CN117966135A - 一种(222)取向生长镍锌铁氧体薄膜低温制备方法 - Google Patents

一种(222)取向生长镍锌铁氧体薄膜低温制备方法 Download PDF

Info

Publication number
CN117966135A
CN117966135A CN202410220438.4A CN202410220438A CN117966135A CN 117966135 A CN117966135 A CN 117966135A CN 202410220438 A CN202410220438 A CN 202410220438A CN 117966135 A CN117966135 A CN 117966135A
Authority
CN
China
Prior art keywords
film
ferrite film
molar concentration
orientation
reaction table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410220438.4A
Other languages
English (en)
Inventor
余忠
陈婧莎
王宏
李启帆
窦海之
邬传健
孙科
蒋晓娜
兰中文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunshine Electronic Technology Co ltd
University of Electronic Science and Technology of China
Original Assignee
Sunshine Electronic Technology Co ltd
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunshine Electronic Technology Co ltd, University of Electronic Science and Technology of China filed Critical Sunshine Electronic Technology Co ltd
Priority to CN202410220438.4A priority Critical patent/CN117966135A/zh
Publication of CN117966135A publication Critical patent/CN117966135A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1258Spray pyrolysis
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1291Process of deposition of the inorganic material by heating of the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemically Coating (AREA)

Abstract

本发明提供的一种(222)取向生长镍锌铁氧体薄膜低温制备方法,属于薄膜制备技术领域。本发明基于氧化还原反应原理,利用旋转喷涂设备将氧化液和还原液按一定比例通过超声雾化系统均匀地附着于玻璃衬底上,在完成一系列化学反应后形成连续且致密的铁氧体薄膜,通过改变还原液中氯化亚铁的浓度,控制不同晶面的沉积速率,进而调控NiZn铁氧体薄膜的生长取向。经过以上工艺低温沉积制备出的NiZn铁氧体薄膜能够实现与半导体工艺的兼容,同时取向由NiZn铁氧体的(311)取向逐渐沿(222)择优取向生长,显微结构逐渐形成明显的三角形晶粒,从而使得薄膜生长更加均匀,薄膜质量得到显著提高。

