或活性。这在国际申请No.PCT/GB10/000133(公开号为WO 2010/086603)中进行了论述。所述半胱氨酸残基的反应性可以通过例如在肽连接器上修饰临近的残基而提高。例如,侧面的精氨酸,组氨酸或赖氨酸残基的碱性基团会改变半胱氨酸的硫醇基的pKa是之成为更具反应性的S-基团。半胱氨酸残基的反应性可以通过硫醇保护基团诸如5,5'-二硫双-(2-硝基苯甲酸)(dTNB)而保护。在连接器连接之前,这些基团可以与解旋酶的一个或多个半胱氨酸残基反应。可以使用固定在珠子上的还原性试剂(例如固定化的三(2-羧基乙基)膦,TCEP)选择性地保护表面易接近的半胱氨酸。半胱氨酸连接在下面更详细的讨论。
另一个优选的连接方法是通过Faz连接。该连接可由双官能化学连接器或末端存在Faz残基的多肽连接器介导。
本发明的其他的修饰的解旋酶
本发明还提供了一种Dda解旋酶,其被修饰以提高(i)塔结构域和(ii)销结构域和/或1A结构域之间的吸引力。根据本发明可以进行任何已知的化学修饰。
特别的,本发明提供了一种Dda解旋酶,其中在(i)塔结构域和/或(ii)销结构域和/或(iii)1A(RecA型马达)结构域中引入了至少一个带电荷的氨基酸,其中所述解旋酶保留其控制多核苷酸移动的能力。所述解旋酶控制多核苷酸移动的能力可如上所述进行测定。本发明优选提供一种Dda解旋酶,其中在(i)塔结构域和(ii)销结构域和/或1A结构域中引入了至少一个带电荷的氨基酸。
所述至少一个带电荷的氨基酸可以是带负电荷的或带正电荷的。所述至少一个带电荷的氨基酸优选与解旋酶中与其进行反应的任何氨基酸具有相反的电荷。例如,至少一个带正电荷的氨基酸可以在能与销结构域中的带负电荷的氨基酸反应的位置处引入塔结构域中。至少一个带电荷的氨基酸通常在野生型(即未修饰的)解旋酶中不带电荷的位置处引入。所述至少一个带电荷的氨基酸可以用于置换解旋酶中至少一个与其带相反电荷的氨基酸。例如,带正电荷的氨基酸可以用于置换带负电荷的氨基酸。
适合的带电荷的氨基酸如上所述。所述至少一个带电荷的氨基酸可以是天然的,诸如精氨酸(R),组氨酸(H),赖氨酸(K),天冬氨酸(D)或谷氨酸(D)。替换地,所述至少一个带电荷的氨基酸可以是人工的或非天然的。可以在每个结构域中引入任何数量的带电荷的氨基酸。例如可以在每个结构域中引入1,2,3,4,5,6,7,8,9,10或更多个带电荷的氨基酸。
所述解旋酶优选包括SEQ ID NO:8的变体,其含有在以下一个或多个位置处的带正电荷的氨基酸:(i)93;(ii)354;(iii)360;(iv)361;(v)94;(vi)97;(vii)155;(viii)357;(ix)100;和(x)127。所述解旋酶优选包括SEQ ID NO:8的变体,其含有在以下一个或多个位置处的带负电荷的氨基酸:(i)354;(ii)358;(iii)360;(iv)364;(v)97;(vi)123;(vii)155;(viii);357;(ix)100;和(x)127。所述解旋酶优选包括SEQ ID NO:9-23中任一个的变体,其含有在对应于SEQ ID NO:8的任意的(i)到(x)所限定的位置的位置处的带正电荷的氨基酸或带负电荷的氨基酸。SEQ ID NO:9-23中任一个的对应于SEQ ID NO:8中位置的位置可以使用如图25所示的SEQ ID NO:8-23的比对进行鉴定。
所述解旋酶优选包括SEQ ID NO:8的变体,其通过引入至少一个带电荷的氨基酸而修饰,使得其在以下位置处包含带相反电荷的氨基酸:(i)93和354;(ii)93和358;(iii)93和360;(iv)93和361;(v)93和364;(vi)94和354;(vii)94和358;(viii)94和360;(ix)94和361;(x)94和364;(xi)97和354;(xii)97和358;(xiii)97和360;(xiv)97和361;(xv)97和364;(xvi)123和354;(xvii)123和358;(xviii)123和360;(xix)123和361;(xx)123和364;(xxi)155和354;(xxii)155和358;(xxiii)155和360;(xxiv)155和361;(xxv)155和364。本发明的解旋酶优选包括SEQ ID NO:9到23中任一个的变体,其包含在对应于SEQ ID NO:8的(i)到(xxv)中任一个所限定的位置处的带相反电荷的氨基酸。
本发明还提供了一种Dda解旋酶,其中(i)在塔结构域中引入了至少一个带电荷的氨基酸并(ii)在销结构域和/或1A(RecA型马达)结构域中引入了至少一个带相反电荷的氨基酸,其中所述解旋酶保留其控制多核苷酸移动的能力。所述至少一个带电荷的氨基酸可以是带负电荷的,并且所述至少一个带相反电荷的氨基酸可以是带正电荷的,或反之亦然。适合的带电荷的氨基酸如上所述。可以引入任意数量的带电荷的氨基酸和任意数量的带相反电荷的氨基酸。例如,可以引入1,2,3,4,5,6,7,8,9,10或更多个带电荷的氨基酸和/或可以引入1,2,3,4,5,6,7,8,9,10或更多个带相反电荷氨基酸。
通常在野生型解旋酶的不带电荷的位置引入带电荷的氨基酸。一个或两个带电荷的氨基酸可被用于置换解旋酶中带电荷的氨基酸。例如,带正电荷的氨基酸可以用于置换带负电荷的氨基酸。可以如上所述在(i)塔结构域和(ii)销结构域和/或1A结构域任意位置引入带电荷的氨基酸。通常引入带相反电荷的氨基酸使得它们在获得的解旋酶中相互作用。解旋酶优选包括SEQ ID NO:8的变体,其中在以下位置引入带相反电荷的氨基酸:(i)97和354;(ii)97和360;(iii)155和354;或(iv)155和360。本发明的解旋酶优选包括SEQ IDNO:9到23中任一个的变体,其在对应于SEQ ID NO:8的(i)到(iv)任意一个限定的位置处具有带相反电荷的氨基酸。
构建体
本发明还提供了包括本发明的Dda解旋酶或修饰的Dda解旋酶以及额外的多核苷酸结合部分的构建体,其中所述解旋酶连接到所述多核苷酸结合部分并且所述构建体具有控制多核苷酸移动的能力。所述构建体是人工的或非天然的。
本发明的构建体是在链测序过程中控制多核苷酸移动的有用工具。本发明的构建体不太可能使本发明的修饰的解旋酶从被测序的多核苷酸解脱。随着所述构建体控制所述多核苷酸穿过所述纳米孔的移位,所述构建体甚至可提供所述多核苷酸的更长读取长度。
也可以设计结合特异性多核苷酸序列的目标构建体。如下面详细讨论的,所述多核苷酸结合部分可以结合到特异性的多核苷酸序列并由此将所述构建体的解旋酶部分靶向到该特异性的序列。
所述构建体具有控制多核苷酸移动的能力。这可以如上所述进行确定。
本发明的构建体可以被分离,被基本上分离,纯化或基本上纯化。如果构建体完全不含任何其他组分诸如脂质,多核苷酸或孔单体,该构建体是被分离或纯化的。如果构建体与不干扰其预期用途的载体或稀释剂混合,该构建体是基本上被分离的。例如,如果构建体以含有小于10%,小于5%,小于2%或小于1%的其他组分诸如脂质,多核苷酸或孔单体的形式存在,该构建体是基本上分离的或基本上纯化的。
Dda解旋酶可以是任意的Dda解旋酶。优选的Dda解旋酶包括,但不限于SEQ ID NO:8到23中任一个及其变体。变体如上所述。基于氨基酸同一性,变体优选与SEQ ID NO:8到23中任一个具有至少20%同一性。所述构建体中的Dda解旋酶不需要一定含有如上针对本发明的修饰的Dda解旋酶所述的具体的修饰(即不需要一定根据本发明进行修饰)。例如,所述构建体可以包括SEQ ID NO:8到23中任一个所示的序列或其变体,其中:
-在变体的塔结构域,发卡结构域和1A(RecA型马达)结构域中没有引入半胱氨酸残基和非天然氨基酸;
-所述变体在销结构域不含有一个或多个单个氨基酸缺失;
-在钩结构域和2A(类RecA)结构域中没有引入半胱氨酸残基和非天然氨基酸;
-所述变体没有被修饰以减少其表面负电荷;
-所述变体没有被修饰以去除一个或多个天然半胱氨酸残基;
-仅在塔结构域没有引入半胱氨酸残基和非天然氨基酸;或
-在所述变体的塔结构域,销结构域和1A结构域没有引入带电荷的氨基酸。
所述解旋酶优选为本发明的修饰的Dda解旋酶。任意的本发明的解旋酶可以存在于本发明的构建体中。
所述解旋酶优选与额外的多核苷酸结合部分共价连接。所述解旋酶可以在多于一个位点诸如两个或单个位点连接到所述部分。
所述解旋酶可以使用本领域已知的任何方法连接到所述部分。适合的方法在上文针对连接两个或更多个部分进行了论述。
所述解旋酶和所述部分可以分别制备,然后连接在一起。所述这两个组分可以任何构型连接。例如,它们可以通过它们的末端(即氨基端或羧基端)氨基酸进行连接。适合的构型包括但不限于,所述部分的氨基末端与所述解旋酶的羧基末端连接并且反之亦然。替换的,这两个组分可以通过其序列中的氨基酸连接。例如,所述部分可以连接到解旋酶环状区域中的一个或多个氨基酸。在一个优选的实施方式中,所述部分的末端氨基酸与所述解旋酶的环状区域中的一个或多个氨基酸连接。
在一个优选的实施方式中,所述解旋酶化学连接到所述部分,例如,通过如上所述的一个或多个连接器分子连接。在另一个优选的实施方式中,所述解旋酶与所述部分基因融合。如果整个构建体是由单多核苷酸序列表达而来的,所述解旋酶与所述部分基因融合。所述解旋酶和所述部分的编码序列可以任意方式结合以形成编码所述构建体的单多核苷酸序列。孔与核酸结合蛋白的基因融合在国际申请No.PCT/GB09/001679(公布号为WO2010/004265)中有论述。
所述解旋酶和所述部分可以任何构型基因融合。所述解旋酶和所述部分可以通过它们的末端氨基酸融合。例如,所述部分的氨基末端可以与所述解旋酶的羧基末端融合并且反之亦然。所述部分的氨基酸序列优选在框架内添加到解旋酶的氨基酸序列中。换句话,优选将所述部分插入到所述解旋酶的序列中。在该实施方式中,所述解旋酶和所述分布通常在两个位点进行连接,即通过所述部分的氨基末端和羧基末端的氨基酸。如果将所述部分插入到所述解旋酶的序列中,优选所述部分的氨基末端和羧基末端的氨基酸非常接近并且各自连接到解旋酶或其变体的序列中相邻的氨基酸。在一个优选的实施方式中,将所述部分插入到所述解旋酶的环状区域中。
所述解旋酶可以直接与所述部分连接。所述解旋酶优选使用一个或多个,诸如两个或三个,如上所述的连接器连接到所述部分。一个或多个连接器可以设计为限制所述部分的活动性。所述解旋酶和/或所述部分可以被修饰以促进如上所述的一个或多个连接器的连接。
可剪切的连接器可以用于帮助将构建体与非连接组分分离并可以用于进一步控制合成反应。例如,异质-双官能连接器可以与解旋酶反应,但不与所述部分反应。如果所述连接器的自由末端用于将解旋酶蛋白连接到一个表面,则可从混合物中除去来自第一个反应的未反应的解旋酶。随后,可以将所述连接器剪切以暴露与所述部分反应的基团。另外,按照这种连接反应的顺序,可以首先优化与解旋酶的反应条件,然后在剪切掉连接器后优化与所述部分的反应条件。第二个反应可以更加直接的朝向与所述部分进行反应的正确的位点进行,因为连接器被限制在其已经连接的区域。
在所述解旋酶/交联剂复合体共价连接所述部分之前,所述解旋酶可以共价连接到所述双官能交联剂。替换的,在双官能交联剂/部分复合体连接所述解旋酶之前,所述部分可以共价连接到所述双官能交联剂。所述解旋酶和所述部分可以同时共价连接所述化学交联剂。
将解旋酶连接到所述部分的优选方法为半胱氨酸连接和Faz连接,如上所述。在一个优选的实施方式中,反应性半胱氨酸存在于通常连接到所述部分的肽连接器上。这意味着并不一定需要额外的修饰以从所述部分去除易接近的半胱氨酸残基。
解旋酶或部分的自身的交联可以通过保持连接器浓度极大的过量于所述解旋酶和/或部分而防止。替换的,“锁和钥匙”设置可以在使用两个连接器的情况下使用。每个连接器的仅一个末端可以一起反应以形成更长的连接器,并且连接器的其他末端分别与所述构建体的不同部分(即解旋酶或部分)反应。这在下面更详细讨论。
选择连接位点使得,当所述构建体与所述多核苷酸接触时,所述解旋酶和所述部分均可以结合到所述多核苷酸并控制其运动。
使用所述解旋酶和所述部分的多核苷酸结合活性可以促进连接。例如,可以使用互补的多核苷酸,用于在所述解旋酶和部分进行杂交时,将所述解旋酶和所述部分结合在一起。所述解旋酶能结合到一个多核苷酸并且所述部分可以被结合到互补的多核苷酸。这两个多核苷酸然后可以相互杂交。这使得解旋酶与所述部分近距离接触,使得连接反应更有效进行。这尤其有利于以正确的方向连接两个或更多个解旋酶来控制目标多核苷酸的移动。可以使用的所述互补多核苷酸的实例如图23所示。
对于解旋酶-Phi29构建体,可以使用如图24所示的DNA。
可以在所述构建体中添加标签使得所述构建体的纯化变得容易。这些标签然后可以化学剪切掉或酶剪切掉——如果需要将它们去除的话。也可以包括荧光团或显色团,它们也可以被剪切。
纯化所述构建体的简单的方式为在每个蛋白质上(即所述解旋酶和所述部分)含有不同的纯化标签,诸如6His标签和Strep如果两个蛋白质相互不同,该方法特别有用。使用两个标签仅能使具有这两个标签的物质被容易的纯化。
如果这两个蛋白质不具有两个不同的标签,可以使用其他的方法。例如,可以去除没有反应形成构建体的具有游离的表面半胱氨酸的蛋白质或具有连接器连接的蛋白质,例如可以使用碘代乙酰胺树脂(对于马来酰亚胺连接器)去除。
本发明的构建体可以基于不同的DNA进行性性质从未反应蛋白质中纯化出。特别的,本发明的构建体可以基于以下从未反应蛋白质中纯化出:提高的对多核苷酸的亲和力,减小的结合后从多核苷酸上解脱的可能性和/或在其控制多核苷酸移位穿过纳米孔时增加的多核苷酸的读取长度。
也可以设计结合到特异性多核苷酸序列的目标构建体。如下面所详细描述的,所述多核苷酸结合部分可以结合特异性的多核苷酸序列并由此将构建体的解旋酶部分靶向到该特异性的序列。
多核苷酸结合部分
本发明的构建体包括多核苷酸结合部分。多核苷酸结合部分为能结合到多核苷酸的多肽。所述部分优选能特异性结合到限定的多核苷酸序列。换句话,所述部分优选结合到特异性的多核苷酸序列,但表示出至少小于10倍的结合到不同序列的能力,或更优选至少小于100倍的结合到不同序列的能力,或最优选至少小于1000倍的结合到不同的能力。这些不同的序列可以是随机序列。在一些实施方式中,所述部分结合到特异性的多核苷酸序列,而结合到不同的序列不能被检测到。结合到特异性序列的部分可以被用于设计靶向到所述序列的构建体。
所述部分通常与所述多核苷酸相互作用或修饰所述多核苷酸的至少一个性质。所述部分可以通过将所述多核苷酸剪切形成单个的核苷酸或更短的核苷酸链诸如两个核苷酸或三个核苷酸而对其进行修饰。所述部分可以通过定位所述多核苷酸或将其移动到特定位置,即控制其移动而对其进行修饰。
多核苷酸如核酸是含有两个或更多个核苷酸的大分子。多核苷酸或核酸可包括任何核苷酸的任意组合。核苷酸可以是天然存在的或人工合成的。目标多核苷酸中的一个或多个核苷酸可以被氧化或甲基化。目标多核苷酸中的一个或多个核苷酸可被损坏。例如,多核苷酸可包含嘧啶二聚体。此类二聚体通常与紫外线导致的损坏相关联,且是皮肤黑素瘤的首要原因。目标多核苷酸中的一个或多个核苷酸可被修饰,例如用标记物或标签进行修饰。合适的标记物如上所述。所述目标多核苷酸可包含一个或多个间隔区。
核苷酸通常包含核碱基、糖和至少一个磷酸基团。
核碱基通常为杂环的。核碱基包括但不限于:嘌呤和嘧啶,更具体地包括腺嘌呤,鸟嘌呤,胸腺嘧啶,尿嘧啶和胞嘧啶。糖通常为戊糖。核苷酸糖包括但不限于,核糖和脱氧核糖。核苷酸通常是核糖核苷酸或脱氧核糖核苷酸。核苷酸通常含有单磷酸、二磷酸或三磷酸。磷酸可连接在核苷酸的5'或3'侧上。
核苷酸包括但不限于,单磷酸腺苷(AMP),单磷酸鸟苷(GMP),单磷酸胸苷(TMP),单磷酸尿苷(UMP),单磷酸胞苷(CMP),5-甲基单磷酸胞苷,5-甲基二磷酸胞苷,5-甲基三磷酸胞苷,5-羟甲基单磷酸胞苷,5-羟甲基二磷酸胞苷,5-羟甲基三磷酸胞苷,环单磷酸腺苷(cAMP),环单磷酸鸟苷(cGMP),脱氧单磷酸腺苷(dAMP),脱氧单磷酸鸟苷(dGMP),脱氧单磷酸胸苷(dTMP),脱氧单磷酸尿苷(dUMP)和脱氧单磷酸胞苷(dCMP)。所述核苷酸优选选自AMP,TMP,GMP,CMP,UMP,dAMP,dTMP,dGMP,dCMP和dUMP。
核苷酸可以是脱碱基(即缺乏核碱基)。核苷酸也可以缺乏核碱基和糖(即是C3间隔区)。
多核苷酸中的核苷酸可以以任何方式彼此连接。同在核酸中一样,核苷酸通常通过它们的糖和磷酸基团连接。如在嘧啶二聚体中一样,所述核苷酸可通过经它们的核碱基连接。
多核苷酸可以为单链或双链的。至少一部分多核苷酸优选是双链的。
多核苷酸可以是核酸,例如脱氧核糖核酸(DNA)或核糖核酸(RNA)。目标多核苷酸可包含杂交到DNA的一条链的RNA的一个链。所述多核苷酸可以是本领域已知的任何合成的核酸,例如肽核酸(PNA),甘油核酸(GNA),苏糖核酸(TNA),锁核酸(LNA),或其它具有核苷酸侧链的合成聚合物。
优选的是,所述部分的三级结构是已知的。所述部分的三级结构的知识允许对所述部分进行修饰以促进其在本发明的构建体中的功能。
所述部分可以是任何尺寸并具有任何结构。例如,所述部分可以是寡聚物,诸如二聚物或三聚物。所述部分优选是由一个单体形成的小的球形多肽。该部分容易操作并且不太可能会干扰所述解旋酶控制多核苷酸移动的能力,特别是当所述部分融合到或插入到所述解旋酶的序列中时。
所述部分的氨基和羧基末端优选很接近。所述部分的氨基末端和羧基末端更优选存在于所述部分的相同表面上。这种实施方式能促进所述部分插入到所述解旋酶的序列中。例如,当所述部分的氨基和羧基末端很接近时,它们各自可以通过基因融合而与所述解旋酶序列中相邻的氨基酸连接。
优选,所述部分的活性位点的位置和功能是已知的。这可以防止对活性位点进行修饰从而破坏该部分的活性。这也允许所述部分连接到解旋酶使得所述部分结合到所述多核苷酸并控制其移动。一个部分可以结合或定向多核苷酸的方式的知识也允许设计出有效的构建体。
本发明的构建体在链测序中是有用的。所述部分优选在与链测序和辨别所述多核苷酸兼容的缓冲背景下结合所述多核苷酸。所述部分优选在远高于正常生理水平的盐浓度下,诸如100mM到2M,至少具有残留的活性。所述部分更优选被修饰以提高其在高盐浓度下的活性。所述部分也可以被修饰以提高其进行性,稳定性和保存限期。
适合的修饰可以根据来自微生物诸如嗜盐的,中度嗜盐的细菌,嗜热的和中度嗜热的有机体的多核苷酸结合部分的特征来确定,以及根据改变耐盐性,稳定性和嗜常温或嗜热的核酸外切酶的温度依赖性的定向进化方法来确定。
所述多核苷酸结合部分优选包括一个或多个结构域,所述结构域独立地选自螺旋-发卡-螺旋(HhH)结构域,真核单链结合蛋白(SSB),细菌的SSB,古细菌的SSB,病毒的SSB,双链结合蛋白,滑动钳,持续合成因子,DNA结合环,复制起始蛋白,端粒结合蛋白,阻遏子,锌指和增殖细胞核抗原(PCNA)。
螺旋-发卡-螺旋(HhH)结构域为以序列非特异性方式结合DNA的多肽基序。当与聚合酶融合时,它们显示出被赋予了盐稳定性和进行性,并提高了它们的热稳定性。适合的结构域包括来自坎氏甲烷嗜热菌的拓扑异构酶V(SEQ ID NO:47)的结构域H(残基696-751)和结构域HI(残基696-802)。如下所述,所述多核苷酸结合部分可以是SEQ ID NO:47的结构域H-L,如在SEQ ID NO:48中所示。来自坎氏甲烷嗜热菌的拓扑异构酶V是如下所述的双链结合蛋白的实例。
HhH结构域优选包括SEQ ID NO:24或37或38所示的序列或其变体。当解旋酶在本发明的构建体中使用时,该结构域提高了所述解旋酶的进行性和耐盐性。SEQ ID NO:24或37或38的变体是具有这样的氨基酸酸序列的蛋白:其由SEQ ID NO:24或37或38的氨基酸酸序列变化而来并保留有多核苷酸结合活性。这可以使用如上所述的方法测定。基于氨基酸同一性,变体通常与整个序列的SEQ ID NO:24或37或38具有至少50%的同一性(或如上针对解旋酶所讨论的任意百分比的同一性)并保留多核苷酸结合活性。变体可以如上针对解旋酶所述的或如下针对孔所述的任意方式区别于SEQ ID NO:24或37或38。变体优选含有一个或多个取代的半胱氨酸残基和/或一个或多个取代的Faz残基,以促进与解旋酶的连接,如上所述。
SSB以序列非特异性方式以高的亲和力结合单链DNA。SSB以多种形式存在于生物的所有结构域中,并作为单体或多聚体结合DNA。使用氨基酸序列比对和算法(诸如HiddenMarkov模型),可以根据SSB的序列同源性对其进行分类。Pfam家族,PF00436,包括所有与已知的SSB具有序列相似性的蛋白质。该组SSB可以进一步根据蛋白质结构分类(SCOP)进行分类。将SSB划分为以下系:类;所有的β蛋白质,折叠;OB-折叠,总科:核酸结合蛋白,科;单链DNA结合结构域,SSB。在该科中,SSB可以根据亚科进行分类,每个亚科中经常划分进几个种类。
SSB可以是来自真核生物的,诸如人,小鼠,大鼠,真菌,原生动物或植物;来自原核生物,诸如来自细菌和古细菌;或来自病毒。
真核的SSB被称为复制蛋白A(RPA)。在大多数情况下,它们是由不同尺寸的单元形成的异质三聚体。一些大的单元(如酿酒酵母(Saccharomyces cerevisiae)的RPA70)是稳定的并以单体形式结合ssDNA。
细菌的SSB结合作为稳定的同质四聚体(如大肠杆菌(E.coli),耻垢分枝杆菌(Mycobacterium smegmatis)和幽门螺杆菌(Helicobacter pylori))或同质二聚体(如耐辐射球菌(Deinococcus radiodurans)和喜温海洋杆菌(Thermotoga maritima))的DNA。来自古细菌基因组的SSB被认为与真核RPA相关。它们中的很少,诸如由泉古菌(crenarchaeote)硫磺矿硫化叶菌(Sulfolobus solfataricus)编码的SSB,是同质四聚体。来自大多数其他物种的SSB与来自真核生物的复制蛋白紧密相关并且被称为RPA。这些物种中的一些中,SSB显示是单体的(詹氏甲烷球菌(Methanococcus jannaschii)和嗜热自养甲烷杆菌(Methanothermobacter thermoautotrophicum)。不过,古细菌的其他种类,包括闪烁古生球菌(Archaeoglobus fulgidus)和伯顿拟甲烷球菌(Methanococcoidesburtonii),似乎各自含有与RPA具有序列相似性的两个开放读取框。没有在蛋白水平下的证据和关于它们的DNA结合能力或寡聚状态的公开数据。然而,在这些基因的每一个中两个寡核苷酸/寡糖(OB)折叠的存在(在一个M.burtonii ORF的情况下,三个OB折叠)表明它们也结合单链DNA。
病毒的SSB结合作为单体的DNA。这连同它们较小的尺寸使得它们易于基因融合到其他蛋白质,例如通过柔性肽连接器。替换的,所述SSB可以单独表达并通过化学方法(如半胱氨酸,非天然氨基酸)连接到其他蛋白质。这在下面详细描述。
所述SSB优选为(i)包括不含净负电荷的羧基末端(C末端)区域的SSB或(ii)包括在C末端区域且能降低C末端区域的净负电荷的一个或多个修饰的修饰的SSB。这种SSB不会阻碍所述跨膜孔并因此允许对目标多核苷酸的表征。
包括不含净负电荷的C末端区域的SSB的实例包括,但不限于,人线粒体的SSB(HsmtSSB;SEQ ID NO:39),人复制蛋白A 70kDa亚基,人复制蛋白A14kDa亚基,来自尖毛虫(Oxytricha nova)的端粒末端结合蛋白α亚基,来自尖毛虫的端粒末端结合蛋白β亚基的核心结构域,来自裂殖酵母菌丝(Schizosaccharomyces pombe)的端粒蛋白1的保护体(Pot1),即人类Pot1,来自小鼠或大鼠的BRCA2的OB-折叠结构域,来自phi29(SEQ ID NO:40)的p5蛋白质,或任意这些蛋白的变体。变体是具有这样的氨基酸序列的蛋白质:其从野生型蛋白质的氨基酸序列变化而来并保留单链多核苷酸结合活性。多核苷酸结合活性可使用本领域已知方法确定(如上所述)。例如,变体结合单链多核苷酸的能力可如实施例所述进行确定。
SEQ ID NO:39或40的变体通常基于氨基酸同一性与SEQ ID NO:39或40在整个序列上具有至少50%同一性(或上文针对解旋酶所述的任意百分比的同一性)并保留单链多核苷酸结合活性。变体可以上述针对解旋酶所描述的任意方式区别于SEQ ID NO:39或40。特别的,变体可以具有表5和6所示的一个或多个保守取代。
在它们的C末端区域需要一个或多个用以降低净负电荷的修饰的SSB的实例包括,但不限于,大肠杆菌(E.coli)的SSB(EcoSSB;SEQ ID NO:41),结核分枝杆菌(Mycobacterium tuberculosis)的SSB,耐辐射球菌(Deinococcus radiodurans)的SSB,嗜热栖热菌(Thermus thermophiles)的SSB,硫磺矿硫化叶菌(Sulfolobus solfataricus)的SSB,人复制蛋白A 32kDa亚基(RPA32)片段,来自酿酒酵母(Saccharomyces cerevisiae)的SSB,来自大肠杆菌(E.coli)的体复制蛋白N(primosomal replication protein N)(PriB),来自拟南芥(Arabidopsis thaliana)的PriB,假定蛋白质At4g28440,来自T4的SSB(gp32;SEQ ID NO:42),来自RB69的SSB(gp32;SEQ ID NO:25),来自T7的SSB(gp2.5;SEQ IDNO:26)或任意这些蛋白质的变体。因此,在本发明的方法中使用的SSB可以衍生自任意这些蛋白质。
除了在所述C-末端区域的一个或多个修饰,在本发明的方法中使用的SSB可以包括额外的在所述C-末端区域外的修饰,或者不减少C-末端区域的净负电荷的修饰。换句话,在本发明的方法中使用的SSB衍生自野生型蛋白质的变体。变体是具有这样的氨基酸序列的蛋白质:其从野生型蛋白质的氨基酸序列变化而来并保留单链多核苷酸结合活性。多核苷酸结合活性可以如上所述进行测定。
本发明使用的SSB可衍生自SEQ ID NO:25,26,41或42的变体。换句话,SEQ ID NO:25,26,41或42的变体可以用作本发明使用的SSB的起点,但实际使用的SSB进一步包括在C末端区域中用以降低该C末端区域的净负电荷的一个或多个修饰。SEQ ID NO:25,26,41或42的变体通常基于氨基酸同一性与SEQ ID NO:25,26,41或42在整个序列上具有至少50%同一性(或上文针对解旋酶所述的任意百分比的同一性)并保留单链多核苷酸结合活性。变体可以上述针对解旋酶所描述的任意方式区别于SEQ ID NO:25,26,41或42。特别的,变体可以具有表5和6所示的一个或多个保守取代。
可以根据正常蛋白质N到C的命名方式直接鉴定SSB的C末端区域。SSB的C末端区域优选为在C末端的SSB的最后大约三分之一,例如在C末端的SSB的最后三分之一。SSB的C末端区域更优选为在C末端的SSB的最后大约四分之一,五分之一,或八分之一,例如在C末端的SSB的最后四分之一,五分之一,或八分之一。所述的SSB的最后三分之一,四分之一,五分之一,或八分之一,可以根据氨基酸的数量或根据SSB蛋白质的初级结构的实际长度测定。多种氨基酸在从N到C方向的长度是本领域已知的。
所述C末端区域优选为SSB的C末端的大约最后10个至大约最后60个氨基酸。所述C末端区域更优选为SSB的C末端的大约最后15个,大约最后20个,大约最后25个,大约最后30个,大约最后35个,大约最后40个,大约最后45个,大约最后50个或大约最后55个氨基酸。
所述C末端区域通常包括富含甘氨酸和/或脯氨酸的区域。该富含脯氨酸/甘氨酸的区域赋予C末端区域柔韧性并能用于鉴定所述C末端区域。
用于减少所述净负电荷的适合的修饰如在国际申请No.PCT/GB2013/051924(公布号为WO 2014/013259)中有公开。所述SSB可以为在该国际申请中公开的任意的SSB。
所述修饰的SSB最优选包括选自SEQ ID NO:33,34,43到46中所示的序列。
双链结合蛋白以高亲和力结合双链DNA。适合的双链结合蛋白包括,但不限于增变基因S(MutS;NCBI参考序列:NP_417213.1;SEQ ID NO:49),Sso7d(硫磺矿硫化叶菌(Sufolobus solfataricus)P2;NCBI参考序列:NP_343889.1;SEQ ID NO:50;核酸研究,2004,Vol 32,No.3,1197-1207),Sso10b1(NCBI参考序列:NP_342446.1;SEQ ID NO:51),Sso10b2(NCBI参考序列:NP_342448.1;SEQ ID NO:52),色氨酸阻遏子(Trp阻遏子;NCBI参考序列:NP_291006.1;SEQ ID NO:53),λ阻遏子(NCBI参考序列:NP_040628.1;SEQ ID NO:54),Cren7(NCBI参考序列:NP_342459.1;SEQ ID NO:55),主要的组蛋白类H1/H5,H2A,H2B,H3和H4(NCBI参考序列:NP_066403.2,SEQ ID NO:56),dsbA(NCBI参考序列:NP_049858.1;SEQ ID NO:57),Rad51(NCBI参考序列:NP_002866.2;SEQ ID NO:58),滑动钳和拓扑异构酶V Mka(SEQ ID NO:47)或任意这些蛋白质的变体。基于氨基酸同一性,
SEQ ID NO:47,49,50,51,52,53,54,55,56,57或58的变体通常与SEQ ID NO:47,49,50,51,52,53,54,55,56,57或58在整个序列上具有至少50%同一性(或上文针对解旋酶所述的任意百分比的同一性)并保留单链多核苷酸结合活性。变体可以上述针对解旋酶所描述的任意方式区别于SEQ ID NO:47,49,50,51,52,53,54,55,56,57或58。特别的,所述变体可以具有表5和6所示的一个或多个保守取代。大多数聚合酶通过与滑动钳相互作用实现进行性。通常,这些聚合酶是环绕dsDNA的多聚体蛋白质(同质-二聚体或同质-三聚体)。这些滑动钳需要辅助蛋白(钳装载器)用以在ATP依赖的过程中将它们绕DNA螺旋装配。它们也不直接与DNA接触,而是作为拓扑栓系。因为滑动钳通过聚合酶结构域(该片段能融合到解旋酶以促使解旋酶被募集到所述滑动钳上)以特异性方式与它们的同源聚合酶相互作用。这种相互作用能进一步通过共价键的产生(引入半胱氨酸或非天然氨基酸)而稳定。
相对于DNA滑动钳,持续合成因子是将它们的同源聚合酶锚定到DNA的病毒蛋白质,导致产生的片段的长度被显著增加。持续合成因子可以是单体的(来自单纯疱疹病毒1(Herpes simplex virus 1)的UL42即使这种情况)或多聚体的(来自巨细胞病毒(Cytomegalovirus)的UL44为二聚体),它们不绕DNA链形成闭合环并且它们直接与DNA接触。UL42显示能提高进行性而不减缓其相应的聚合酶的速度,这暗示其以不同于SSB的方式与DNA相互作用。UL42优选包括SEQ ID NO:27或SEQ ID NO:32中所示的序列或其变体。SEQID NO:27或32的变体是具有这样的氨基酸序列的蛋白质:其从SEQ ID NO:27或32的氨基酸序列变化而来并保留多核苷酸结合活性。这可以如上所述测定。基于氨基酸同一性,变体通常与SEQ ID NO:27或32在整个序列上具有至少50%同一性(或上文针对解旋酶所述的任意百分比的同一性)并保留多核苷酸结合活性。变体可以上述针对解旋酶所描述或以下针对孔所描述的任意方式区别于SEQ ID NO:27或SEQ ID NO:32。变体优选包括一个或多个取代的半胱氨酸残基和/或一个或多个取代的Faz残基以如上所述促进与解旋酶的连接。
UL42连接到解旋酶可以通过基因融合或化学连接(半胱氨酸,非天然氨基酸)实现。因为结合UL42的聚合酶多肽可在晶体结构看到,这35个氨基酸(残基1200-1235)可以融合到解旋酶的C端并且该多肽和持续合成因子之间的天然亲和力用于形成复合体。这种相互作用可以通过引入共价相互接触而稳定(半胱氨酸或非天然氨基酸)。一个选择是使用接近该多肽相互作用位点的天然UL42半胱氨酸(C300)并在该聚合酶多肽中引入一个点突变(如L1234C)。
一种报道的提高聚合酶进行性的方法为利用大肠杆菌(E.coli)硫氧还蛋白(Trx)与噬菌体T7 DNA聚合酶的硫氧还蛋白结合结构域(TBD)(残基258-333)之间的相互作用。Trx与TBD的结合引起多肽改变为能结合DNA的构造。TBD被认为能向下钳到DNA链上并限制聚合酶离开速度,由此提高进行性。通过将TBD转移到一个非进行性聚合酶上制备嵌合的聚合酶,获得增加1000倍的聚合片段长度。还没有尝试将TBD连接到任何其他种类的蛋白质上,但是在TBD和Trx之间的共价键已被设计出并可以用于稳定所述相互作用。
一些解旋酶在体内使用辅助蛋白以实现进行性(如大肠杆菌(E.coli)Rep解旋酶,使用来自噬菌体Φx174的cisA和来自噬菌体M13的基因II蛋白)。这些蛋白质中的一些显示了与多于一种的解旋酶(例如,MutL作用于UvrD和Rep,但程度不同)相互作用。这些蛋白质具有固有的DNA结合能力,它们中的一些识别特异性的DNA序列。这些辅助蛋白中的一些具有的将它们自身共价连接到特异性DNA序列的能力可用来产生解旋酶活性的一组起始位点。
保护染色体末端的蛋白以高度特异性方式结合到端粒ssDNA序列。该能力可按照其原来的样子或通过使用点突变而使用,以废除序列特异性。
小DNA结合基序(诸如螺旋-转角-螺旋)识别特异性的DNA序列。在噬菌体434阻遏子的情况下,62个残基的片段被设计出并显示保留了DNA结合能力和特异性。
真核蛋白质、锌指中丰富的基序由大约30个能以特异性方式结合DNA的氨基酸组成。通常每个锌指仅识别3个DNA碱基,但是可以连接多个锌指以识别更长的序列。
增殖细胞核抗原(PCNA)形成一个非常紧的使dsDNA或ssDNA上下滑动的钳(甜甜圈)。来自泉古菌(crenarchaeota)的PCNA是以个独特的异质-三聚体,因此其可以功能化一个亚基并保留活性。其亚基示于SEQ ID NO:28,29和30中。PCNA优选为包括示于SEQ ID NO:28,29和30中的序列或其变体的三聚体。PCNA滑动钳(NCBI参考序列:ZP_06863050.1;SEQID NO:59)形成一个二聚体。所述PCNA优选为含有SEQ ID NO:59或其变体的二聚体。变体为具有这样的氨基酸序列的蛋白质:其从SEQ ID NO:28,29,30或59的氨基酸序列变化而来并保留多核苷酸结合活性。这可如上所述进行测定。变体通常为包含基于氨基酸同一性与SEQID NO:28,29和30在每一个的整个序列上具有至少50%同一性(或上文针对解旋酶所述的任意百分比的同一性)的序列并保留多核苷酸结合活性的三聚体,或者变体通常为包含基于氨基酸同一性与SEQ ID NO:59在其整个序列上具有至少50%同一性(或上文针对解旋酶所述的任意百分比的同一性)的序列并保留多核苷酸结合活性的二聚体。变体可以包含上文针对解旋酶所描述的或下文针对孔所描述的任意方式区别于SEQ ID NO:28,29,30或59的序列。变体优选包括一个或多个取代的半胱氨酸残基和/或一个或多个取代的Faz残基以促进与解旋酶的连接,如上所述。在一个优选的实施方式中,来自泉古菌(crenarchaeota)的PCNA的亚基1和2(即SEQ ID NO:28和29或其变体)连接,例如通过基因融合,并且获得的蛋白质连接到解旋酶以形成本发明的构建体。在使用该构建体的过程中,一旦所述构建体结合到所述多核苷酸,可以添加亚基3(即SEQ ID NO:30或其变体)以使得PCNA钳(或甜甜圈)完整。在一个优选的实施方式中,所述PCNA滑动钳的一个单体(即SEQ ID NO:59或其变体)连接到,例如基因融合到解旋酶以形成本发明的构建体。在使用构建体的过程中,一旦所述构建体结合到所述多核苷酸,可以添加第二个单体(即SEQ ID NO:59或其变体)以使得PCNA钳(或甜甜圈)完整。
所述多核苷酸结合基序可选自以下表3所示的任意基序。
表3.适合的多核苷酸结合基序
/>
/>
/>
/>
/>
所述多核苷酸结合部分优选衍生自多核苷酸结合酶。多核苷酸结合酶是能结合多核苷酸并能与所述多核苷酸相互作用以及修饰其至少一个性质的多肽。所述酶可以通过将所述多核苷酸剪切为单个核苷酸或更短的核苷酸链,诸如二核苷酸或三核苷酸对所述多核苷酸进行修饰。所述酶可以通过将所述多核苷酸定向或移动到一特定位置而对其进行修饰。所述多核苷酸结合部分不需要显示酶活性,只要其能结合所述多核苷酸并控制其移动即可。例如,所述部分可以衍生自已被修饰为去除了其酶活性或可以在防止其作为酶发挥作用的条件下使用的酶。
所述多核苷酸结合部分优选衍生自溶核酶。所述酶更优选衍生自酶分类(EC)组3.1.11,3.1.13,3.1.14,3.1.15,3.1.16,3.1.21,3.1.22,3.1.25,3.1.26,3.1.27,3.1.30和3.1.31的任意成员。所述酶可以是任意的在国际申请No.PCT/GB10/000133(公布号为WO2010/086603)中公开的任意酶。
优选的酶为核酸外切酶,聚合酶,解旋酶和拓扑异构酶,诸如促旋酶。适合的核酸外切酶包括,但不限于,来自大肠杆菌的核酸外切酶I,来自大肠杆菌的核酸外切酶III,来自嗜热栖热菌(T.thermophilus)的RecJ和噬菌体λ核酸外切酶,TatD核酸外切酶及其变体。
所述聚合酶优选为酶分类(EC)组2.7.7.6,2.7.7.7,2.7.7.19,2.7.7.48和2.7.7.49的任意成员。所述聚合酶优选为DNA-依赖性DNA聚合酶,RNA-依赖性DNA聚合酶,DNA-依赖性RNA聚合酶或RNA-依赖性RNA聚合酶。所述聚合酶可以是3173DNA聚合酶(其可由/>公司商购获得),SD聚合酶(可由/>商购获得)或其变体。所述多核苷酸结合部分优选衍生自Phi29 DNA聚合酶(SEQ ID NO:31)。所述部分可以包括SEQ IDNO:101所示的序列或其变体。SEQ ID NO:31的变体为具有从SEQ ID NO:31变化而来并保留多核苷酸结合活性的氨基酸序列的酶。这可以通过如上所述进行测定。所述变体可以含有促进多核苷酸结合和/或促进其在高盐浓度和/或室温下活性的修饰。
基于氨基酸同一性,在SEQ ID NO:31的氨基酸序列的整个长度上,所述变体将优选与该序列具有至少50%同一性。更优选的是,基于氨基酸同一性,所述变体多肽可以与SEQ ID NO:31的氨基酸序列在整个长度上,具有至少55%,至少60%,至少65%,至少70%,至少75%,至少80%,至少85%,至少90%和更优选至少95%,97%或99%同一性。在200或更多,例如230,250,270或280或更多的连续氨基酸长度上,可以具有至少为80%,例如至少85%,90%或95%的氨基酸同一性(严格同源性)。同一性可如下所述进行确定。所述变体可以下述针对SEQ ID NO:2和4描述的任意方式区别于野生型序列。
所述解旋酶可以是以上描述的任意的解旋酶。解旋酶二聚体和多聚体如下所述。所述多核苷酸结合部分可以是衍生自解旋酶的多核苷酸结合结构域。例如,所述多核苷酸结合部分优选包括SEQ ID NO:35或36所示的序列或其变体。SEQ ID NO:35或36的变体为具有由SEQ ID NO:35或36的氨基酸序列变化而来且保留多核苷酸结合活性的氨基酸序列的蛋白质。这可以如上所述进行测定。所述变体可以含有促进多核苷酸的结合和/或促进其在高盐浓度和/或室温下活性的修饰。
基于氨基酸同一性,在SEQ ID NO:35或36的氨基酸序列的整个长度上,所述变体优选与所述序列具有至少50%同一性。更优选的是,基于氨基酸同一性,所述变体多肽可以与SEQ ID NO:35或36的氨基酸序列在整个序列长度上,具有55%,至少60%,至少65%,至少70%,至少75%,至少80%,至少85%,至少90%和更优选至少95%,97%或99%同一性。在40或更多,例如50,60,70或80或更多的连续氨基酸长度上,可以具有至少为80%,例如至少85%,90%或95%的氨基酸同一性(严格同源性)。同一性可如下所述进行确定。所述变体可以下述针对SEQ ID NO:2和4描述的任意方式区别于野生型序列。
所述拓扑异构酶优选为酶分类(EC)组5.99.1.2和5.99.1.3的任意成员。
所述多核苷酸结合部分可以是上述任意的酶。
所述部分可以使用显示标记物标记。所述标记物可以是上述任意的标记物。
所述部分可以从任意的产生部分的有机体分离,所述有机体诸如大肠杆菌,嗜热栖热菌或噬菌体,或通过合成或重组手段制备。例如,所述部分可以如下所述通过体外翻译和转录合成。所述部分可以如下所述在纯化后大规模制备。
解旋酶寡聚体
从以上讨论中清楚的是,所述多核苷酸结合部分优选衍生自解旋酶。例如,其可以是来自解旋酶的多核苷酸结构域。所述部分更优选包括一个或多个解旋酶。所述解旋酶可以是上文参照本发明的构建体描述的那些解旋酶,包括本发明的解旋酶,以及没有根据本发明修饰的解旋酶。在这种实施方式中,本发明的所述构建体自然包括连接在一起的两个或更多个解旋酶。至少一个所述解旋酶优选根据本发明修饰。所述构建体可以包括两个,三个,四个,五个或更多个解旋酶。换句话,本发明的构建体可以包括解旋酶二聚体,解旋酶三聚体,解旋酶四聚体,解旋酶五聚体等。
所述两个或更多个解旋酶可以任何方向相互连接。相同的或相似的解旋酶可以通过每个解旋酶中相同氨基酸位置或空间上接近的氨基酸位置而连接。这称为“头-到-头”构造。替换的,相同的或相似的解旋酶可以通过每个解旋酶的相对侧或不同侧的位置而连接。这称为“头-到-尾”构造。包括三个相同的或相似的解旋酶的解旋酶三聚体可以同时包括头-到-头和头-到-尾构造。
所述两个或更多个解旋酶可以相互不同(即所述构建体是异质-二聚体,异质-三聚体,异质-四聚体或异质–五聚体等)。例如,本发明的构建体可以包括(a)本发明的一个或多个解旋酶和没有根据本发明修饰的一个或多个解旋酶;(b)两个或更多个不同的本发明的解旋酶;或(c)两个或更多个没有根据本发明修饰的解旋酶。所述构建体可以包括相同Dda解旋酶的两个不同变体。例如,所述构建体可以包括上述解旋酶中的一个的两个变体,每个变体中具有在不同位置引入的一个或多个半胱氨酸残基或Faz残基。在这种情况下,所述解旋酶为头-到-尾构造。
异质-二聚体可以两种可能的方式形成。第一种方式包括使用如上所述的同质-双官能连接器。所述解旋酶变体中的一个可用大量过量的连接器以一个连接器连接一分子蛋白质的方式进行修饰。然后该连接器修饰的变体可以从未修饰的蛋白质,可能的同质-二聚体和未反应的连接器中纯化出以与其他的解旋酶变体反应。获得的二聚体可随后从其他物质中纯化出。
第二种方式包括使用异质-双官能连接器。例如,所述解旋酶变体中的一个可使用在一个末端具有马来酰亚胺或碘代乙酰胺官能团并且在另一个末端具有环辛炔官能团的第一个PEG连接器进行修饰。其实例显示如下:
第二个解旋酶变体可以使用第二个PEG连接器进行修饰,所述第二个PEG连接器在一个末端具有马来酰亚胺或碘代乙酰胺官能团并且在另一个末端具有叠氮化物官能团。其实例显示如下:
然后,所述的具有两个不同连接器的两个解旋酶变体可以被纯化并连接在一起(使用不含铜的点击化学法)以制备二聚体。不含铜的点击化学法由于其理想的性质而在这些应用中使用。例如,其迅速,清洁并且对蛋白质无毒。然而,其他适合的生物正交化学法(bio-orthogonal chemistries)包括但不限于,施陶丁格化学法,肼或酰肼/醛或酮试剂法(HyNic+4FB化学法,包括所有的SolulinkTM试剂),狄尔斯-阿尔德试剂对和硼酸/水杨酸异羟肟酸酯(salicyhydroxamate)试剂法。
这两种连接相同解旋酶的两个不同变体的方式对于上述任意的构建体(其中所述解旋酶和所述部分相互不同)也是适用的,诸如两个不同解旋酶的二聚体和解旋酶-聚合酶二聚体。
也可以使用相似的方法连接不同的Faz变体。一个Faz变体可以用大量过量的连接器以一个连接器连接一分子蛋白的方式进行修饰。然后,该连接器修饰的Faz变体可以从未修饰的蛋白质,可能的同质-二聚体和未反应的连接器中纯化出以与另一个Faz变体反应。获得的二聚体可随后从其他物种中纯化出。
也可以通过连接相同解旋酶或不同解旋酶的半胱氨酸变体和Faz变体来制备异质-二聚体。在一个末端具有来酰亚胺或碘代乙酰胺官能团并且在另一个末端具有DBCO官能团的异质-双官能PEG连接器可以用在突变体的这种组合中。这种连接器的实例显示如下(DBCO-PEG4-马来酰亚胺):
可以通过改变在官能团之间的PEG单元的数目改变连接器的长度。
解旋酶异质-三聚体可以包括三个不同类型的解旋酶。这也适用于含有多于三个解旋酶的寡聚体。在构建体中的两个或更多个解旋酶可以是相同的解旋酶的不同变体,诸如SEQ ID NO:8到23中任一个的不同变体。可以对所述不同变体在不同位置进行修饰以促进通过不同位置进行的连接。所述异质-三聚体因此可以为头-到-头和头-到-尾构造。
在本发明的构建体中的两个或更多个解旋酶可以是相互相同的(即所述构建体是同质-二聚体,同质-三聚体,同质-四聚体或同质-五聚体)。在这种实施方式中,所述解旋酶优选在每个解旋酶中使用相同位置进行连接。所述解旋酶因此是头-到-头连接。所述解旋酶可以使用在解旋酶中相同位置代入的半胱氨酸残基或Faz残基连接。在相同的解旋酶变体中的半胱氨酸残基可以使用含有硫醇反应性基团诸如马来酰亚胺或碘代乙酰胺的同质-双官能连接器连接。在以下实例中这些官能团可以位于聚乙二醇(PEG)链的末端:
可以改变连接器的长度直到适合所需要的应用。例如,n可以为2,3,4,8,11,12,16或更多。PEG连接器是适合的,因为其具有诸如水溶性等良好性能。其他非PEG连接器也可以在半胱氨酸连接中使用。
通过使用相似的方法,相同的Faz变体也可以被制备进同质-二聚体中。可使用具有DIBO官能团的同质-双官能连接器连接两分子相同的Faz变体以便使用不含Cu2+的点击化学法制备同质-二聚体。连接器的实例显示如下:
PEG连接器的长度可以改变以包括2,4,8,12,16或更多个PEG单元。该连接器也可以被制备以含有荧光标签以方便定量。该荧光标签也可以引入到马来酰亚胺连接器中。
如果在根据本发明的解旋酶中引入两个或更多个半胱氨酸残基或非天然氨基酸,并且在不同解旋酶单体中不同的半胱氨酸或非天然氨基酸连接在一起,则同质-二聚体或更长的同质-寡聚体也可以被制成头-到-尾的构造。例如。同质-寡聚体可以由包括Y279C和G357C的SEQ ID NO:8的变体形成,并且一个单体的279位的C可以与另一个单体的357位的C连接。相似的,同质-寡聚体可以由包括I281C和G357C的SEQ ID NO:8的变体形成,并且一个单体的281位的C可以与另一个单体的357位的C连接。当Faz代替C被引入这些位置时,这同样适用。这些C和Faz突变体允许产生一组或一队解旋酶。
多核苷酸序列
本发明提供了含有编码本发明的解旋酶、本发明的多肽或本发明的构建体的序列的多核苷酸。所述多核苷酸可以含有这样的序列。所述多核苷酸可以是上述讨论的任意的多核苷酸。
本文描述的任意的蛋白可以使用本领域已知的方法表达。可以使用本领域标准方法分离和复制多核苷酸序列。染色体DNA可以从产生解旋酶的生物体诸如伯顿拟甲烷球菌和/或产生SSB的生物体,诸如大肠杆菌提取。可以使用具有特异性引物的PCR扩增感兴趣的基因编码序列。然后可将扩增的序列插入到重组复制载体诸如克隆载体中。所述载体可以用于在相容的宿主细胞中复制所述多核苷酸。因此可以通过将编码感兴趣序列的多核苷酸引入可复制载体中,包括将该载体引入相容的宿主细胞中,以及在引发载体复制的条件下使所述宿主细胞生长,而制备多核苷酸序列。所述载体可以从所述宿主细胞回收。适合的用于克隆多核苷酸的宿主细胞为本领域已知的并在下文更详细描述。
可将所述多核苷酸序列克隆进适合的表达载体中。在表达载体中,多核苷酸序列通常可操作性连接到控制序列,该控制序列能通过宿主细胞提供所述编码序列的表达。该表达载体可用于表达构建体。
术语“可操作性连接”指的是并列放置,其中描述的多个组分处于使它们以预期方式发挥功能的关系。控制序列“可操作性连接”到编码序列指的是在与控制序列兼容的条件下以实现编码序列的表达的方式连接。相同或不同的多核苷酸的多个拷贝可以被引入载体中。
所述表达载体可以随后被引入适合的宿主细胞中。因此,可以通过将编码构建体的多核苷酸序列引入表达载体中,包括将所述载体引入兼容的细菌宿主细胞中,并在引发多核苷酸序列表达的条件下使所述宿主细胞生长,而制备构建体。
所述载体可以为例如具有复制起点的质粒、病毒或噬菌体载体,可选的为用于表达所述多核苷酸序列的启动子,以及可选的为所述启动子的调控因子。所述载体可含有一个或多个选择性标记基因,例如氨苄青霉素抗性基因。可选择与宿主细胞(针对其设计了所述表达载体)兼容的启动子和其他表达调控信号。通常使用T7,trc,lac,ara或λL启动子。
所述宿主细胞通常以高水平表达所述构建体。选择与用于转化所述宿主细胞的表达载体兼容的宿主细胞进行多核苷酸序列转化。所述宿主细胞通常为细菌的并优选大肠杆菌。任何具有λDE3溶原菌(lysogen)的细胞,例如Rosetta2(DE3)pLys,C41(DE3),BL21(DE3),JM109(DE3),B834(DE3),TUNER,Origami和Origami B,均能表达含有T7启动子的载体。
本发明还提供过了连接(或结合)多核苷酸的两个或更多个解旋酶的组(series),其中所述两个或更多个解旋酶中的至少一个是本发明的Dda解旋酶。所述组可以包括任意数量的解旋酶,诸如2,3,4,5,6,7,8,9,10或更多个解旋酶。任意数量的解旋酶可以是本发明的Dda解旋酶。两个或更多个解旋酶的全部优选为本发明的Dda解旋酶。本发明的一个或多个Dda解旋酶可以是以上讨论的任意的Dda解旋酶。
所述两个或更多个解旋酶可以是相同的或不同的解旋酶。例如,如果所述组包括两个或更多个本发明的Dda解旋酶,本发明的Dda解旋酶可以是相同的或不同的。
所述组可以包括任意数量和组合的本发明的Dda解旋酶。所述两个或更多个解旋酶的组优选包括至少两个本发明的Dda解旋酶。所述组可以包括两个或更多个Dda解旋酶,每个Dda解旋酶包括SEQ ID NO:8的变体,所述变体包括(或仅包括)(i)E94C/A360C,(ii)E94C/A360C和随后的(ΔM1)G1G2(即M1缺失和随后的G1和G2添加),(iii)E94C/A360C/C109A/C136A,(iv)E94C/A360C/C109A/C136A和随后的(ΔM1)G1G2(即M1缺失和随后的G1和G2添加),(v)E94C/A360C/W378A,(vi)E94C/A360C/W378A和随后的(ΔM1)G1G2(即M1缺失和随后的G1和G2添加),(vii)E94C/A360C/C109A/C136A/W378A或(viii)
E94C/A360C/C109A/C136A/W378A和随后的(ΔM1)G1G2(即M1缺失和随后的G1和G2添加)。在所述组中,本发明的一个Dda解旋酶优选包括SEQ ID NO:8的变体,所述变体包括(或仅包括)(i)到(iv)中的一个,在所述组中,本发明的另一个Dda解旋酶优选包括SEQ IDNO:8的变体,所述变体包括(或仅包括)(v)到(viii)中的一个。
除了本发明的一个或多个Dda解旋酶,所述组可以包括不是本发明的一部分的一个或多个解旋酶。所述一个或多个解旋酶可以是或衍生自Hel308解旋酶,RecD解旋酶,诸如TraI解旋酶或TrwC解旋酶,XPD解旋酶或Dda解旋酶。所述一个或多个解旋酶可以是下述国际申请中公开的解旋酶、修饰的解旋酶或解旋酶构建体中的任意解旋酶:国际申请No.PCT/GB2012/052579(公布号为WO 2013/057495);PCT/GB2012/053274(公布号为WO 2013/098562);PCT/GB2012/053273(公布号为WO2013/098561);PCT/GB2013/051925(公布号为WO2014/013260);PCT/GB2013/051924(公布号为WO 2014/013259)和PCT/GB2013/051928(公布号为WO 2014/013262);以及2013年10月18日申请的UK申请No.1318464.3。特别的,所述一个或多个解旋酶优选被修饰以减少在多核苷酸结合结构域的开口的尺寸,所述多核苷酸可以至少一种构型状态穿过所述开口而从所述解旋酶解脱。这在WO 2014/013260中有公开。
在所述组中的所述两个或更多个解旋酶可以是相互分离的。所述组中的所述两个或更多个解旋酶可以在随着多核苷酸移动穿过所述孔而通过跨膜孔结合在一起。所述组中的所述两个或更多个解旋酶可以相互接触。
优选所述两个或更多个解旋酶除了通过多核苷酸相互连接之外不相互连接。所述两个或更多个解旋酶优选不相互共价连接。
所述两个或更多个解旋酶可以相互连接或相互共价连接。所述解旋酶可以任何次序以及使用任何方法连接。一组连接的解旋酶可以称为一队。