Description

一种(222)取向生长镍锌铁氧体薄膜低温制备方法
技术领域
本发明属于薄膜制备技术领域,具体涉及一种(222)取向生长镍锌铁氧体薄膜低温制备方法。
背景技术
在集成电路产业高速发展的今天,高频化、小型化和集成化已成为电子设备的主要发展趋势,特别是基础产品器件对片上系统(SOC)、微系统(MS)和系统级封装(SIP)的集成度和功能要求越来越高,这要求设计和制造技术的不断创新和突破,以实现更高的集成度和更丰富的功能。而电感作为电子电路的三大无源线性元器件之一,在消费电子、工业设备、射频通信和能量传输等领域中具有重要的应用背景,迫切需要通过微电子制造工艺进行高度集成,与其他电子元件和功能模块共同集成在同一芯片或封装中,实现更高的集成度和简化的电路布局,减少系统的尺寸和复杂性。金属磁性薄膜虽然能与半导体工艺兼容,但其较低的电阻率制约了集成器件的高频化,而NiZn铁氧体薄膜属于尖晶石类材料,因其电阻率高,在高频下具有涡流损耗和趋肤效应影响小的优势,在SOC、MS和SIP中具有重要的应用前景,因此制备高质量的NiZn铁氧体薄膜显得尤为重要。
然而传统NiZn铁氧体薄膜的制备方法包括物理方法和化学方法,物理方法中比较常见的有溅射法和脉冲激光沉积法,化学方法中比较常见的有化学气相沉积法和溶胶-凝胶法,但以上方法均需高温(>600℃)退火处理,因此难以与半导体工艺兼容。M.Abe等人(Abe,Masanori,and Yutaka Tamaura."Ferrite-plating in aqueous solution:A newmethod for preparing magnetic thin film."Japanese journal of applied physics22.8A(1983):L511.)首次提出低温沉积技术,在铜、PET和不锈钢基板上制备出Fe2O3和CoFe2O4薄膜,该法适用于各种材料类型的基板,但其均无取向生长。N.Matsushita等人(N.Matsushita,Chee Ping Chong,T.Mizutani and M.Abe,"High-rate low-temperature(90℃)deposition of Ni-Zn ferrite films highly permeable in gigahertz range,"in IEEE Transactions on Magnetics,vol.38,no.5,pp.3156-3158,Sept.2002)采用旋转喷涂法实现了在玻璃基板上低温制备NiZn铁氧体薄膜,研究了pH值在6.8-9.2区间范围内对择优取向的影响,当pH值为8.4时薄膜样品具有最大的饱和磁化强度Ms 482emu/cm3和最小的矫顽力Hc-//17Oe,其在pH值为6.8和8.7时(111)择优取向明显,在pH值为9.2时择优取向消失,但均无(222)取向生长。O.Obi等人(Obi O,Liu M,Lou J,et al.Spin-spraydeposited NiZn-Ferrite films exhibitingμr′>50at GHz range[J].Journal ofApplied Physics,2011,109(7).)在360Oe的外磁场作用下通过旋转喷涂法在0.1mm厚的玻璃基板上制备出0.7μm厚的Ni0.27Zn0.1Fe2.63O4薄膜,其饱和磁化强度Ms为358emu/cm3,面内矫顽力Hc-//为11Oe,相比于无磁场诱导生长的薄膜其磁导率提高了3倍之多,但无明显的取向生长。Wang X等人(Wang X,Zhou Z,Behugn S,et al.Growth behavior and RF/microwaveproperties of low temperature spin-sprayed NiZn ferrite[J].Journal ofMaterials Science:Materials in Electronics,2015,26:1890-1894.)通过旋涂法在0.2mm厚的玻璃基板上制备出0.7μm的Ni0.27Zn0.1Fe2.63O4薄膜,通过调节氧化液和还原液的pH值来控制NiZn薄膜的晶粒尺寸,进而调节其磁性能,研究发现在氧化液pH值为9.6、还原液pH值为4.6时薄膜具有最小的晶粒尺寸70nm和最大的磁导率,其在0.5GHz时起始磁导率大于200,但XRD图谱显示无择优取向。
目前,旋转喷涂法制备NiZn铁氧体薄膜的研究主要集中在材料的静态磁性能(矫顽力Hc、饱和磁化强度Ms)和动态磁性能(铁磁共振线宽FMR、磁导率μ′)上,但对其取向生长的研究甚少。本发明提供一种通过调节溶液中氯化亚铁浓度来控制晶粒形貌的方法,调控NiZn铁氧体薄膜的(222)取向生长,薄膜的生长质量明显提高。
发明内容
本发明的目的在于,针对背景技术存在的问题,提出了一种(222)取向生长镍锌铁氧体薄膜低温制备方法。本发明通过控制还原液中氯化亚铁的摩尔浓度调控NiZn铁氧体薄膜(222)取向,得到的薄膜(222)取向生长明显,在微观形貌上具有三角形形貌的特征,在磁学性能上具有高饱和磁化强度4πMs>3000Gs,低矫顽力Hc<11Oe,高截止频率fr>300MHz。
为实现上述目的,本发明采用的技术方案如下:
一种(222)取向生长镍锌铁氧体薄膜低温制备方法,包括以下步骤:
步骤1、反应台清洗:
使用2000目的砂纸打磨反应台至表面光滑后,采用无水乙醇/丙酮溶液清洗,自然晾干;
步骤2、配制溶液:
2.1以可溶性亚硝酸盐作为氧化剂,乙酸盐作为反应缓冲剂,加入去离子水混合均匀后得到氧化剂溶液,其中乙酸盐的摩尔浓度为20~30mmol/L,亚硝酸盐的摩尔浓度为2~4mmol/L;