本发明的组可以连接/结合的多核苷酸在下面详细描述。
本发明的方法
本发明提供了一种控制目标多核苷酸移动的方法。所述方法包括使目标多核苷酸与Dda解旋酶、本发明的修饰的解旋酶或本发明的构建体接触,并由此控制所述多核苷酸的移动。该方法优选在跨所述孔施加的电势的下实施。如下详细描述的,施加的电势通常导致在孔和解旋酶或构建体之间形成复合体。施加的电势可以为电压电势。替换的,所施加电势可以为化学电势。其一个实例为使用跨两性分子层的盐梯度。盐梯度在Holden等,J AmChem Soc.2007 Jul 11;129(27):8650-5中公开。
本发明还提供了表征目标多核苷酸的方法。所述方法包括(a)将目标多核苷酸与跨膜孔和Dda解旋酶、本发明的修饰的解旋酶或本发明的构建体接触,使得所述解旋酶或构建体控制目标多核苷酸穿过所述孔的移动。所述方法还包括(b)随着所述多核苷酸相对于所述孔移动,获取一个或多个测量值,其中所述测量值代表所述目标核苷酸的一个或多个特征,并由此表征所述目标多核苷酸。
在本发明的所有方法中,所述解旋酶可以是如上针对本发明的构建体所述的任意的解旋酶,包括本发明的修饰的Dda解旋酶和未根据本发明修饰的Dda解旋酶。
可以在这些方法中使用任意数量的本发明的Dda解旋酶。例如,可以使用1,2,3,4,5,6,7,8,9,10或更多个解旋酶。如果使用本发明的两个或更多个Dda解旋酶,它们可以相同或不同。适合的数目和组合如上述针对本发明的组中所表述的。它们可同等应用于本发明的方法。
如果使用两个或更多个解旋酶,它们就可以相互连接。所述两个或更多个解旋酶可以相互共价连接。所述解旋酶可以任何次序以及使用任何方法连接。优选的用于本发明的解旋酶构建体在国际申请No.PCT/GB2013/051925(公布号为WO 2014/013260);
PCT/GB2013/051924(公布号为WO 2014/013259)和PCT/GB2013/051928(公布号为WO 2014/013262)和2013年10月18日递交的UK申请No.1318464.3中有描述。
如果使用两个或更多个解旋酶,它们优选除了通过多核苷酸相互连接之外不彼此连接。所述两个或更多个解旋酶更优选不相互共价连接。
步骤(a)和(b)优选在跨如上所述的跨孔施加电势的条件下实施。在一些情况下,随着多核苷酸相对于孔移动,使用穿过孔的电流确定所述目标多核苷酸的序列。这就是链测序。
本发明的方法为用于表征目标多核苷酸。多核苷酸如上所限定。
所述目标多核苷酸的整个或仅部分可以使用该方法表征。所述目标多核苷酸能够为任何长度。例如,多核苷酸可以为至少10个,至少50个,至少100,至少150,至少200,至少250,至少300,至少400或至少500个核苷酸对长度。所述多核苷酸可以为1000或更多个核苷酸对,5000或更多个核苷酸对长度或100000或更多个核苷酸对长度。
所述目标多核苷酸通常存在于任何合适的样品中。本发明通常在已知含有或怀疑含有目标多核苷酸的样品上实施。可替换的,可以对样本实施本发明,以确认已知或预期存在于所述样本中的一个或多个目标多核苷酸的同一性。
所述样品可以是生物样品。本发明可以针对从任何生物体或微生物中获得或提取的样品在体外实施。所述生物体或微生物通常是古核的(archaean),原核的或真核的,并且通常属于以下五界中的一个:植物界,动物界,真菌,无核原生物和原生生物。本发明针对从任何病毒中获得或提取的样品在体外实施。所述样品优选是液体样品。样品通常包括患者的体液。所述样品可以是尿液,淋巴液,唾液,粘液或羊水,但优选血液,血浆或血清。通常,所述样品是来源于人的,但可替代地可以是来自其他哺乳动物的,如来自商业上养殖的动物如马,牛,绵羊或猪,或者可以是宠物如猫或狗。或者,植物来源的样品通常从商业作物获得,如谷类,豆类,水果或蔬菜,例如小麦,大麦,燕麦,芸苔,玉米,大豆,水稻,香蕉,苹果,番茄,土豆,葡萄,烟草,菜豆,小扁豆,甘蔗,可可,棉花。
所述样品可以是非生物样品。非生物样品优选为液体样品。非生物样品的示例包括外科手术液体,水如饮用水,海水或河水,以及用于实验室测试的试剂。
样品通常在用于本发明前进行处理,例如通过离心或通过膜滤除不需要的分子或细胞,例如红血细胞。可以在获取所述样本后立即进行检测。通常也可以在分析前储存所述样本,优选低于-70℃。
跨膜孔是一定程度跨越膜的结构。它允许通过施加的电势驱动水合离子使其跨膜流动或在膜内流动。跨膜孔通常跨越整个膜以使得水合离子可以从膜的一侧流动到所述膜的另一侧。然而,跨膜孔不是必须跨越膜。其可以在一端封闭。例如,孔可以是膜中的井,水合离子可以沿着其流动或流入。
本发明可使用任何跨膜孔。该孔可以是生物的或人造的。合适的孔包括但不限于,蛋白质孔,多核苷酸孔和固态孔。
根据本发明可使用任何膜。合适的膜是现有技术中已知的。该膜优选为两性分子层。两性分子层是一种由具有至少一个亲水性部分和至少一个亲脂性或疏水性部分的两性分子诸如磷脂质形成的层。两性分子可以是合成的或天然存在的。非天然存在的两亲物质和形成单分子层的两亲物质是本领域已知的,并且包括嵌段共聚物(Gonzalez-Perez etal.,Langmuir,2009,25,10447-10450)。嵌段共聚物是其中两个或多个单体亚单元聚合在一起而形成单一聚合物链的聚合物材料。嵌段共聚物具有的性质通常由每个单体亚单元贡献。然而,嵌段共聚物可具有从各亚单元形成的聚合物不具备的独特的性质。嵌段共聚物可以被改造,使得该单体亚单元之一是疏水性的(即亲脂性),而其它亚单元在水介质中是亲水性的。在这种情况下,该嵌段共聚物可具有两亲特性,并且可以形成模仿生物膜的结构。嵌段共聚物可以是二嵌段共聚物(由两个单体亚单元组成),但也可以由两个以上的单体亚单元构成,以形成相当于两亲物质的更复杂的结构。所述共聚物可以为三嵌段,四嵌段或五嵌段共聚物。
两性分子可以是单层或双层。两性分子层通常为平面脂质双分子层或支撑双层。
两性分子层通常是脂质双分子层。脂质双分子层为细胞膜的模型,且作为一系列实验研究的优秀的平台。例如,脂质双分子层可通过单通道记录器用于膜蛋白的体外研究。或者,脂质双分子层可作为生物传感器来检测一系列物质的存在。脂质双分子层可以为任何脂质双分子层。合适的脂质双分子层包括但不限于,平面脂质双分子层,支撑双层或脂质体。脂质双分子层优选为平面脂质双分子层。合适的脂质双分子层在国际申请No.PCT/GB08/000563(公布号为WO 2008/102121),国际申请No.PCT/GB08/004127(公布号为WO2009/077734)和国际申请No.PCT/GB2006/001057(公布号为WO 2006/100484)中公开。
用于形成脂质双分子层的方法是本领域已知的。在实施例中公开了合适的方法。脂质双分子层通常由Montal和Mueller的方法形成(Proc.Natl.Acad.Sci.USA.,1972;69:3561-3566),其中的脂质单分子层在穿过孔的任一侧负载在水溶液/空气界面上,所述孔垂直于所述界面。
Montal和Mueller的方法非常受欢迎,因为其成本经济并是一种相对迅速的形成具有良好质量的适合蛋白质孔嵌入的脂质双分子层的方法。形成脂质双分子层的其它常规方法包括尖浸渍(tip dipping),涂覆双分子层(painting bilayers)和膜片钳。
在优选的实施例中,形成脂质双分子层如国际申请No.PCT/GB08/004127(公开为WO 2009/077734)中所描述。
在另一个优选的实施方案中,膜是固态层。固态层不是生物来源的。换句话说,固态层不是由生物环境获得或分离出的,所述生物环境例如生物体或细胞,或生物学上可获得结构的合成制造形式。固态层可以由有机材料和无机材料形成,包括但不限于,微电子材料,绝缘材料,例如Si3N4,Al2O3和SiO,有机和无机聚合物如聚酰胺,塑料如特氟隆或柔性体如双组分加成固化硅橡胶,以及玻璃。固态层可由单原子层例如石墨烯,或只有几个原子厚度的层形成。合适的石墨层在国际申请No.PCT/US2008/010637(公开为WO 2009/035647)中公开。
实施该方法通常利用(i)包含孔的人工两性分子层;(ii)分离的,天然存在的包含孔的脂质双分子层,或(iii)含有孔嵌入其中的细胞。该方法通常使用人工两性分子层,如人工脂质双分子层实施。除了孔,该分子层可包含其他跨膜和/或膜内蛋白以及其他分子。合适的设备和条件在下面讨论。本发明的方法通常在体外实施。
所述多核苷酸可以连接到膜上。这可以使用任何已知的方法来完成。如果膜是两性分子层,如脂质双分子层(如在上面详细讨论的),所述多核苷酸优选通过在所述膜中存在的多肽或通过在所述膜中存在的疏水锚被连接到该膜上。疏水锚优选脂质,脂肪酸,甾醇,碳纳米管或氨基酸。
所述多核苷酸可以直接连接到膜上。所述多核苷酸优选通过接器连接到膜上。优选的接器包括但不限于,聚合物,如多核苷酸,聚乙二醇(PEG)和多肽。如果所述多核苷酸直接连接到所述膜,由于该膜和所述解旋酶之间的距离,导致表征不能进行到所述多核苷酸的末端,则将丢失一些数据。如果使用接器,则多核苷酸能够被表征完全。如果使用接器时,可将接器连接到所述多核苷酸的任何位置。接器通常连接到所述多核苷酸的尾部聚合物处。
该连接可以是稳定的或暂时的。对于某些应用,该连接的暂时性的性质是是优选的。如果稳定的连接分子直接地连接到多核苷酸的5'末端或3'末端,则由于该膜和解旋酶的活性位点之间的距离,表征不能进行到多核苷酸的末端,则将会导致数据的丢失。如果连接是暂时性的,那么当连接的末端随机变成没有膜时,则多核苷酸能被表征完全。与膜形成稳定的或暂时性的连接的化学基团将在下文进行更详细的讨论。所述多核苷酸可以例如使用胆固醇或脂酰基链的脂质双分子层,暂时性的连接到两性分子层。可以使用任何具有6至30个碳原子长度的脂酰基链,例如棕榈酸。
在优选的实施例中,多核苷酸连接到两性分子层。将多核苷酸连接到合成的脂质双分子层之前已用各种不同的系链策略(tethering strategies)实施。这些策略总结于下方表4中。
表4
多核苷酸可以使用修饰的亚磷酰胺在合成反应中官能化,其更容易与添加的反应性基团如硫醇,胆固醇,脂质和生物素基团并存。这些不同的连接化学给予多核苷酸一系列连接选择。每个不同的修饰基团以稍微不同的方式连接到所述多核苷酸且连接并非总是持久的,所以给予多核苷酸到膜的不同的停留时间。暂时性连接的优点如上所述。
多核苷酸的连接也可以通过若干将反应性基团添加到所述多核苷酸的其他手段来实现。将反应性基团添加到DNA任一端之前已经被报道。硫醇基团可以使用多核苷酸激酶和ATPγS被添加到ssDNA的5'末端(Grant,G.P.and P.Z.Qin(2007)."A facile methodfor attaching nitroxide spin labels at the 5'terminus of nucleic acids."Nucleic Acids Res 35(10):e77)。可使用末端转移酶添加更多选择的化学基团,例如生物素,硫醇和荧光团,以将修饰的寡核苷酸结合到ssDNA的3'末端(Kumar,A.,P.Tchen,et al.(1988)."Nonradioactive labeling of synthetic寡核苷酸probes with terminaldeoxynucleotidyl transferase."Anal Biochem 169(2):376-82)。
或者,反应性基团可以被认为是将DNA互补短片段添加到一个已经连接到膜的DNA上,使得连接可以通过杂交来实现。使用T4 RNA连接酶I进行短片段ssDNA连接已经被报道(Troutt,A.B.,M.G.McHeyzer-Williams,et al.(1992)."Ligation-anchored PCR:asimple amplification technique with single-sided specificity."Proc Natl AcadSci U S A 89(20):9823-5)。可替代地,ssDNA或dsDNA可被连接到天然(native)dsDNA上,然后通过热变性或化学变性将两条链分离。对于天然dsDNA,可以将ssDNA的一段添加到双链的一端或二端,或可以将dsDNA添加到双链的一端或二端。然后,当双链被变性时,如果ssDNA被用于连接,则每个单链将具有5'修饰或3'修饰,如果dsDNA被用于连接,则每个单链将具有5'修饰,3'修饰,或其组合。如果多核苷酸是人工合成的链,在多核苷酸的化学合成的过程中可以引入偶联化学基团。例如,多核苷酸可以使用具有反应性基团连接到其的引物来合成。
用于基因组DNA的区段扩增的常用技术是使用聚合酶链反应(PCR)。此处,使用两个合成的寡核苷酸引物,可以产生相同DNA区段的许多拷贝,其中对于每个拷贝,在双链中的每条链的5'将是合成的多核苷酸。通过使用具有反应性基团如胆固醇,硫醇,生物素或脂质的反义引物,扩增的目标DNA的每个拷贝将包含用于连接的反应性基团。
跨膜孔优选跨膜蛋白孔。跨膜蛋白孔是多肽或允许水合离子例如分析物从膜的一侧流动到膜的另一侧的一系列多肽。在本发明中,跨膜蛋白孔能够形成允许通过施加的电势驱动的水合离子流从所述膜的一侧流动到另一侧的孔。跨膜蛋白孔优选允许分析物如核苷酸从膜如脂质双分子层的一侧流动到膜的另一侧。跨膜蛋白孔允许多核苷酸,如DNA或RNA,被移动穿过孔。
跨膜蛋白孔可以为单体或寡聚物。所述孔优选由数个重复亚基,如至少6个,至少7个,至少8个或至少9个亚基构成。所述孔优选由6个,7个,8个或9个亚基构成。所述孔优选为六聚体,七聚体,八聚体或九聚体的孔。所述孔可以是同质寡聚体或异质寡聚体。
跨膜蛋白孔通常包括离子可以流经的桶状体或通道。孔的亚基通常围绕中心轴线并向跨膜β桶状体或通道或跨膜α螺旋束或通道提供链(strands)。
跨膜蛋白孔的桶状体或通道通常包括促进与分析物相互作用的氨基酸,所述分析物如核苷酸,多核苷酸或核酸。这些氨基酸优选位于所述桶状体或通道的缢痕附近。跨膜蛋白孔通常包括一个或多个带正电荷的氨基酸,例如精氨酸,赖氨酸或组氨酸,或芳香族氨基酸如酪氨酸或色氨酸。这些氨基酸通常促进孔与核苷酸,多核苷酸或核酸之间的相互作用。
根据本法明使用的跨膜蛋白孔可以衍生自β-桶状孔或α-螺旋束孔。β-桶状孔包括由β-链形成的桶状体或通道。合适的β-桶状孔包括但不限于,β-毒素例如溶血素,炭疽毒素和杀白细胞素,以及细菌的外膜蛋白/孔蛋白例如耻垢分枝杆菌(耻垢分枝杆菌(Mycobacterium smegmatis))孔蛋白(MSP),例如MspA,MspB,MspC或MspD,外膜孔蛋白F(OmpF),外膜孔蛋白G(OmpG),外膜磷脂酶A和奈瑟氏菌(奈瑟氏菌属(Neisseria))自转运脂蛋白(NalP)。α-螺旋束孔包括由α-螺旋形成的桶状物或通道。合适的α-螺旋束孔包括但不限于,内膜蛋白和α外膜蛋白,例如WZA和ClyA毒素。跨膜孔可衍生自Msp或衍生自α-溶血素(α-HL)。
跨膜蛋白孔优选衍生自Msp,优选衍生自MspA。该孔为低聚的且通常包含衍生自Msp的7个,8个,9个或10个单体。孔可以是衍生自含相同单体的MsP的同源寡聚孔。或者,孔可以是衍生自含至少一个不同于其他的单体的Msp的异源寡聚孔。优选地,孔衍生自MspA或其同源物或并系同源物(paralog)。
衍生自Msp的单体通常包含如SEQ ID NO:2或其变体的序列。SEQ ID NO:2为MspA单体的MS-(B1)8突变体。其包括以下突变:D90N,D91N,D93N,D118R,D134R和E139K。SEQ IDNO:2的变体是具有从SEQ ID NO:2变化而来的氨基酸序列且保留了其形成孔的能力的多肽。可以使用本领域已知的任何方法测定变体形成孔的能力。例如,变体可以连同其他合适的亚基被插入到两性分子层,且可以确定其寡聚化形成孔的能力。将亚基插入膜例如两亲膜的方法是本领域已知的。例如,亚基可以以纯化的形式悬浮在含有脂质双分子层的溶液中,从而使其扩散到脂质双分子层并通过结合到脂质双分子层而插入,并组装成功能状态。或者,可以使用如M.A.Holden,H.Bayley.J.Am.Chem.Soc.2005,127,6502-6503和国际申请No.PCT/GB2006/001057(公布号为WO 2006/100484)中所描述的“拾取和放置”方法将亚基直接插入膜。
对于整个长度的SEQ ID NO:2的氨基酸序列,基于氨基酸同一性,变体优选与该序列具有至少50%的序列同源性。更优选地,基于氨基酸同一性,变体与整个序列的SEQ IDNO:2的氨基酸序列具有至少55%,至少60%,至少65%,至少70%,至少75%,至少80%,至少85%,至少90%,更优选至少95%,97%或99%的同源性。在100或更多,例如125,150,175或200或更多的连续氨基酸长度上,具有至少为80%,例如至少85%,90%或95%的氨基酸同一性(严格同源性)。
本领域的标准方法可用于确定同源性。例如,UWGCG软件包提供BESTFIT程序,该程序可以用来计算同源性,例如在其默认设置使用(Devereux et al(1984)Nucleic AcidsResearch12,p387-395)。PILEUP和BLAST算法可以用来计算同源性或比对序列(例如鉴定等价残基或相应的序列(通常在它们的默认设置)),如Altschul S.F.(1993)J Mol Evol 36:290-300;Altschul,S.F et al(1990)J Mol Biol 215:403-10中所描述的。公众可通过国家生物技术信息中心获得用于进行BLAST分析的软件(http://www.ncbi.nlm.nih.gov/)。
SEQ ID NO:2是MspA单体的MS-(B1)8突变体。变体与MspA比较,可包括MspB,MspC或MspD单体中的任何突变。MspB,MspC和MspD的成熟形式在SEQ ID NO:5至SEQ ID NO:7中示出。特别地,变体可以包括存在于MspB中的下列取代:A138P。变体可以包括存在于MspC中的下列取代中的一个或多个:A96G,N102E和A138P。所述变体可包含存在于MspD中的下列突变中的一个或多个:G1缺失,L2V,E5Q,L8V,D13G,W21A,D22E,K47T,I49H,I68V,D91G,A96Q,N102D,S103T,V104I,S136K和G141A。所述变体可以包括来自Msp B,Msp C和Msp D的突变体和取代物中的一个或多个的组合。变体优选包含突变L88N。SEQ ID NO:2的变体具有突变L88N还具有MS-(B1)8的所有突变,并被称为MS-(B2)8。在本发明中使用的孔优选MS-(B2)8。进一步优选的变体包括突变G75S/G77S/L88N/Q126R。SEQ ID NO:2的变体具有突变G75S/G77S/L88N/Q126R还具有MS-(B1)8的所有突变,并被称为MS-(B2C)8。在本发明使用的孔优选MS-(B2)8或MS-(B2C)8。
除了以上讨论的,可对SEQ ID NO:2的氨基酸序列进行氨基酸取代,例如高达1,2,3,4,5,10,20或30个氨基酸的取代。保守取代用相似化学结构,相似化学性质或相似侧链体积的其他氨基酸替代氨基酸。引入的氨基酸可以与它们要替代的氨基酸具有相似的极性,亲水性,疏水性,碱性,酸性,中性或带电性。或者,所述保守取代可在预先存在的芳香族或脂肪族氨基酸的位置引入其他芳香族或脂肪族氨基酸。保守氨基酸的改变是本领域公知的,并且可以根据表5中所定义的20种主要氨基酸的特性进行选择。其中,氨基酸具有相似极性,该极性可以通过参考表6中的氨基酸侧链的亲水性值而确定。
表5氨基酸的化学性质
Ala 脂肪族,疏水,中性 Met 疏水,中性
Cys 极性,疏水,中性 Asn 极性,亲水,中性
Asp 极性,亲水,带电荷(-) Pro 疏水,中性
Glu 极性,亲水,带电荷(-) Gln 极性,亲水,中性
Phe 芳香族,疏水,中性 Arg 极性,亲水,带电荷(+)
Gly 脂肪族,中性 Ser 极性,亲水性,中性
His 芳香族,极性,亲水性,带电荷(+) Thr 极性,亲水性,中性
Ile 脂肪族,疏水,中性 Val 脂肪族,疏水,中性
Lys 极性,亲水,带电荷(+) Trp 芳香族,疏水,中性
Leu 脂肪族,疏水,中性 Tyr 芳香族,极性,疏水
表6-亲水性大小
SEQ ID NO:2的氨基酸序列的一个或多个氨基酸残基可另外从上述多肽中缺失。可缺失高达1,2,3,4,5,10,20或30个或更多个氨基酸残基。
变体可包括SEQ ID NO:2的片段。这些片段保持孔形成活性。片段可以至少为50,100,150或200个氨基酸长度。这类片段可用于产生孔。片段优选包含SEQ ID NO:2的孔形成域。片段必须包含SEQ ID NO:2的残基88、90、91、105、118和134之一。通常,片段包括SEQ IDNO:2的所有残基88、90、91、105、118和134。
一个或多个氨基酸可以替代地或额外地添加到上述多肽中。可在SEQ ID NO:2或多肽变体或其片段的氨基酸序列的氨基末端或羧基末端提供延伸。所述延伸可以很短,例如,1到10个氨基酸长度。或者,延伸可以更长,例如长达50或100个氨基酸。载体蛋白可以根据本发明被融合到氨基酸序列。其他融合蛋白在下文中更详细地讨论。
如上所讨论的,变体具有从SEQ ID NO:2的氨基酸序列变化而来的氨基酸序列且保留其形成孔能力的多肽。变体通常包含负责孔形成的SEQ ID NO:2的区域。包含β-桶状体的Msp的孔形成能力由每个亚基中的β-折叠(β-sheets)提供。SEQ ID NO:2的变体通常包含SEQ ID NO:2中形成β-折叠的的区域。可对SEQ ID NO:2中形成β-折叠的区域进行一个或多个修饰,只要得到的变体保留了其形成孔的能力。SEQ ID NO:2的变体优选地包括一个或多个修饰,如在α-螺旋和/或环状区域内取代,添加或缺失。
衍生自Msp的单体可以被修饰以辅助它们的鉴定或纯化,例如通过加入组氨酸残基(组氨酸标签),天冬氨酸残基(天冬氨酸标签),链亲和素标签或Flag标签,或通过加入信号序列以促进它们从细胞中分泌,该细胞中的多肽不天然地含有该信号序列。引入遗传标签的替换方式是通过化学反应将标签连到孔上天然的或人工位点。这方面的例子是将凝胶迁移试剂与人工连接在孔外的半胱氨酸进行反应。这已被证明是用于分离溶血素异源寡聚物的方法(Chem Biol.1997Jul;4(7):497-505)。
衍生自Msp的单体可以用可显示标记物进行标记。所述显示标记物可为任何使孔可被检测的合适的标记。合适的标记物如上所述。
衍生自Msp的单体也可以使用D-氨基酸生产。例如,衍生自Msp的单体可包含L-氨基酸和D-氨基酸的混合物。这是本领域中用于生产这类蛋白质或肽常规的。
衍生自Msp的单体含有一个或多个特异性修饰以促进核苷酸区别。衍生自Msp的单体也可以含有其它非特异性修饰,只要它们不干扰孔的形成。一些非特异性侧链修饰是本领域已知的,并可以对衍生自Msp的单体的侧链进行修饰。该修饰包括,例如,通过与醛反应然后用NaBH4还原进行氨基酸的还原性烷基化,用甲基乙酰亚胺酯(methylacetimidate)进行脒基化,或用乙酸酐进行酰化。
衍生自Msp的单体可以使用本领域中已知的标准方法来制备。衍生自Msp的单体可以通过合成或重组方式制成。例如,所述孔可通过体外翻译和转录(IVTT)合成。制造孔的合适的方法在国际申请Nos.PCT/GB09/001690(公布号为WO 2010/004273),PCT/GB09/001679(公布号为WO 2010/004265)或PCT/GB10/000133(公布号为WO 2010/086603)中描述。讨论了将孔插入膜的方法。
跨膜蛋白孔还优选衍生自α-溶血素(α-HL)。野生型α-HL孔由7个相同的单体或亚基(即它是七聚体)形成。α-溶血素-NN的一个单体或亚基的序列示于SEQ ID NO:4中。跨膜蛋白孔优选包括七个单体,每个包含SEQ ID NO:4或其变体所示的序列。SEQ ID NO:4的1,7至21,31至34,45至51,63至66,72,92至97,104至111,124至136,149至153,160至164,173至206,210至213,217,218,223至228,236至242,262至265,272至274,287至290和294位氨基酸形成环状区域。SEQ ID NO:4的残基113和147形成α-HL的桶状体或通道的缢痕部分。
在该实施例中,本发明的方法优选使用包括7个蛋白质或单体,所述蛋白质或单体各自包含SEQ ID NO:4或其变体所示的序列的孔。7个蛋白质可以是相同的(同源七聚体)或不同的(异源七聚体)。
SEQ ID NO:4的变体是具有从SEQ ID NO:4的氨基酸序列变化而来的氨基酸序列的蛋白质,并保留其形成孔能力。可以使用本领域已知的任何方法来测定变体形成孔的能力。例如,变体可以连同其他合适的亚基被插入到两性分子层如脂质双分子层,并可确定其寡聚形成孔的能力。将亚基插入两性分子层例如脂质双分子层的方法是本领域中已知的。合适的方法如上所述。
所述变体可以包括促进共价连接到解旋酶或构建体或与解旋酶或构建体作用的修饰。该变体优选地包括一个或多个反应性的半胱氨酸残基,以促进连接到解旋酶或构建体。例如,变体可包括在SEQ ID NO:4的8,9,17,18,19,44,45,50,51,237,239和287位点中的一个或多个,和/或在氨基或羧基末端的半胱氨酸。优选的变体包含在SEQ ID NO:4的8,9,17,237,239和287位残基用半胱氨酸进行取代(A8C,T9C,N17C,K237C,S239C或E287C)。所述变体优选为在国际申请No.PCT/GB09/001690(公布号为WO 2010/004273),PCT/GB09/001679(公布号为WO 2010/004265)或PCT/GB10/000133(公布号为WO 2010/086603)中所描述的任何变体。
变体还可以包括任何能促进与核苷酸的相互作用的修饰。
所述变体可以是由生物体例如由葡萄球(Staphylococcus)菌天然表达的天然存在的变体。或者,变体可以体外表达或由细菌如大肠杆菌(大肠杆菌(Escherichia coli))重组表达。变体还包括由重组技术产生的非天然存在的变体。在SEQ ID NO:4整个长度的氨基酸序列上,基于氨基酸同一性,变体将优选与该序列具有至少50%的同源性。更优选地,基于氨基酸的相似性,相比于SEQ ID NO:4的整个序列的氨基酸序列,变体多肽可与该序列具有至少55%,至少60%,至少65%,至少70%,至少75%,至少80%,至少85%,至少90%,以及更优选至少95%,97%或99%的同源性。在200或或更长,例如230,250,270或280或更长长度的连续氨基酸上,可以具有至少80%,例如至少85%,90%或95%的氨基酸同一性(“严格同源性”)。同源性可以如上所讨论的来确定。
除了以上讨论的,可对SEQ ID NO:4的氨基酸序列进行氨基酸取代,例如,高达1,2,3,4,5,10,20或30的取代。可以进行如上所讨论的保守取代。
SEQ ID NO:4的氨基酸序列的一个或多个氨基酸残基可以额外地从上述多肽中缺失。可以缺失高达1,2,3,4,5,10,20或30个或更多个残基。
变体可以是SEQ ID NO:4的片段。这些片段保留孔形成活性。片段可以为至少50,100,200或250个氨基酸长度。片段优选包含SEQ ID NO:4的孔形成域。片段通常包括SEQ IDNO:4的残基119,121,135,113和139。
一个或多个氨基酸可以替代地或额外地添加到上述多肽中。可在SEQ ID NO:4或变体或其片段的氨基酸序列的氨基末端或羧基末端提供延伸。所述延伸可以很短,例如,1-10个氨基酸长度。或者,延伸可以更长,例如长达50或100个氨基酸。载体蛋白可以被融合到孔或变体。
如上所述,SEQ ID NO:4的变体是具有与SEQ ID NO:4的氨基酸序列不同的氨基酸序列的亚基,并且保留其形成孔能力。变体通常包含SEQ ID NO:4的负责孔形成的区域。包含β-桶状体的α-HL的孔形成能力由每个亚基中的β-链提供。SEQ ID NO:4的变体通常包括SEQ ID NO:4的形成β-链的区域。SEQ ID NO:4的形成β-链的氨基酸序列如上所讨论。可对SEQ ID NO:4的形成β-链的区域进行一个或多个修饰,只要得到的变体保留了其形成孔的能力。可对SEQ ID NO:4的β-链区域进行如上所述的特异性修饰。
SEQ ID NO:4的变体优选包括一个或多个修饰,如在其α-螺旋和环状区域内取代,添加或缺失。形成α-螺旋和环的氨基酸如上所述。
所述变体可以被修饰以帮助对其进行如上所述的鉴定和纯化。
从α-HL衍生的孔可以参照自Msp衍生的孔进行讨论。
在一些实施例中,跨膜蛋白孔是化学修饰的。孔可以任何方式在任何位点进行化学修饰。所述跨膜蛋白孔优选通过下述进行化学修饰:将分子连接到一个或多个半胱氨酸(半胱氨酸键),将分子连接到一个或多个赖氨酸,将分子连接到一个或多个非天然氨基酸,表位的酶修饰或末端的修饰。适用于进行这些修饰的方法是本领域已知的。跨膜蛋白孔可通过连接任何分子被化学修饰。例如,孔可以通过连接染料或荧光团被化学修饰。
孔中任何数量的单体可以被化学修饰。一个或多个,例如2,3,4,5,6,7,8,9或10个单体优选进行如上所述的化学修饰。
半胱氨酸残基的反应性可以通过相邻残基的修饰而增强。例如,侧翼精氨酸,组氨酸残基或赖氨酸残基的碱性基团将半胱氨酸硫醇基团的pKa改变为更大反应性的S-基团的pKa。半胱氨酸残基的反应性可通过硫醇保护基如dTNB得到保护。这些可在接器连接之前与孔的一个或多个半胱氨酸残基反应。
所述分子(使用其对孔进行化学修饰)可以直接地连接到孔或通过接器连接到孔,如国际申请No.PCT/GB09/001690(公布号为WO 2010/004273),PCT/GB09/001679(公布号为WO 2010/004265)或PCT/GB10/000133(公布号为WO 2010/086603)所公开的。
所述解旋酶或构建体可以共价连接到所述孔。所述解旋酶或构建体优选不共价连接到所述孔。施加电压到所述孔和所述解旋酶或构建体通常导致传感器的形成,所述传感器能对目标多核苷酸进行测序。这将在下文进行更详细描述。
本文所描述的任何蛋白质,即解旋酶,跨膜蛋白孔或构建体,可以被修饰以帮助对它们的鉴定或纯化,例如通过添加组氨酸残基(His标签),天冬氨酸残基(asp标签),链霉亲和素标签,Flag标签,SUMO标签,GST标签或MBP标签,或通过添加信号序列以促进它们从细胞中分泌,该细胞中的多肽不天然地含有该信号序列。引入遗传标签的替换方式是通过化学反应将标签连到解旋酶,孔或构建体上的天然或人工位点。这方面的例子是将凝胶迁移试剂与人工连接在所述孔外的的半胱氨酸反应。这已被证明是用于分离溶血素异源寡聚物的方法(Chem Biol.1997Jul;4(7):497-505)。
所述解旋酶,孔或构建体可以用显示标记物标记。所述显示标记物可以是使得所述孔被检测的任何合适的标记物。合适的标记物包括,但不限于,荧光分子,放射性同位素,例如125I,35S,酶,抗体,抗原,多核苷酸和配体例如生物素。
蛋白质可以通过人工合成或重组手段制备。例如,所述解旋酶,孔或构建体可通过体外翻译和转录(IVTT)合成。该解旋酶,孔或构建体的氨基酸序列可以被修饰为包括非天然存在的氨基酸或被修饰以提高蛋白质的稳定性。当通过合成手段制备蛋白质时,可以在制备过程将所述氨基酸引入。解旋酶,孔或构建体也可在成或重组生产之后被改变。
所述解旋酶,孔或构建体还可以使用D-氨基酸生产。例如,孔或构建体可包含L-氨基酸和D-氨基酸的混合物。这是本领域中用于生产这类蛋白质或肽常规的。
所述解旋酶,孔或构建体还可以包含其他非特异性修饰,只要它们不干扰孔形成或者解旋酶或构建体的功能。一些非特异性侧链修饰是本领域中已知的,并且可以对蛋白质的侧链进行修饰。这样的修饰包括,例如,通过与醛反应然后用NaBH4还原进行氨基酸的还原性烷基化,用甲基乙酰亚胺酯进行的脒基化,或用乙酸酐进行的酰化。
所述解旋酶,孔或构建体可以使用本领域已知的标准方法制备。可以使用本领域的标准方法衍生和复制编码解旋酶,孔或构建体的多核苷酸序列。可以使用本领域的标准技术在细菌宿主细胞中表达编码解旋酶,孔或构建体的多核苷酸序列。该解旋酶,孔和/或构建体可在细胞中由重组表达载体中的多肽的原位表达而产生。所述表达载体可选地携带诱导型启动子以控制所述多肽的表达。这些方法在Sambrook,J.和Russell,D.(2001).分子克隆:实验手册,第3版.冷泉港实验室出版社,冷泉港,纽约(Molecular Cloning:ALaboratory Manual,3rd Edition.Cold Spring Harbor Laboratory Press,Cold SpringHarbor,NY)中描述。
所述解旋酶,孔和/或构建体可以从生产生物体的蛋白质通过任何蛋白质液相色谱系统进行纯化后或在重组表达后,而大规模制备。通常的蛋白质液相色谱系统包括FPLC、AKTA系统、Bio-Cad系统、Bio-Rad生物系统和Gilson HPLC系统。
本发明的方法包括测量所述目标多核苷酸的一个或多个特征。该方法可以包括测量2个,3个,4个,5个或更多个目标多核苷酸的特征。所述一个或多个特征,优选选自(i)所述目标多核苷酸的长度,(ii)所述目标多核苷酸的同一性,(iii)所述目标多核苷酸的序列,(iv)所述目标多核苷酸的二级结构;以及(v)目标多核苷酸是否是经修饰的。(i)至(v)的任何组合可以根据本发明进行测量。
对于(i),目标多核苷酸的长度例如可以通过确定所述目标多核苷酸和所述孔之间的相互作用次数,或所述目标多核苷酸与所述孔之间的相互作用的持续时间来测定。
对于(ii),所述多核苷酸的同一性可以通过多种方式测定。多核苷酸的同一性可以联合目标多核苷酸的序列的测定,或不联合所述目标多核苷酸的序列的测定进行测定。前者是直接的;对所述多核苷酸进行测序,并由此进行鉴定。后者可以以几种方式来完成。例如,可以测定多核苷酸中特定模序的存在(而无需测定该多核苷酸的其余序列)。或者,所述方法中测定的特定的电和/或光信号的测量值可鉴定来自特定来源的目标多核苷酸。
对于(iii),多核苷酸的序列可以如前所述确定。合适的测序方法,特别是那些使用电测量值的测序方法,描述于Stoddart D et al.,Proc Natl Acad Sci,12;106(19):7702-7,Lieberman KR et al,J Am Chem Soc.2010;132(50):17961-72,和国际申请WO2000/28312中。
对于(iv),所述二级结构可以以多种方式测量。例如,如果该方法包含电测量,二级结构可以利用穿过孔的停留时间的改变或电流变化进行测量。这使得单链和双链多核苷酸的区域能够被区别。
对于(v),可以测定任何存在或不存在修饰。该方法优选包括确定所述目标多核苷酸是否用一个或多个蛋白质或一个或多个标记物、标签或间隔区通过甲基化、氧化、损伤进行了修饰。特异性修饰将导致与孔的特异性相互作用,其可以使用下面描述的方法来测定。例如,可以基于孔与每个核苷酸的相互作用过程中穿过孔的电流,区别胞嘧啶与甲基胞嘧啶。
可进行各种不同类型的测量。这包括但不限于:电测量和光测量。可行的电测量包括:电流测量,阻抗测量,测量隧道(Ivanov AP等人,Nano Lett.2011Jan 12;11(1):279-85),以及FET测量(国际申请WO 2005/124888)。光测量可以与电测量结合使用(Soni GV等人,Rev Sci Instrum.2010Jan;81(1):014301)。所述测量可以是跨膜电流测量例如流经所述孔的离子电流的测量。
电测量可如Stoddart D等人,Proc Natl Acad Sci,12;106(19):7702-7,Lieberman KR等人,JAm Chem Soc.2010;132(50):17961-72,和国际申请WO-2000/28312所描述的使用标准单声道记录设备进行。或者,电测量可以使用多通道系统进行,例如如在国际申请WO-2009/077734和国际申请WO-2011/067559中所描述的。
在优选的实施例中,该方法包括:
(a)将所述目标多核苷酸与跨膜孔和本发明的解旋酶或本发明的构建体接触,使得所述目标多核苷酸移动穿过所述孔并且所述解旋酶或构建体控制所述目标多核苷酸移动穿过所述孔;以及
(b)随着所述多核苷酸相对于所述孔移动,获取穿过所述孔的电流,其中所述电流代表所述目标多核苷酸的一个或多个特征,并由此表征所述目标多核苷酸。
所述方法可以使用任何适于研究膜/孔系统(其中孔嵌入膜中)的设备进行实施。该方法可以使用适合于感测跨膜孔的设备实施。例如,所述设备包括一个室,所述室包括水溶液和将该室分割为两部分的屏障(barrier)。所述屏障通常具有缝隙,其中在缝隙中形成包括孔的膜。或者该屏障形成其中存在孔的膜。
该方法可以使用在国际申请No.PCT/GB08/000562(WO 2008/102120)中描述的设备实施。
该方法可以包括随着多核苷酸相对于所述孔移动,测量通过所述孔的电流。因此该装置也可以包括能够跨膜和孔施加电势并测量电流信号的电路。该方法可以使用膜片钳或电压钳实施。所述方法优选包含使用电压钳。
本发明的方法可包括随着所述多核苷酸相对于所述孔移动来测量流过所述孔的电流。用于测量通过跨膜蛋白孔的离子电流的合适的条件是本领域已知的,并且在实施例中公开。该方法通过跨膜和孔施加的电压进行实施。使用的电压通常为+2V到-2V,通常-400mV到400mV。所使用的电压优选在具有以下下限和上限的范围内,所述下限的选自在-400mV,-300mV,-200mV,-150mV,-100mV,-50mV,-20mV和0mV的范围内,所述上限独立地选自+10mV,+20mV,+50mV,+100mV,+150mV,+200mV,+300mV,+400mV。所用的电压更优选在100mV到240mV的范围内并最优选在120mV到220mV的范围内。可通过对孔施加提高的电势来提高对不同核苷酸的分辨力。
该方法通常在任何载荷子,如金属盐,例如碱金属盐,卤盐,例如氯盐,如碱金属氯盐的存在下实施。载荷子可包括离子型液体或有机盐,例如四甲基氯化铵,三甲基氯化铵,氯化苯甲基铵,或1-乙基-3-甲基咪唑鎓氯化物。在上面讨论的示例性设备中,所述盐存在于所述室中的水溶液中。通常使用氯化钾(KCl),氯化钠(氯化钠)或氯化铯(CsCl)或亚铁氰化钾和铁氰化钾的混合物。优选氯化钾,氯化钠和亚铁氰化钾和铁氰化钾的混合物。盐浓度可为饱和的。盐浓度可以是3M或更低,通常为0.1M至2.5M,0.3M至1.9M,0.5M至1.8M,0.7M至1.7M,0.9M至1.6M或1M至1.4M。优选盐浓度为150mM到1M。Hel308,XPD,RecD和TraI解旋酶出乎意料地能在高盐浓度下工作。所述方法优选使用至少为0.3M,例如至少为0.4M,至少为0.5M,至少为0.6M,至少为0.8M,至少为1.0M,至少为1.5M,至少为2.0M,至少为2.5M,或者至少为3.0M的盐浓度进行实施。高盐浓度提供了高信噪比,并使得在正常电流波动的背景下,代表核苷酸存在的电流能被识别。
该方法通常在缓冲剂存在下实施。在上面讨论的示例性设备中,缓冲剂在所述室中以水溶液存在。本发明的方法可使用任何缓冲剂。通常地,缓冲剂是磷酸盐缓冲液。其他合适的缓冲剂包括但不限于HEPES和Tris-HCl缓冲剂。该方法通常在pH值为4.0至12.0,4.5至10.0,5.0至9.0,5.5至8.8,6.0至8.7,7.0至8.8,或7.5至8.5下实施。所使用的pH优选约为7.5。
该方法可在0℃至100℃,15℃至95℃,16℃至90℃,17℃至85℃,18℃至80℃,19℃至70℃,或20℃至60℃下实施。该方法通常在室温下进行。该方法可选地在支持酶功能的温度下,例如约37℃实施。
所述方法可在游离核苷酸或游离核苷酸类似物和/或辅助解旋酶或构建体功能发挥的酶辅因子存在下实施。所述方法还可以在游离核苷酸或游离核苷酸类似物以及不存在酶辅因子下实施。所述游离核苷酸可以为如上面讨论的单个核苷酸的任意一个或多个。游离核苷酸包括,但不限于,单磷酸腺苷(AMP),二磷酸腺苷(ADP),三磷酸腺苷(ATP),单磷酸鸟苷(GMP),二磷酸鸟苷(GDP),三磷酸鸟苷(GTP),单磷酸胸苷(TMP),二磷酸胸苷(TDP),三磷酸胸苷(TTP),单磷酸尿苷(UMP),二磷酸尿苷(UDP),三磷酸尿苷(UTP),单磷酸胞苷(CMP),二磷酸胞苷(CDP),三磷酸胞苷(CTP),环单磷酸腺苷(cAMP),环单磷酸鸟苷(cGMP),脱氧单磷酸腺苷(dAMP),脱氧二磷酸腺苷(DADP),脱氧三磷酸腺苷(dATP),脱氧单磷酸鸟苷(dGMP),脱氧二磷酸鸟苷(dGDP),脱氧三磷酸鸟苷(dGTP),脱氧单磷酸胸苷(dTMP),脱氧二磷酸胸苷(dTDP),脱氧三磷酸胸苷(dTTP),脱氧单磷酸尿苷(dUMP),脱氧二磷酸尿苷(dUDP),脱氧三磷酸尿苷(dUTP),脱氧单磷酸胞苷(dCMP),脱氧二磷酸胞苷(dCDP)和脱氧三磷酸胞苷(dCTP)。该游离核苷酸优选选自AMP,TMP,GMP,CMP,UMP,dAMP,dTMP,dGMP或dCMP。该游离核苷酸优选三磷酸腺苷(ATP)。所述酶辅因子是使解旋酶或构建体发挥功能的因子。所述酶辅因子优选为二价金属阳离子。所述二价金属阳离子优选为Mg2+,Mn2+,Ca2+或Co2+。所述酶辅因子最优选Mg2+
所述目标多核苷酸可以与解旋酶或构建体以及孔以任何次序接触。优选的,当目标多核苷酸与解旋酶或构建体以及孔接触时,目标多核苷酸先与解旋酶或构建体形成复合体。当跨所述孔施加电势时,目标多核苷酸/解旋酶或构建体复合体则与孔形成复合体并控制多核苷酸移动穿过所述孔。
其他方法
本发明还提供形成用于表征目标多核苷酸的传感器的方法。所述方法包括在孔和Dda解旋酶、本发明的解旋酶或本发明的构建体之间形成复合体。所述解旋酶可以是以上针对本发明的构建体所描述的任意的解旋酶,包括本发明的解旋酶和未根据本发明修饰的解旋酶。可以使用任意数量和组合的上述针对本发明的组和方法讨论的本发明的Dda解旋酶。
所述复合体可以通过将孔和解旋酶或构建体在目标多核苷酸的存在下相接触,然后对所述孔施加电势而形成。所施加的电势可以如上所述是化学电势或电压电势。替换的,所述复合体可以通过孔共价连接到所述解旋酶或构建体而形成。共价连接的方法是本领域已知的并例如,在国际申请号PCT/GB09/001679(公布号为WO 2010/004265)和PCT/GB10/000133(公布号为WO 2010/086603)中有公开。所述复合体是用于表征目标多核苷酸的传感器。所述方法优选包括在源自Msp的孔与本发明的解旋酶或本发明的构建体之间形成复合体。上面论述的关于本发明方法的任一实施方式同样适用于该方法。本发明还提供了使用本发明的方法制备的传感器。
试剂盒
本发明还提供了用于表征目标多核苷酸的试剂盒。所述试剂盒包括(a)孔和(b)Dda解旋酶、本发明的解旋酶或本发明的构建体。上面针对本发明方法论述的任一实施方式同样适用于该试剂盒。所述解旋酶可以是以上针对本发明的构建体所描述的任意解旋酶,包括本发明的解旋酶和未根据本发明修饰的解旋酶。所述试剂盒可以包括使用任意数量和组合的上述针对本发明的组和方法讨论的本发明的Dda解旋酶。
所述试剂盒可进一步包括膜的组分,例如形成两性分子层诸如脂质双分子层所需要的磷脂。
本发明的试剂盒可以另外包括一种或多种其他试剂或能使上面描述的任何实施方案实施的仪器。所述试剂或仪器包括以下的一种或多种:合适的缓冲剂(水溶液),用于从受体获得样本的工具(诸如导管或含有针的仪器),用于扩增和/或表达多核苷酸的工具,如上所定义的膜或者电压钳或膜片钳装置。存在于所述试剂盒中的试剂可以是干态的,使得液体样本使所述试剂重悬。所述试剂盒还可选地包括使该试剂盒能在本发明方法中使用的仪器或关于该方法可以用于哪些患者的说明书。所述试剂盒可选地包括核苷酸。
装置
本发明还提供了用于表征目标多核苷酸的装置。所述装置包括多个孔和多个Dda解旋酶,多个本发明的解旋酶或多个本发明的构建体。所述装置优选进一步包括用于实施本发明方法的说明书。所述装置可以是任何用于多核苷酸分析的常规装置,诸如阵列(array)或芯片。上面论述的关于本发明方法的任一实施方式可以同等适用于本发明的装置。所述解旋酶可以是以上针对本发明的构建体所描述的任意的解旋酶,包括本发明的解旋酶和未根据本发明被修饰的解旋酶。所述装置可以包括使用任意数量和组合的上述针对本发明的组和方法讨论的本发明的Dda解旋酶。
所述装置优选被装配成用于实施本发明的方法。
所述装置优选包括:
传感器设备,能支撑多个孔,并能可操作的使用所述孔和解旋酶或构建体进行多核苷酸的表征;以及
至少一个口,用于传递进行表征的材料。
替换的,所述装置优选包括:
传感器设备,能支撑多个孔,并能可操作的使用所述孔和解旋酶或构建体进行多核苷酸的表征;以及
至少一个存储器,存储用于进行表征的材料。
所述装置更优选包括:
传感器设备,能支撑所述膜和多个孔,并能可操作的使用所述孔和解旋酶或构建体进行多核苷酸的表征;
至少一个存储器,存储用于进行表征的材料;
流控系统,配置为从至少一个存储器可控地向所述传感器设备供应材料;以及
一个或多个容器,用于接收各样本,所述流控系统被配置为选择性地从一个或多个容器向所述传感器设备供应样本。所述设备可以是那些在国际申请No.PCT/GB08/004127(公布号为WO 2009/077734),PCT/GB10/000789(公布号为WO 2010/122293),国际申请No.PCT/GB10/002206(公布号为WO 2011/067559)或国际申请No.PCT/US99/25679(公布号为WO 00/28312)中描述的任一设备。
本发明的制备解旋酶的方法
本发明还提供了制备本发明的修饰的解旋酶的方法。所述方法包括提供Dda解旋酶并修饰所述解旋酶以形成本发明的修饰的解旋酶。
所述方法优选进一步包括确定所述解旋酶是否能够控制多核苷酸的移动。对它进行的分析在上文进行了描述。如果多核苷酸的移动能被控制,则所述解旋酶被正确的修饰并且制得了本发明的解旋酶。如果多核苷酸的移动不能被控制,则没有制得本发明的解旋酶。
本发明的制备构建体的方法
本发明还提供了制备本发明的构建体的方法。所述方法包括将本发明的Dda解旋酶或解旋酶连接、优选共价连接到另外的多核苷酸结合部分。如上所述的任意解旋酶和部分可以在该方法中使用。共价连接的位点和方法如上所述进行选择。
所述方法优选进一步包括确定所述构建体能否控制多核苷酸的移动。对它进行的分析在上文进行了描述。如果多核苷酸的移动能被控制,所述解旋酶和部分被正确地连接,并且制得了本发明的构建体。如果多核苷酸的移动不能被控制,则没有制得本发明的构建体。
以下实施例说明了本发明。
实施例
实施例1
本实施例描述了T4 Dda–E94C/A360C(具有E94C/A360C和随后的(ΔM1)G1G2突变的SEQ ID NO:8)如何控制整个DNA链移动穿过单个MspA纳米孔(MS(B1-G75S/G77S/L88N/Q126R)8MspA(MspA–B2C)(具有G75S/G77S/L88N/Q126R突变的SEQ ID NO:2)。
材料和方法
在建立实验之前,所述λDNA构建体(SEQ ID NO:60在其3’末端连接到4个iSpC3间隔区,该4个iSpC3间隔区连接到SEQ ID NO:61的5’末端,SEQ ID NO:61在其3’末端连接到4个iSpC3间隔区,该4个iSpC3间隔区连接到SEQ ID NO:62的5’末端,该构建体的SEQ ID NO:61区域与SEQ ID NO:63(其具有3’胆固醇系链)杂交,参见图8,其为所述构建体的图)和T4Dda–E94C/A360C在23℃的缓冲液(20mM CAPS,pH 10.0,500mM NaCl,5%甘油,2mM DTT)中一起预孵育15分钟。
在缓冲液(600mM KCl,25mM磷酸钾,75mM亚铁(II)氰化钾,25mM铁(III)氰化钾,pH8)中,由插入嵌段共聚物中的单个MspA纳米孔(MspA–B2C)在20℃获取电测量值(通过将实验系统放置在冷却板上)。在实现单个孔插入到嵌段共聚物中后,然后将缓冲液(1mL,600mM KCl,25mM磷酸钾,75mM亚铁(II)氰化钾,25mM铁(III)氰化钾,pH 8)流经所述系统以去除任何过量的MspA纳米孔(MspA–B2C),并最终使实验缓冲液流进所述系统(2mL 960mMKCl,25mM磷酸钾,3mM亚铁(II)氰化钾,1mM铁(III)氰化钾,pH 8)中。将MgCl2(10mM终浓度)和ATP(1mM终浓度)用缓冲液(960mM KCl,25mM磷酸钾,3mM亚铁(II)氰化钾,1mM铁(III)氰化钾,pH 8)混合在一起然后添加到λDNA构建体(0.2nM终浓度),T4 Dda–E94C/A360C(10nM终浓度)缓冲液(20mM CAPS,pH 10.0,500mM NaCl,5%甘油,2mM DTT)中预混合。然后将预混合物添加到单个纳米孔实验系统。然后在电势翻转过程(+100mV进行2s,然后0V进行2s,然后-120mV进行14500s,施加在顺侧)之后进行实验4个小时,并监测解旋酶控制的DNA移动。
结果和讨论
观察到了λDNA构建体的解旋酶控制的DNA移动,解旋酶控制的DNA移动的实例示于图1。解旋酶控制的DNA移动为5170秒长并对应于接近30kB的λ构建体穿过所述纳米孔的移位。图2显示了解旋酶控制的DNA移动的开始区域(a)和结束区域(b)的放大图。
实施例2
该实施例描述了T4 Dda–E94C/A360C如何对线性(SEQ ID NO:64)和环形(SEQ IDNO:65)单链DNA均表现出紧密结合。酶的紧密结合使用基于荧光各向异性的试验进行测定。
材料和方法
使用两个常规的荧光底物评估T4 Dda–E94C/A360C解旋酶结合到线性(SEQ IDNO:64)和环形(SEQ ID NO:65)单链DNA的能力。所述44nt线性单链DNA底物(1nM终浓度,SEQID NO:64)具有连接到SEQ ID NO:64的37位的胸腺嘧啶碱基的羧基荧光素(FAM)。所述75nt环形单链DNA底物(1nM终浓度,SEQ ID NO:65)具有连接到SEQ ID NO:65中胸腺嘧啶碱基的羧基荧光素(FAM)。当解旋酶在缓冲液(25mM磷酸钾,151.5mM KCl,pH8.0,10mM MgCl2)中结合到任一个荧光底物时,荧光各向异性(与溶液中DNA底物的翻滚速度相关的性质)提高。需要使用提高各向异性的解旋酶的量越低,DNA和解旋酶之间的亲和力越紧(图3)。
T4 Dda–E94C/A360C缓冲液更换为结合缓冲液(25mM磷酸钾,151.5mM KCl,pH8.0,10mM MgCl2),然后在0.02nM到750nM的浓度范围连续稀释。然后每个浓度的样本与线性或环形单链DNA(1nM SEQ ID NO:64或65)混合,获得0.01nM到375nM的T4 Dda–E94C/A360C的终浓度范围,并且在25℃在60min的过程中评估荧光各向异性。
结果和讨论
图4和5显示了从线性和环形单链DNA结合实验收集的荧光结合分析数据。图4显示了在60min孵育期结束时具有随着T4 Dda–E94C/A360C量的增加,线性和环形单链DNA寡核苷酸(SEQ ID NO:64或65)的各向异性的变化。图5显示了在60min孵育后,T4 Dda–E94C/A360C结合到线性或环形单链DNA的平衡解离常数(Kd),其通过使用Graphpad Prism软件利用图4中所示数据拟合单相解离结合曲线而获得(y轴坐标=解离常数Kd(nM),x轴坐标=参考序号,其中参考序号1对应于线性单链DNA寡核苷酸以及参考序号2对应于环形单链DNA寡核苷酸)。
发现,T4 Dda–E94C/A360C解旋酶对环形和线性单链DNA均表现出紧密的亲和力(sub 15nM亲和力)(参见图4和5)。
实施例3
该实施例比较了T4 Dda–E94C/A360C解旋酶控制的DNA移动与TrwC Cba(SEQ IDNO:66)解旋酶控制的DNA移动。这两个解旋酶均沿着多核苷酸从5’到3’方向移动。当多核苷酸的5’末端(解旋酶移动远离该末端)被所述孔捕获时,所述解旋酶顺着由施加电势产生的场的方向工作,并将螺旋的多核苷酸移入所述孔中并移入反式室中。观察到T4 Dda控制DNA缓慢移位穿过所述纳米孔,没有DNA后退(即相对于孔朝向其3’末端),而TrwC Cba在其控制DNA移位的状态中产生DNA后退。在该实施例中,后退包括DNA相对于所述孔向后移动(在该实施例中即为朝向其5’末端,远离其3’末端)。该现象在UK申请No.1318464.3和1404718.7中被称为滑脱。
材料和方法
在设置实验之前,将DNA链(3uL,20nM,SEQ ID NO:67在其3’末端连接到4个iSpC3间隔区,该4个iSpC3间隔区连接到SEQ ID NO:61的5’末端,所述SEQ ID NO:61在其3’末端连接到4个5-硝基吲哚中,该4个5-硝基吲哚的最后一个连接到SEQ ID NO:68的5’末端,另外SEQ ID NO:63与SEQ ID NO:61杂交)和TrwC Cba(SEQ ID NO:66,22.5uL,13.3μM)在室温下在缓冲液(50mM CAPS,pH 10.0,100mM NaCl)中一起预孵育超过1小时。在单独的管中,3uL的MgCl2(1M)和3uL的dTTP(100mM)与260uL的缓冲液(960mM KCl,3mM亚铁(II)氰化钾,1mM铁(III)氰化钾和25mM磷酸钾pH 8.0)混合。在所述小时的预孵育后,将DNA酶混合物添加到MgCl2/dTTP混合物中,得到如下的试剂终浓度——在缓冲液(960mM KCl,3mM亚铁(II)氰化钾,1mM铁(III)氰化钾和25mM磷酸钾pH 8.0)中,DNA链(0.2nM),TrwC Cba(SEQ ID NO:66,1μM),MgCl2(10mM),dTTP(1mM)。
在设置实验之前,将DNA链(0.2uL,300nM,SEQ ID NO:67在其3’末端连接到4个iSpC3间隔区,该4个iSpC3间隔区连接到SEQ ID NO:61的5’末端,所述SEQ ID NO:61在其3’末端连接到4个5-硝基吲哚,所述4个5-硝基吲哚中最后一个连接到SEQ ID NO:68的5’末端,另外SEQ ID NO:63与SEQ ID NO:61杂交)和T4 Dda–E94C/A360C(0.1uL,3300nM)在室温下一起预孵育15分钟。在单独的管中,MgCl2(3uL of 1M)和ATP(3uL of 100mM)与294uL的缓冲液(960mM KCl,3mM亚铁(II)氰化钾,1mM铁(III)氰化钾和25mM磷酸钾,pH 8.0)混合。在15分钟预孵育后,将DNA酶混合物添加到MgCl2/dTTP混合物中,得到如下的试剂终浓度——在缓冲液(960mM KCl,3mM亚铁(II)氰化钾,1mM铁(III)氰化钾和25mM磷酸钾pH8.0)中,DNA链(0.2nM),T4 Dda–E94C/A360C(1nM),MgCl2(10mM),ATP(1mM)。
在20℃(通过将实验系统放置于冷却板上)由嵌入到在缓冲液(600mM KCl,25mM磷酸钾,75mM亚铁(II)氰化钾,25mM铁(III)氰化钾,pH 8)中的嵌段共聚物中的单个MspA纳米孔(MspA–B2C)获得电测量值。在实现单个孔插入到嵌段共聚物中后,然后使缓冲液(3mL,960mM KCl,25mM磷酸钾,3mM亚铁(II)氰化钾,1mM铁(III)氰化钾,pH 8)流经所述系统以除去过量的MspA纳米孔s(MspA–B2C)。然后将TrwC Cba(SEQ ID NO:66)或T4 Dda E94C/A360C的预混合物添加到单个纳米孔实验系统中。每个实验在-120mV的保持电势下进行6小时并监控解旋酶控制的DNA移动。
结果和讨论
图6和7分别显示了解旋酶TrwC Cba(SEQ ID NO:66)和T4 Dda E94C/A360C控制的DNA的移动。图6的上轨迹显示了两个TrwC Cba(SEQ ID NO:66)解旋酶控制的DNA移动(标记为1和2)并且下部分显示了区域X的放大图。图7的上轨迹显示了三个T4 Dda E94C/A360C解旋酶控制的DNA移动(标记为1,2和3)并且下部分显示了区域X的放大图。Trwc Cba解旋酶控制DNA链移动穿过所述纳米孔和随着DNA移位时变化的电流。在下轨迹中多个电流水平标记为a到k,其对应于DNA链移位穿过所述孔时产生的连续的电流水平。从图6中的区域X的放大图可以清晰看到DNA后退,使得对应于b,c,h和i的电流水平被多次观察到。而图7下轨迹显示了T4 Dda E94C/A360C解旋酶控制DNA穿过所述纳米孔的移动,没有观察到后退,并且对应于连续电流水平a到k的单个电流水平被观察到。具有不允许DNA链后退的酶是有利的,因为这意味着当酶沿着所述链以一个方向移动时能更容易的描绘DNA链的序列的电流改变。这使得相比于TrwC Cba(SEQ ID NO:66),T4 Dda E94C/A360C是改进的用于DNA移位的酶。
实施例4
该实施例描述了T4 Dda–E94C/A360C,T4 Dda–E94C/A360C/C109A/C136A(具有E94C/A360C/C109A/C136A和随后的(ΔM1)G1G2突变的SEQ ID NO:8)和T4 Dda–E94C/A360C/C114A/C171A/C421D(具有E94C/A360C/C114A/C171A/C421D和随后的(ΔM1)G1G2)突变的SEQ ID NO:8)如何控制整个DNA链移动穿过单个MspA纳米孔。所述解旋酶控制的λDNA构建体(示于图8)的区域1和区域2的移动速度被观察到减小了T4 Dda–E94C/A360C和T4Dda–E94C/A360C/C114A/C171A/C421D的经历时间(overtime)。然而,相比之下,T4 Dda–E94C/A360C/C109A/C136A表现出提高的解旋酶控制的DNA移动,因为在整个实验运行过程中保持了高和相当恒定的移动速度。
材料和方法
在设置实验之前,将在缓冲液(在50mM NaCl中,10mM Tris pH7.5)中的DNA构建体X(5.2μL,25nM,SEQ ID NO:67在其3’末端连接到4个iSpC3间隔区,该4个iSpC3间隔区连接到SEQ ID NO:61的5’末端,所述SEQ ID NO:61在其3’末端连接到4个5-硝基吲哚间隔区,该4个5-硝基吲哚间隔区连接到SEQ ID NO:69的5’末端,该构建体的SEQ ID NO:61区域与SEQID NO:63(其具有3’胆固醇系链)杂交,该构建体X与图8所示构建体相似,不同在于标记为A的区域对应于SEQ ID NO:67以及标记为E的区域对应于SEQ ID NO:69)与在缓冲液(5.2μL,250nM在253mM KCl中,50mM磷酸钾,pH 8.0,2mM EDTA)中的T4 Dda–E94C/A360C,T4 Dda–E94C/A360C/C109A/C136A或T4 Dda–E94C/A360C/C114A/C171A/C421D在室温下预孵育5分钟。然后向DNA/酶预混合物中添加TMAD(2.6μL,500μM)并进一步孵育5分钟。最后,向所述预混合物中添加缓冲液(1241.5μL,25mM磷酸钾,150mM亚铁(II)氰化钾和150mM铁(III)氰化钾,pH 8.0)MgCl2(13μL,1M)和ATP(32.5μL,100mM)。
在28℃的珀尔帖温度(peltier temperature)下由嵌入到在缓冲液(25mM磷酸钾,150mM亚铁(II)氰化钾,150mM铁(III)氰化钾)中的嵌段共聚物中的单个MspA纳米孔获得电测量值。在实现单个孔插入到嵌段共聚物中后,然后使缓冲液(2mL,25mM磷酸钾pH 8.0,150mM亚铁(II)氰化钾和150mM铁(III)氰化钾)流经所述系统以除去过量的MspA纳米孔。然后将酶(T4 Dda–E94C/A360C,T4 Dda–E94C/A360C/C109A/C136A或者T4 Dda–E94C/A360C/C114A/C171A/C421D(1nM终浓度)),DNA(0.1nM终浓度),燃料(MgCl2 10nM终浓度,ATP2.5mM终浓度)的预混合物添加到单个纳米孔实验系统中。每个实验在保持电势120mV(具有每小时在施加的-120mV电势下的电势跳动)下进行6小时,并监控解旋酶控制的DNA移动。
结果和讨论
对于DNA构建体X,观察到了解旋酶控制的DNA移动,并调查了所有的突变体解旋酶(T4 Dda–E94C/A360C,T4 Dda–E94C/A360C/C109A/C136A或者T4 Dda–E94C/A360C/C114A/C171A/C421D)。T4 Dda–E94C/A360C/C109A/C136A和T4 Dda–E94C/A360C/C114A/C171A/C421D解旋酶控制的DNA移动的实例分别示于图9和10。
监测解旋酶控制的DNA移动穿过λDNA构建体X的区域1和区域2的速度。对于T4Dda–E94C/A360C和T4 Dda–E94C/A360C/C114A/C171A/C421D,发现,对于区域1和区域2,每秒中解旋酶控制的DNA移动的数目在7个小时的运行时间内都逐渐减少(对于T4 Dda–E94C/A360C参见图11,对于T4 Dda–E94C/A360C/C114A/C171A/C421D参见图12)。然而,对于区域1和区域2,观察到,T4 Dda–E94C/A360C/C109A/C136A突变体解旋酶在每秒中控制DNA移动的数目在7个小时的运行时间内仅稍微减少(参见图13)。因此,4Dda–E94C/A360C/C109A/C136A突变体显示了提高的解旋酶控制DNA移动,因为在整个实验运行过程中保持了高的和相当恒定的移动速度。这相比于速度随着时间逐渐减小的T4 Dda–E94C/A360C具有提高的处理量。
实施例5
该实施例描述了T4 Dda–E94C/C109A/C136A/A360C/W378A(具有E94C/C109A/C136A/A360C/W378A和随后的(ΔM1)G1G2突变的SEQ ID NO:8)解旋酶如何控制整个DNA构建体Z链(示于图14)穿过单个MspA纳米孔移动。
材料和方法
在设置实验之前,将DNA构建体Z(该构建体及其序列参见图8,1.2μL)和T4 Dda–E94C/C109A/C136A/A360C/W378A(2.84μL)在缓冲液(151mM KCl,25mM磷酸钾pH 8,1mMEDTA,5%甘油)中在23℃一起预孵育5分钟。然后向DNA酶混合物中添加TMAD(500μM,0.92μL)并在23℃进一步孵育5分钟。最后,向所述混合物中添加缓冲液(282μL的500mM KCl,25mM磷酸钾pH 8),ATP(终浓度2mM)和MgCL2(终浓度2mM)。
使用嵌入到在缓冲液(500mM KCl,25mM磷酸钾,pH 8)中的嵌段共聚物中的MspA纳米孔获得电测量值,如实施例1中所述。预混合物添加到单个纳米孔实验系统并且实验在-120mV的保持电势(具有2秒内跳动到+60mV的电势)下运行6小时并监控解旋酶控制的DNA移动。
结果和讨论
对DNA构建体Z,观察解旋酶控制的DNA移动,解旋酶控制的DNA移动的实例示于图15。图16轨迹(A)显示了解旋酶控制DNA移动的起点,轨迹(B)显示了轨迹A的区域放大图,并且轨迹(C)显示了解旋酶控制DNA移动的结束。
实施例6
本实施例比较了使用单个T4 Dda-E94C/A360C或Dda–E94C/C109A/C136A/A360C与使用两个T4 Dda–E94C/A360C(具有E94C/A360C突变和随后的(ΔM1)G1G2突变的SEQ IDNO:8)或两个T4 Dda–E94C/C109A/C136A/A360C(具有E94C/C109A/C136A/A360C突变和随后的(ΔM1)G1G2突变的SEQ ID NO:8)解旋酶控制DNA构建体X(示于图17)穿过纳米孔的移动。当使用两个解旋酶控制所述构建体穿过所述纳米孔移动时,观察到相比于使用单个解旋酶控制移动时提高的移动。
材料和方法
在设置实验之前,将DNA构建体X(对于该构建体X的图及其中使用的序列,参见图17,添加到纳米孔系统的终浓度为0.1nM)用T4 Dda–E94C/A360C(添加到纳米孔系统的终浓度为1nM,具有E94C/A360C突变的SEQ ID NO:24)或者T4 Dda–E94C/C109A/C136A/A360C(添加到纳米孔系统的终浓度为1nM,具有E94C/C109A/C136A/A360C突变的SEQ ID NO:24,其提供在缓冲液(253mM KCl,50mM磷酸钾,pH 8.0,2mM EDTA)中)在室温预孵育5分钟。5分钟后,向预混合物中添加TMAD(添加到纳米孔系统的终浓度为1μM)并将该混合物进一步孵育5分钟。最后,向所述预混合物中添加MgCl2(预混合物终浓度2mM),ATP(预混合物终浓度2mM)和缓冲液(25mM磷酸钾和500mM KCl pH 8.0)。
由嵌入到在缓冲液(25mM磷酸钾,150mM亚铁(II)氰化钾,150mM铁(III)氰化钾,pH8.0)中的嵌段共聚物中的单个MspA纳米孔获得电测量值。在实现单个孔插入到嵌段共聚物中后,然后使缓冲液(2mL,25mM磷酸钾pH 8.0,150mM亚铁(II)氰化钾和150mM铁(III)氰化钾)流经所述系统以除去过量的MspA纳米孔。然后将酶(T4 Dda–E94C/A360C或T4 Dda–E94C/C109A/C136A/A360C,1nM终浓度),DNA构建体X(0.1nM终浓度),燃料(MgCl2 2mM终浓度,ATP 2mM终浓度)的预混合物(总共300μL)添加到单个纳米孔实验系统中,并且实验在120mV的保持电势下运行6小时并监控解旋酶控制的DNA移动。
结果
对于使用T4 Dda–E94C/A360C和T4 Dda–E94C/C109A/C136A/A360C(分别参见图18A和18B)的DNA构建体X(图17)观察解旋酶控制的DNA移动。当单个酶结合到DNA构建体X(运动指数示于图18A)时,观察区域3和4中解旋酶控制的DNA穿过纳米孔的移动(参见图18)。区域3以受控的方式移动穿过所述孔,其中可以观察到图18A中标绘的该区域的运动指数(参见图18的运动指数的图例说明)。然而,当区域4穿过纳米孔移位时,图18A中标绘的运动指数相比于区域3少了很多点。因为区域3和4具有近似相同的长度,因此每个区域观察到的运动指数预期具有近似相同数量的点。这意味着由单个酶(T4 Dda-E94C/A360C)控制的区域4的移动控制导致较少的点,并因此由区域4获得与区域3相比较少的信息。获得较少的信息是由于当区域4移位穿过纳米孔时酶的移动是不一致的(例如,DNA沿着区域4的区段向前滑动),这意味着DNA序列区段缺失。
在该实施例中,解旋酶沿着多核苷酸以5’到3’方向移动。当多核苷酸的5’末端(解旋酶移动而远离的末端)被所述孔捕获时,所述解旋酶顺着由施加电势产生的场的方向工作,并将螺旋的多核苷酸移入孔中并移入反式室中。在该实施例中,向前滑动包括DNA相对于所述孔向前移动(即在该实施例中,朝向其3’末端而远离其5’末端)至少4个连续的核苷酸并通常多于10个连续的核苷酸。向前滑动可包括向前移动100个或更多的连续核苷酸并且这在每条链中可发生多于1次。该现象在UK申请No.1406151.9中称为跳动或滑动。
图18B显示了使用“一组”酶,在此情况下为两个T4 Dda-E94C/A360C酶,控制DNA构建体X(区域3和4)移动时产生的运动指数。DNA构建体X的区域3的运动指数与观察的单个酶的运动指数类似。然而,当区域4在两个酶的控制下移位穿过纳米孔时,所述DNA的运动指数显著不同于由单个T4 Dda-E94C/A360C解旋酶控制移动时观察到的运动指数。当使用两个T4 Dda-E94C/A360C酶控制移动时,针对区域4和3观察到相似的运动指数,这两个区域具有近似相同数目的点。这表明当“组”中使用两个T4 Dda-E94C/A360C酶控制移动时,观察到改进的解旋酶控制的DNA移动。这是因为区域4和3获得相似数量的信息,而使用单个酶控制移动时导致区域4比区域3较少的信息。因为各组解旋酶导致更一致的DNA移动(如,DNA区域4的减缓的移动或更少的向前滑动),获得更多的信息。这意味着可以使用一组T4 Dda–E94C/A360C酶来提高对DNA链的测序。
使用解旋酶T4 Dda–E94C/C109A/C136A/A360C控制DNA构建体X穿过纳米孔的移动来进行相同实验。图19A显示了当由单个T4 Dda–E94C/C109A/C136A/A360C酶控制移动时构建体X的运动指数,图19B显示了当由两个T4 Dda–E94C/C109A/C136A/A360C解旋酶控制移动时构建体X的运动指数。如针对T4 Dda-E94C/A360C所观察到的,一组两个T4 Dda–E94C/C109A/C136A/A360C解旋酶导致,当该DNA的区域2由这两个酶控制移动时,在运动指数中观察到更多的点,这表明该区域具有改进的移动(减缓的移动或更少的向前滑动)。这意味着可以使用一组T4 Dda–E94C/C109A/C136A/A360C酶来改进对DNA链的测序。
在图17中显示和描述的DNA构建体X具有标记为b的区段,在该区段上结合有两个酶。对T4 Dda–E94C/A360C和T4 Dda–E94C/C109A/C136A/A360C都进行对照试验,其中区段b的长度仅足够结合一个酶(10-12T结合位点)。在对照试验中,区域4移位穿过纳米孔,当仅单个酶结合到所述构建体并控制链移动穿过纳米孔时,没有观察到具有改进的移动的链。相比之下,在以上试验中,当两个酶结合到DNA时,尽管因为仅单个酶结合而观察到一些具有较差移动的链,但是能鉴别到具有提高的运动指数(其对应于由两个酶而不是仅一个酶控制的DNA移位)的链。
实施例7
本实施例比较了使用单个T4 Dda–E94C/C109A/C136A/A360C或使用T4 Dda–E94C/C109A/C136A/A360C和T4 Dda–E94C/C109A/C136A/A360C/W378A(具有E94C/C109A/C136A/A360C/W378A突变和随后的(ΔM1)G1G2突变的SEQ ID NO:8)控制DNA构建体Z(示于图20)移动穿过MspA纳米孔的移动。当提供了适当的燃料,T4 Dda–E94C/C109A/C136A/A360C和T4Dda–E94C/C109A/C136A/A360C/W378A均为沿着DNA移动的活跃的解旋酶。当使用这两个不同的解旋酶控制所述构建体移动穿过纳米孔时,观察到改进的移动——相比于当使用单个解旋酶(T4 Dda–E94C/C109A/C136A/A360C)控制所述移动时。
材料和方法
将具有两个解旋酶预结合(参见图21B数据)或仅T4 Dda–E94C/C109A/C136A/A360C预结合(对照试验,参见图21A数据)的DNA构建体Z(添加到纳米孔系统的终浓度为0.1nM)添加到缓冲液(添加到纳米孔系统的终浓度为500mM KCl,25mM磷酸钾pH 8.0),ATP(添加到纳米孔系统的终浓度为2mM)和MgCL2(添加到纳米孔系统的终浓度为2mM)中。该预混合物然后添加到纳米孔系统(总体积150μL)。
由嵌入到在缓冲液(25mM磷酸钾,75mM亚铁(II)氰化钾,25mM铁(III)氰化钾,600mM KCl,pH 8.0)中的嵌段共聚物中的单个MspA纳米孔获得电测量值。在实现单个孔插入到嵌段共聚物中后,然后使缓冲液(2mL,25mM磷酸钾,75mM亚铁(II)氰化钾,25mM铁(III)氰化钾,600mM KCl,pH 8.0)流经所述系统以除去任何过量的MspA纳米孔。然后将预结合到构建体Z的酶(单个T4 Dda–E94C/C109A/C136A/A360C(对照)或T4 Dda–E94C/C109A/C136A/A360C和T4 Dda–E94C/C109A/C136A/A360C/W378A)、燃料(MgCl2 and ATP)的预混合物(共150μL)流入单个纳米孔实验系统,并且实验在-120mV的保持电势(具有在2秒内跳动到+60mV的电势)下运行6小时并监控解旋酶控制的DNA移动。
结果
观察到对应于仅通过T4 Dda–E94C/C109A/C136A/A360C控制移位的解旋酶控制DNA移动(对照试验,图21A),或通过T4 Dda–E94C/C109A/C136A/A360C和T4 Dda–E94C/C109A/C136A/A360C/W378A控制移位的解旋酶控制DNA移动(图22B)。示于图21区段A的轨迹显示了当仅解旋酶T4 Dda–E94C/C109A/C136A/A360C控制DNA构建体Z(参见图20)穿过MspA纳米孔移位时的示例运动指数图。当区域5移位穿过纳米孔时,可以观察到区域5的运动指数。然而,该图显示了区域6具有比区域5减少的运动指数点,这表明从DNA构建体Y的区域6获得较少的信息——当该区域移位穿过纳米孔时。这导致DNA移动是更不一致的(例如,DNA区域6更多的向前滑动)和DNA序列的一些区段缺失。
图21B显示了当T4 Dda–E94C/C109A/C136A/A360C和T4 Dda–E94C/C109A/C136A/A360C/W378A控制DNA构建体Z(参见图20)移位穿过MspA纳米孔时的运动指数。当区域5在T4Dda–E94C/C109A/C136A/A360C和T4 Dda–E94C/C109A/C136A/A360C/W378A的控制下移位穿过纳米孔时,可以观察到运动指数。而且,当区域6移位穿过纳米孔时,该移动再次由T4Dda–E94C/C109A/C136A/A360C和T4 Dda–E94C/C109A/C136A/A360C/W378A控制。当区域6在两个酶(T4 Dda–E94C/C109A/C136A/A360C和T4 Dda–E94C/C109A/C136A/A360C/W378A)的控制下移位穿过纳米孔时,该DNA移动与当单个T4 Dda–E94C/C109A/C136A/A360C解旋酶控制该区域(参见图21A的区段6)的移动时观察到的移动显著不同。该图显示了当解旋酶移动是使用T4 Dda–E94C/C109A/C136A/A360C和T4 Dda–E94C/C109A/C136A/A360C/W378A控制时区域6的运动指数,相比于解旋酶移动是由单个酶T4 Dda–E94C/C109A/C136A/A360C控制时区域6的运动指数,具有更多的点,这表明当该区域在两个不同的酶控制下移位穿过纳米孔时从DNA构建体Z的该区域可获得更多信息,并且表明DNA的移动更一致(例如,DNA区域6更缓慢的移动或更少的向前滑动)。这意味着可以使用4Dda–E94C/C109A/C136A/A360C和T4Dda–E94C/C109A/C136A/A360C/W378A酶的组合来改善对DNA链的测序。
实施例8
该实施例比较了使用单个T4 Dda–E94C/C109A/C136A/A360C/W378A或两个T4Dda–E94C/C109A/C136A/A360C/W378A解旋酶(具有E94C/C109A/C136A/A360C/W378A突变和随后的(ΔM1)G1G2突变的SEQ ID NO:8)控制DNA构建体Z(示于图20)穿过MspA纳米孔的移动。当提供适当的燃料时,T4 Dda–E94C/C109A/C136A/A360C/W378A是沿着DNA移动的活跃的解旋酶。当使用两个解旋酶(T4 Dda–E94C/C109A/C136A/A360C/W378A)控制所述构建体移动穿过纳米孔时,观察到改善的运动——相比于由单个解旋酶(T4 Dda–E94C/C109A/C136A/A360C/W378A)控制所述运动时。
材料和方法
将具有两个T4 Dda–E94C/C109A/C136A/A360C/W378A解旋酶预结合(参见图21B的数据)或单个T4 Dda–E94C/C109A/C136A/A360C/W378A预结合(对照试验,参见图21A的数据)的DNA构建体Z(添加到纳米孔系统的终浓度为0.1nM)添加到缓冲液(添加到纳米孔系统的终浓度为500mM KCl,25mM磷酸钾pH 8.0),ATP(添加到纳米孔系统的终浓度为2mM)和MgCL2(添加到纳米孔系统的终浓度为2mM)中。这即为预混合物,然后将该预混合物添加到纳米孔系统(总体积150μL)。
如以上实施例7所述由单个MspA纳米孔获取电测量值,不同在于将具有单个T4Dda–E94C/C109A/C136A/A360C/W378A预结合的DNA构建体Z(作为对照试验)或具有两个T4Dda–E94C/C109A/C136A/A360C/W378A解旋酶预结合的DNA构建体Z,添加到所述纳米孔系统。
结果
观察到与仅由T4 Dda–E94C/C109A/C136A/A360C/W378A(对照试验,图22A)或由两个T4 Dda–E94C/C109A/C136A/A360C/W378A解旋酶(图22B)控制的移位对应的解旋酶控制DNA移动。示于图22区段A的轨迹显示了仅由单个T4 Dda–E94C/C109A/C136A/A360C/W378A解旋酶控制DNA构建体Z(参见图20)移位穿过MspA纳米孔时标绘出的示例运动指数。当区域5移位穿过所述纳米孔时,可以观察到区域5的运动指数。然而,该图显示,相比于区域5,区域6的运动指数具有减少的点,这表明当区域6穿过所述纳米孔移位时,从DNA构建体Z的区域6获得的信息较少。这导致DNA移动不太一致(例如,标记为6的DNA区域有更多的向前滑动)并且DNA序列的一些区段缺失。
图22B显示了当DNA构建体Z(参见图20)在两个T4 Dda–E94C/C109A/C136A/A360C/W378A解旋酶控制下移位穿过MspA纳米孔时的运动指数。当区域5在两个T4 Dda–E94C/C109A/C136A/A360C/W378A解旋酶控制下移位穿过所述纳米孔时,可以观察到运动指数。而且,当区域6移位穿过纳米孔时,该移动再次由两个T4 Dda–E94C/C109A/C136A/A360C/W378A解旋酶控制。当区域6在两个酶(两个T4 Dda–E94C/C109A/C136A/A360C/W378A解旋酶)控制下移位穿过纳米孔时,DNA移动与由单个T4Dda–E94C/C109A/C136A/A360C/W378A解旋酶控制区域6(参见图22A区段6)移动时观察到的移动显著不同。该图显示了,与当所述解旋酶移动是由单个T4 Dda–E94C/C109A/C136A/A360C/W378A酶控制时相比,当所述解旋酶移动是由两个T4 Dda–E94C/C109A/C136A/A360C/W378A解旋酶控制时,区域6的运动指数具有更多的点,这表明相比于构建体Z的区域6在单个T4 Dda–E94C/C109A/C136A/A360C/W378A解旋酶控制下移位穿过纳米孔时所获得的信息,当DNA构建体Z的区域6在两个酶的控制下移位穿过纳米孔时获得了更多的信息。此外,由两个T4 Dda–E94C/C109A/C136A/A360C/W378A解旋酶控制所述DNA移位时观察到的DNA移动也更一致(例如,标记为8的DNA区域减缓的移动或减少的向前滑脱)。这意味着使用两个T4 Dda–E94C/C109A/C136A/A360C/W378A酶获得了改善的对DNA链的测序。

Claims (3)

1.一种用于表征目标多核苷酸的传感器,包括在(a)孔和(b)Dda解旋酶之间的复合体。
2.根据权利要求1所述的方法,其中所述孔是跨膜蛋白孔或固态孔。
3.根据权利要求2所述的方法,其中所述跨膜蛋白孔选自溶血素、杀白细胞素、耻垢分枝杆菌孔蛋白A(MspA)、外膜孔蛋白F(OmpF)、外膜孔蛋白G(OmpG)、外膜磷脂酶A、奈瑟氏菌属自转运脂蛋白(NalP)和WZA或者是β-桶状孔或α-螺旋束孔。
CN202410267583.8A 2013-10-18 2014-09-10 经修饰的酶 Pending CN118086476A (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
GB201318464A GB201318464D0 (en) 2013-10-18 2013-10-18 Modified enzymes
GB1318464.3 2013-10-18
GBPCT/GB2014/050175 2014-01-22
PCT/GB2014/050175 WO2014135838A1 (en) 2013-03-08 2014-01-22 Enzyme stalling method
GB201404718A GB201404718D0 (en) 2014-03-17 2014-03-17 Modified enzymes
GB1404718.7 2014-03-17
GB1406151.9 2014-04-04
GBGB1406151.9A GB201406151D0 (en) 2014-04-04 2014-04-04 Method
CN201480069741.3A CN105899678A (zh) 2013-10-18 2014-09-10 经修饰的酶
PCT/GB2014/052736 WO2015055981A2 (en) 2013-10-18 2014-09-10 Modified enzymes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201480069741.3A Division CN105899678A (zh) 2013-10-18 2014-09-10 经修饰的酶

Publications (1)

Publication Number Publication Date
CN118086476A true CN118086476A (zh) 2024-05-28

Family

ID=52828808

Family Applications (6)

Application Number Title Priority Date Filing Date
CN202410267596.5A Pending CN117947149A (zh) 2013-10-18 2014-09-10 经修饰的酶
CN202410267584.2A Pending CN117947148A (zh) 2013-10-18 2014-09-10 经修饰的酶
CN202410267585.7A Pending CN117965707A (zh) 2013-10-18 2014-09-10 经修饰的酶
CN202310640976.4A Pending CN117264925A (zh) 2013-10-18 2014-09-10 经修饰的酶
CN202410267583.8A Pending CN118086476A (zh) 2013-10-18 2014-09-10 经修饰的酶
CN201480069741.3A Pending CN105899678A (zh) 2013-10-18 2014-09-10 经修饰的酶

Family Applications Before (4)

Application Number Title Priority Date Filing Date
CN202410267596.5A Pending CN117947149A (zh) 2013-10-18 2014-09-10 经修饰的酶
CN202410267584.2A Pending CN117947148A (zh) 2013-10-18 2014-09-10 经修饰的酶
CN202410267585.7A Pending CN117965707A (zh) 2013-10-18 2014-09-10 经修饰的酶
CN202310640976.4A Pending CN117264925A (zh) 2013-10-18 2014-09-10 经修饰的酶

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201480069741.3A Pending CN105899678A (zh) 2013-10-18 2014-09-10 经修饰的酶

Country Status (7)

Country Link
US (3) US10724018B2 (zh)
EP (2) EP3058088A2 (zh)
JP (1) JP6677640B2 (zh)
CN (6) CN117947149A (zh)
AU (1) AU2014335915B2 (zh)
CA (1) CA2927726A1 (zh)
WO (1) WO2015055981A2 (zh)

Families Citing this family (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2122344B8 (en) 2007-02-20 2019-08-21 Oxford Nanopore Technologies Limited Lipid bilayer sensor system
GB0724736D0 (en) 2007-12-19 2008-01-30 Oxford Nanolabs Ltd Formation of layers of amphiphilic molecules
EP3029467B1 (en) 2008-09-22 2020-01-08 University of Washington Msp nanopores and related methods
AU2010209528B2 (en) 2009-01-30 2015-10-01 Oxford Nanopore Technologies Limited Adaptors for nucleic acid constructs in transmembrane sequencing
SG10201604316WA (en) 2011-05-27 2016-07-28 Oxford Nanopore Tech Ltd Coupling method
AU2012288629B2 (en) 2011-07-25 2017-02-02 Oxford Nanopore Technologies Limited Hairpin loop method for double strand polynucleotide sequencing using transmembrane pores
US9758823B2 (en) 2011-10-21 2017-09-12 Oxford Nanopore Technologies Limited Enzyme method
EP2798083B1 (en) 2011-12-29 2017-08-09 Oxford Nanopore Technologies Limited Method for characterising a polynucelotide by using a xpd helicase
US10385382B2 (en) 2011-12-29 2019-08-20 Oxford Nanopore Technologies Ltd. Enzyme method
GB201202519D0 (en) 2012-02-13 2012-03-28 Oxford Nanopore Tech Ltd Apparatus for supporting an array of layers of amphiphilic molecules and method of forming an array of layers of amphiphilic molecules
CA2864035C (en) 2012-02-15 2021-05-18 Oxford Nanopore Technologies Limited A method for determining the presence of an analyte using an aptamer
WO2013153359A1 (en) 2012-04-10 2013-10-17 Oxford Nanopore Technologies Limited Mutant lysenin pores
EP2875128B8 (en) 2012-07-19 2020-06-24 Oxford Nanopore Technologies Limited Modified helicases
EP2875154B1 (en) 2012-07-19 2017-08-23 Oxford Nanopore Technologies Limited SSB method for characterising a nucleic acid
EP2875152B1 (en) 2012-07-19 2019-10-09 Oxford Nanopore Technologies Limited Enzyme construct
WO2014041337A1 (en) 2012-09-14 2014-03-20 Oxford Nanopore Technologies Limited Sample preparation method
GB201313121D0 (en) 2013-07-23 2013-09-04 Oxford Nanopore Tech Ltd Array of volumes of polar medium
EP2917366B1 (en) 2012-11-06 2017-08-02 Oxford Nanopore Technologies Limited Quadruplex method
JP6408494B2 (ja) 2013-03-08 2018-10-17 オックスフォード ナノポール テクノロジーズ リミテッド 酵素停止法
GB201318465D0 (en) 2013-10-18 2013-12-04 Oxford Nanopore Tech Ltd Method
GB201314695D0 (en) 2013-08-16 2013-10-02 Oxford Nanopore Tech Ltd Method
GB201313477D0 (en) 2013-07-29 2013-09-11 Univ Leuven Kath Nanopore biosensors for detection of proteins and nucleic acids
CN117947149A (zh) 2013-10-18 2024-04-30 牛津纳米孔科技公开有限公司 经修饰的酶
GB201406151D0 (en) 2014-04-04 2014-05-21 Oxford Nanopore Tech Ltd Method
GB201406155D0 (en) 2014-04-04 2014-05-21 Oxford Nanopore Tech Ltd Method
AU2015208919B9 (en) 2014-01-22 2021-04-01 Oxford Nanopore Technologies Limited Method for attaching one or more polynucleotide binding proteins to a target polynucleotide
GB201403096D0 (en) 2014-02-21 2014-04-09 Oxford Nanopore Tech Ltd Sample preparation method
CN106460061B (zh) 2014-04-04 2020-03-06 牛津纳米孔技术公司 在双链核酸分子的两端使用纳米孔和锚分子来表征所述双链核酸的方法
WO2015166276A1 (en) 2014-05-02 2015-11-05 Oxford Nanopore Technologies Limited Method of improving the movement of a target polynucleotide with respect to a transmembrane pore
GB201417712D0 (en) 2014-10-07 2014-11-19 Oxford Nanopore Tech Ltd Method
WO2016034591A2 (en) 2014-09-01 2016-03-10 Vib Vzw Mutant pores
WO2016055778A1 (en) 2014-10-07 2016-04-14 Oxford Nanopore Technologies Limited Mutant pores
GB201418159D0 (en) 2014-10-14 2014-11-26 Oxford Nanopore Tech Ltd Method
GB201418469D0 (en) 2014-10-17 2014-12-03 Oxford Nanopore Tech Ltd Method
GB201418512D0 (en) 2014-10-17 2014-12-03 Oxford Nanopore Tech Ltd Electrical device with detachable components
JP6824881B2 (ja) 2014-10-17 2021-02-03 オックスフォード ナノポール テクノロジーズ リミテッド ナノ細孔rnaを特徴付けるための方法
GB201502810D0 (en) 2015-02-19 2015-04-08 Oxford Nanopore Tech Ltd Method
GB201502809D0 (en) 2015-02-19 2015-04-08 Oxford Nanopore Tech Ltd Mutant pore
WO2016166232A1 (en) 2015-04-14 2016-10-20 Katholieke Universiteit Leuven Nanopores with internal protein adaptors
CA2998970C (en) * 2015-09-22 2021-07-13 F. Hoffmann-La Roche Ag Ompg variants
CA3000561C (en) 2015-09-24 2022-03-22 F. Hoffman-La Roche Ag Alpha-hemolysin variants
JP7237586B2 (ja) 2015-12-08 2023-03-13 カトリック ユニヴェルシテット ルーヴェン カーユー ルーヴェン リサーチ アンド ディベロップメント 修飾ナノポア、それを含む組成物およびその使用
EP4019542A1 (en) 2016-03-02 2022-06-29 Oxford Nanopore Technologies plc Mutant pores
US11104709B2 (en) 2016-04-06 2021-08-31 Oxford Nanopore Technologies Ltd. Mutant pore
GB201609220D0 (en) 2016-05-25 2016-07-06 Oxford Nanopore Tech Ltd Method
GB201609221D0 (en) 2016-05-25 2016-07-06 Oxford Nanopore Tech Ltd Method
EP3464616B1 (en) 2016-05-25 2022-05-04 Oxford Nanopore Technologies plc Method
GB201611770D0 (en) 2016-07-06 2016-08-17 Oxford Nanopore Tech Microfluidic device
GB201616590D0 (en) 2016-09-29 2016-11-16 Oxford Nanopore Technologies Limited Method
GB201620450D0 (en) 2016-12-01 2017-01-18 Oxford Nanopore Tech Ltd Method
GB2559117B (en) 2017-01-19 2019-11-27 Oxford Nanopore Tech Ltd Double stranded polynucleotide synthesis method, kit and system
JP7383480B2 (ja) 2017-02-10 2023-11-20 オックスフォード ナノポール テクノロジーズ ピーエルシー 修飾ナノポア、それを含む組成物、およびそれらの使用
GB201703049D0 (en) 2017-02-24 2017-04-12 Univ I Tromsø - Norges Arktiske Univ Single-strand binding protein
GB201707122D0 (en) 2017-05-04 2017-06-21 Oxford Nanopore Tech Ltd Pore
GB201707140D0 (en) 2017-05-04 2017-06-21 Oxford Nanopore Tech Ltd Method
CN110914290A (zh) 2017-06-30 2020-03-24 弗拉芒区生物技术研究所 新颖蛋白孔
EP4303317A3 (en) * 2017-10-23 2024-04-24 F. Hoffmann-La Roche AG Removing and reinserting protein nanopores in a membrane using osmotic imbalance
GB2569977A (en) 2018-01-05 2019-07-10 Oxford Nanopore Tech Ltd Method
GB201807793D0 (en) 2018-05-14 2018-06-27 Oxford Nanopore Tech Ltd Method
GB201808556D0 (en) 2018-05-24 2018-07-11 Oxford Nanopore Tech Ltd Method
GB201808554D0 (en) 2018-05-24 2018-07-11 Oxford Nanopore Tech Ltd Method
GB201809323D0 (en) 2018-06-06 2018-07-25 Oxford Nanopore Tech Ltd Method
WO2020043653A2 (en) 2018-08-28 2020-03-05 F. Hoffmann-La Roche Ag Ruthenium-containing electrodes
JP7153140B2 (ja) 2018-12-19 2022-10-13 エフ.ホフマン-ラ ロシュ アーゲー 3’保護ヌクレオチド
GB201821155D0 (en) 2018-12-21 2019-02-06 Oxford Nanopore Tech Ltd Method
GB201907246D0 (en) 2019-05-22 2019-07-03 Oxford Nanopore Tech Ltd Method
GB201907244D0 (en) * 2019-05-22 2019-07-03 Oxford Nanopore Tech Ltd Method
US11926819B2 (en) 2019-05-28 2024-03-12 The Regents Of The University Of California Methods of adding polymers to ribonucleic acids
GB201917060D0 (en) 2019-11-22 2020-01-08 Oxford Nanopore Tech Ltd Method
WO2021111125A1 (en) 2019-12-02 2021-06-10 Oxford Nanopore Technologies Limited Method of characterising a target polypeptide using a nanopore
GB201917742D0 (en) 2019-12-04 2020-01-15 Oxford Nanopore Tech Ltd Method
GB202004944D0 (en) 2020-04-03 2020-05-20 King S College London Method
CN115698331A (zh) 2020-06-18 2023-02-03 牛津纳米孔科技公开有限公司 使用检测器选择性地表征多核苷酸的方法
GB202009349D0 (en) 2020-06-18 2020-08-05 Oxford Nanopore Tech Ltd Method
CA3183049A1 (en) 2020-06-18 2021-12-23 Rebecca Victoria BOWEN Method
CN113930406B (zh) * 2021-12-17 2022-04-08 北京齐碳科技有限公司 一种Pif1-like解旋酶及其应用
JP2023515597A (ja) * 2020-06-19 2023-04-13 チタン テクノロジー リミテッド, ベイジン Pif1様ヘリカーゼ及びその使用
WO2022029449A1 (en) 2020-08-07 2022-02-10 Oxford Nanopore Technologies Limited Methods of identifying nucleic acid barcodes
GB202015993D0 (en) 2020-10-08 2020-11-25 Oxford Nanopore Tech Ltd Method
GB202103605D0 (en) 2021-03-16 2021-04-28 Oxford Nanopore Tech Ltd Alignment of target and reference sequences of polymer units
EP4299746A1 (en) 2021-04-06 2024-01-03 Qitan Technology Ltd., Chengdu Modified prp43 helicase and use thereof
CN117337333A (zh) 2021-05-19 2024-01-02 牛津纳米孔科技公开有限公司 用于补体链测序的方法
GB202107192D0 (en) 2021-05-19 2021-06-30 Oxford Nanopore Tech Ltd Method
GB202107354D0 (en) 2021-05-24 2021-07-07 Oxford Nanopore Tech Ltd Method
WO2023094806A1 (en) 2021-11-29 2023-06-01 Oxford Nanopore Technologies Plc Nanopore measurement signal analysis
GB202118908D0 (en) 2021-12-23 2022-02-09 Oxford Nanopore Tech Ltd Method
GB202118906D0 (en) 2021-12-23 2022-02-09 Oxford Nanopore Tech Ltd Method
WO2023123359A1 (zh) * 2021-12-31 2023-07-06 深圳华大生命科学研究院 解旋酶bch2x及其用途
GB202205617D0 (en) 2022-04-14 2022-06-01 Oxford Nanopore Tech Plc Novel modified protein pores and enzymes
US20240026427A1 (en) 2022-05-06 2024-01-25 10X Genomics, Inc. Methods and compositions for in situ analysis of v(d)j sequences
WO2023222657A1 (en) 2022-05-17 2023-11-23 Oxford Nanopore Technologies Plc Method and adaptors
GB202207267D0 (en) 2022-05-18 2022-06-29 Oxford Nanopore Tech Plc Calibration and profiling of a nanopore array device
GB202211602D0 (en) 2022-08-09 2022-09-21 Oxford Nanopore Tech Plc Novel pore monomers and pores
GB202211607D0 (en) 2022-08-09 2022-09-21 Oxford Nanopore Tech Plc Novel pore monomers and pores
WO2024033443A1 (en) 2022-08-09 2024-02-15 Oxford Nanopore Technologies Plc Novel pore monomers and pores
CN117721101A (zh) * 2022-09-16 2024-03-19 北京普译生物科技有限公司 一种经修饰的CaPif1解旋酶及其应用
GB202215442D0 (en) 2022-10-19 2022-11-30 Oxford Nanopore Tech Plc Analysis of a polymer
WO2024089270A2 (en) 2022-10-28 2024-05-02 Oxford Nanopore Technologies Plc Pore monomers and pores
GB202216162D0 (en) 2022-10-31 2022-12-14 Oxford Nanopore Tech Plc Method
WO2024094966A1 (en) 2022-11-01 2024-05-10 Oxford Nanopore Technologies Plc Biochemical analysis system and method of controlling a biochemical analysis system
GB202216905D0 (en) 2022-11-11 2022-12-28 Oxford Nanopore Tech Plc Novel pore monomers and pores
CN116334030B (zh) * 2023-05-06 2024-01-16 深圳市梅丽纳米孔科技有限公司 一种经修饰的CfM HL4解旋酶及其应用
GB202307486D0 (en) 2023-05-18 2023-07-05 Oxford Nanopore Tech Plc Method

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602979B1 (en) 1994-12-19 2003-08-05 The United States Of America As Represented By The Department Of Health And Human Services Screening assays for compounds that cause apoptosis
US6267872B1 (en) 1998-11-06 2001-07-31 The Regents Of The University Of California Miniature support for thin films containing single channels or nanopores and methods for using same
KR20040023596A (ko) 2001-05-01 2004-03-18 도꾸리쯔교세이호진 상교기쥬쯔 소고겡뀨죠 신규 맥시자임
US20030010638A1 (en) 2001-06-15 2003-01-16 Hansford Derek J. Nanopump devices and methods
US7399590B2 (en) * 2002-02-21 2008-07-15 Asm Scientific, Inc. Recombinase polymerase amplification
CA2498764C (en) 2002-09-20 2015-11-10 New England Biolabs, Inc. Helicase dependent amplification of nucleic acids
US7745116B2 (en) 2003-04-08 2010-06-29 Pacific Biosciences Of California, Inc. Composition and method for nucleic acid sequencing
US7851203B2 (en) 2003-10-01 2010-12-14 Lawrence Livermore National Security, Llc Functionalized apertures for the detection of chemical and biological materials
US7238485B2 (en) 2004-03-23 2007-07-03 President And Fellows Of Harvard College Methods and apparatus for characterizing polynucleotides
WO2005124888A1 (en) 2004-06-08 2005-12-29 President And Fellows Of Harvard College Suspended carbon nanotube field effect transistor
JP4757804B2 (ja) 2004-10-27 2011-08-24 株式会社カネカ 新規カルボニル還元酵素、その遺伝子、およびその利用法
GB0505971D0 (en) 2005-03-23 2005-04-27 Isis Innovation Delivery of molecules to a lipid bilayer
EP1957672A2 (fr) 2005-10-28 2008-08-20 Biomerieux Sa Procede de detection du cancer
GB0523282D0 (en) 2005-11-15 2005-12-21 Isis Innovation Methods using pores
EP2122344B8 (en) 2007-02-20 2019-08-21 Oxford Nanopore Technologies Limited Lipid bilayer sensor system
CA2684801C (en) 2007-04-04 2017-10-10 The Regents Of The University Of California Compositions, devices, systems, and methods for using a nanopore
US8698481B2 (en) 2007-09-12 2014-04-15 President And Fellows Of Harvard College High-resolution molecular sensor
GB2453377A (en) 2007-10-05 2009-04-08 Isis Innovation Transmembrane protein pores and molecular adapters therefore.
GB0724736D0 (en) 2007-12-19 2008-01-30 Oxford Nanolabs Ltd Formation of layers of amphiphilic molecules
US8231969B2 (en) 2008-03-26 2012-07-31 University Of Utah Research Foundation Asymmetrically functionalized nanoparticles
JP2011527191A (ja) 2008-07-07 2011-10-27 オックスフォード ナノポア テクノロジーズ リミテッド 塩基検出細孔
CN103695530B (zh) 2008-07-07 2016-05-25 牛津纳米孔技术有限公司 酶-孔构建体
US20100092960A1 (en) 2008-07-25 2010-04-15 Pacific Biosciences Of California, Inc. Helicase-assisted sequencing with molecular beacons
EP3029467B1 (en) 2008-09-22 2020-01-08 University of Washington Msp nanopores and related methods
US9080211B2 (en) 2008-10-24 2015-07-14 Epicentre Technologies Corporation Transposon end compositions and methods for modifying nucleic acids
GB0820927D0 (en) 2008-11-14 2008-12-24 Isis Innovation Method
JP2012516145A (ja) 2009-01-30 2012-07-19 オックスフォード ナノポア テクノロジーズ リミテッド ハイブリダイゼーションリンカー
AU2010209528B2 (en) 2009-01-30 2015-10-01 Oxford Nanopore Technologies Limited Adaptors for nucleic acid constructs in transmembrane sequencing
AU2010215761B2 (en) 2009-02-23 2017-04-06 Cytomx Therapeutics, Inc Proproteins and methods of use thereof
GB0905140D0 (en) 2009-03-25 2009-05-06 Isis Innovation Method
US8986928B2 (en) 2009-04-10 2015-03-24 Pacific Biosciences Of California, Inc. Nanopore sequencing devices and methods
EP2422198B1 (en) 2009-04-20 2013-09-25 Oxford Nanopore Technologies Limited Lipid bilayer sensor array
US9309557B2 (en) 2010-12-17 2016-04-12 Life Technologies Corporation Nucleic acid amplification
JP5873023B2 (ja) 2009-12-01 2016-03-01 オックスフォード ナノポール テクノロジーズ リミテッド 生化学分析機器
WO2011151941A1 (ja) 2010-06-04 2011-12-08 国立大学法人東京大学 制御性t細胞の増殖または集積を誘導する作用を有する組成物
CN103392008B (zh) 2010-09-07 2017-10-20 加利福尼亚大学董事会 通过持续性酶以一个核苷酸的精度控制dna在纳米孔中的移动
US9751915B2 (en) 2011-02-11 2017-09-05 Oxford Nanopore Technologies Ltd. Mutant pores
US9347929B2 (en) 2011-03-01 2016-05-24 The Regents Of The University Of Michigan Controlling translocation through nanopores with fluid wall
SG10201604316WA (en) 2011-05-27 2016-07-28 Oxford Nanopore Tech Ltd Coupling method
AU2012288629B2 (en) 2011-07-25 2017-02-02 Oxford Nanopore Technologies Limited Hairpin loop method for double strand polynucleotide sequencing using transmembrane pores
CA3113287C (en) 2011-09-23 2022-12-20 Oxford Nanopore Technologies Limited Analysis of a polymer comprising polymer units
US9758823B2 (en) * 2011-10-21 2017-09-12 Oxford Nanopore Technologies Limited Enzyme method
US10385382B2 (en) 2011-12-29 2019-08-20 Oxford Nanopore Technologies Ltd. Enzyme method
EP2798083B1 (en) * 2011-12-29 2017-08-09 Oxford Nanopore Technologies Limited Method for characterising a polynucelotide by using a xpd helicase
WO2013153359A1 (en) 2012-04-10 2013-10-17 Oxford Nanopore Technologies Limited Mutant lysenin pores
WO2013185137A1 (en) 2012-06-08 2013-12-12 Pacific Biosciences Of California, Inc. Modified base detection with nanopore sequencing
EP2875128B8 (en) 2012-07-19 2020-06-24 Oxford Nanopore Technologies Limited Modified helicases
EP2875152B1 (en) 2012-07-19 2019-10-09 Oxford Nanopore Technologies Limited Enzyme construct
EP2875154B1 (en) 2012-07-19 2017-08-23 Oxford Nanopore Technologies Limited SSB method for characterising a nucleic acid
GB201313121D0 (en) 2013-07-23 2013-09-04 Oxford Nanopore Tech Ltd Array of volumes of polar medium
CA2889664C (en) 2012-10-26 2020-12-29 Oxford Nanopore Technologies Limited Droplet interfaces
GB201318465D0 (en) 2013-10-18 2013-12-04 Oxford Nanopore Tech Ltd Method
GB201314695D0 (en) 2013-08-16 2013-10-02 Oxford Nanopore Tech Ltd Method
JP6408494B2 (ja) 2013-03-08 2018-10-17 オックスフォード ナノポール テクノロジーズ リミテッド 酵素停止法
MX2015012396A (es) 2013-03-14 2016-02-03 Arkema Inc Metodos para la reticulacion de composiciones polimeras en presencia de oxigeno atmosferico.
CN117947149A (zh) 2013-10-18 2024-04-30 牛津纳米孔科技公开有限公司 经修饰的酶
GB201406151D0 (en) 2014-04-04 2014-05-21 Oxford Nanopore Tech Ltd Method
AU2015208919B9 (en) 2014-01-22 2021-04-01 Oxford Nanopore Technologies Limited Method for attaching one or more polynucleotide binding proteins to a target polynucleotide
GB201403096D0 (en) 2014-02-21 2014-04-09 Oxford Nanopore Tech Ltd Sample preparation method
CN106460061B (zh) 2014-04-04 2020-03-06 牛津纳米孔技术公司 在双链核酸分子的两端使用纳米孔和锚分子来表征所述双链核酸的方法
WO2015166276A1 (en) 2014-05-02 2015-11-05 Oxford Nanopore Technologies Limited Method of improving the movement of a target polynucleotide with respect to a transmembrane pore
GB201417712D0 (en) 2014-10-07 2014-11-19 Oxford Nanopore Tech Ltd Method
US9925679B2 (en) 2014-05-19 2018-03-27 I+D+M Creative, Llc Devices and methods for assisting with slicing items
WO2016034591A2 (en) 2014-09-01 2016-03-10 Vib Vzw Mutant pores
GB201418159D0 (en) 2014-10-14 2014-11-26 Oxford Nanopore Tech Ltd Method
JP6824881B2 (ja) 2014-10-17 2021-02-03 オックスフォード ナノポール テクノロジーズ リミテッド ナノ細孔rnaを特徴付けるための方法
EP3464616B1 (en) 2016-05-25 2022-05-04 Oxford Nanopore Technologies plc Method
GB201616590D0 (en) 2016-09-29 2016-11-16 Oxford Nanopore Technologies Limited Method
GB201620450D0 (en) 2016-12-01 2017-01-18 Oxford Nanopore Tech Ltd Method

Also Published As

Publication number Publication date
WO2015055981A2 (en) 2015-04-23
EP3575410A3 (en) 2020-03-04
US20230212535A1 (en) 2023-07-06
AU2014335915A1 (en) 2016-05-12
CN117965707A (zh) 2024-05-03
CN117264925A (zh) 2023-12-22
JP6677640B2 (ja) 2020-04-08
AU2014335915B2 (en) 2020-12-17
WO2015055981A3 (en) 2015-06-11
EP3058088A2 (en) 2016-08-24
CA2927726A1 (en) 2015-04-23
EP3575410A2 (en) 2019-12-04
US20210009971A1 (en) 2021-01-14
US11525125B2 (en) 2022-12-13
US10724018B2 (en) 2020-07-28
US20180037874A9 (en) 2018-02-08
CN105899678A (zh) 2016-08-24
CN117947148A (zh) 2024-04-30
JP2016538835A (ja) 2016-12-15
US20160257942A1 (en) 2016-09-08
CN117947149A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
US11525125B2 (en) Modified helicases
US11965183B2 (en) Modified enzymes
US20230227799A1 (en) Modified helicases
US11560589B2 (en) Enzyme stalling method
US20220145383A1 (en) Ssb method
JP6429773B2 (ja) 酵素構築物

Legal Events

Date Code Title Description
PB01 Publication