2.2以氯化亚铁、氯化锌和氯化镍作为还原剂,加入去离子水混合均匀后得到还原剂溶液,其中氯化亚铁的摩尔浓度为9~12mmol/L,氯化锌的摩尔浓度为0.5~2mmol/L,氯化镍的摩尔浓度为1~2mmol/L;
步骤3、薄膜的制备:
将玻璃基板放置于步骤1清洗后的反应台中央,在基板温度为85~95℃、氧化剂溶液的供应速率为15~20mL/min、还原剂溶液的供应速率为15~20mL/min、雾化功率为0.1~0.5W、工作气压为0.02~0.05MPa、反应台转速为120~140r/min的条件下,采用旋转喷涂法沉积薄膜,沉积时间为20~40min,沉积完成后,即可在玻璃基板上形成厚度为1~2μm的NiZn铁氧体薄膜。
进一步的,步骤3中,将清洗后的反应台加热至50~60℃后,将玻璃基板放置于反应台中央,利用热胀冷缩原理使基板吸附更加贴合。
本发明提供的一种(222)取向生长镍锌铁氧体薄膜低温制备方法,其核心思想是基于氧化还原反应原理,利用旋转喷涂设备将氧化液和还原液按一定比例通过超声雾化系统均匀地附着于玻璃衬底上,在完成一系列化学反应后形成连续且致密的铁氧体薄膜,通过改变还原液中氯化亚铁的浓度,控制不同晶面的沉积速率,进而调控NiZn铁氧体薄膜的生长取向。经过以上工艺低温沉积制备出的NiZn铁氧体薄膜能够实现与半导体工艺的兼容,同时取向由NiZn铁氧体的(311)取向逐渐沿(222)择优取向生长,显微结构逐渐形成明显的三角形晶粒,从而使得薄膜生长更加均匀,薄膜质量得到显著提高。
与现有技术相比,本发明的有益效果为:
1、本发明提供的旋转喷涂法可在空气环境中制备NiZn铁氧体薄膜,流程简便,操作可控,并能适用多种类型的基板。
2、本发明提供的一种(222)取向生长镍锌铁氧体薄膜低温制备方法,通过改变主配方中的Fe含量,优化微观形貌,提高成膜质量,得到(222)晶向取向生长的三角形晶粒。
3、本发明提供的一种(222)取向生长镍锌铁氧体薄膜低温制备方法,反应能够在<100℃温度下进行,且无需任何高温退火处理,能够实现与现代半导体工艺的兼容。
附图说明
图1为对比例和实施例1~4得到的NiZn铁氧体薄膜的XRD图谱;
图2为对比例和实施例1~4得到的NiZn铁氧体薄膜的扫描电镜照片;
图3为对比例和实施例1~4得到的NiZn铁氧体薄膜的磁滞回线图;
图4为对比例和实施例4得到的NiZn铁氧体薄膜的磁谱曲线。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例1
一种(222)取向生长镍锌铁氧体薄膜低温制备方法,具体包括以下步骤:
步骤1、反应台清洗:
使用2000目的砂纸打磨反应台至表面光滑后,采用无水乙醇/丙酮溶液清洗,自然晾干;
步骤2、配制溶液:
2.1以亚硝酸钠作为氧化剂,乙酸钠作为反应缓冲剂,加入去离子水混合均匀后得到氧化剂溶液,其中乙酸钠的摩尔浓度为26mmol/L,亚硝酸钠的摩尔浓度为2mmol/L;
2.2以氯化亚铁、氯化锌和氯化镍作为还原剂,加入去离子水混合均匀后得到还原剂溶液,其中氯化亚铁的摩尔浓度为9mmol/L,氯化锌的摩尔浓度为0.9mmol/L,氯化镍的摩尔浓度为1.7mmol/L;
步骤3、基板的预热:
将玻璃基板放置于步骤1清洗后的反应台中央,设置旋涂设备的参数,真空泵气压为0.03MPa,吸附基板;设置反应台温度为95℃、转速为130r/min,喷头1、喷头2开始接入去离子水且设置流量为17mL/min,超声雾化功率为0.3W,预热时间为20min;
步骤4、薄膜的制备:
更换旋涂设备的实验溶液,喷头1接入步骤2.1所配制的氧化剂溶液,设置流量为17mL/min,超声雾化功率为0.3W,喷头2接入步骤2.2所配制的还原剂溶液,设置流量为17mL/min,超声雾化功率为0.3W,反应时间为20min;反应结束待其冷却至室温,取下基板后得到沿(222)取向生长的NiZn铁氧体薄膜。
将步骤4制得的NiZn铁氧体薄膜进行表征测试:通过X射线衍射仪(XRD)表征薄膜沿(222)晶向生长的取向度;通过振动样品磁强计(VSM)测试样品的磁性能;通过扫描电子显微镜(SEM)表征样品的微观形貌;通过矢量网络分析仪(VNA)测试样品的磁谱曲线。
实施例2
本实施例与实施例1相比,区别在于:步骤2.2中,氯化亚铁的摩尔浓度调整为10mmol/L;其余步骤与实施例1完全相同。
实施例3
本实施例与实施例1相比,区别在于:步骤2.2中,氯化亚铁的摩尔浓度调整为11mmol/L;其余步骤与实施例1完全相同。
实施例4
本实施例与实施例1相比,区别在于:步骤2.2中,氯化亚铁的摩尔浓度调整为12mmol/L;其余步骤与实施例1完全相同。
对比例
对比例与实施例1相比,区别在于:步骤2.2中,氯化亚铁的摩尔浓度调整为8mmol/L;其余步骤与实施例1完全相同。
对比例和实施例1~4的测试结果如下表:
图1为对比例和实施例1~4得到的NiZn铁氧体薄膜的XRD图谱;由图可知,实施例1~4相对于对比例的(222)取向度更明显,即通过增加还原液中氯化亚铁的摩尔浓度可以增强NiZn铁氧体薄膜的(222)取向。图2为对比例和实施例1~4得到的NiZn铁氧体薄膜的扫描电镜照片;由图可知,实施例1~4相比于对比例铁氧体样品的晶界更清晰,尤其是实施例4出现清晰的三角形晶粒,直观证明了通过改变还原液中氯化亚铁的摩尔浓度可有效调控NiZn铁氧体薄膜(222)取向。图3为对比例和实施例1~4得到的NiZn铁氧体薄膜的磁滞回线图;由图可知,实施例1~4相对于对比例的饱和磁化强度更高。图4为对比例和实施例4得到的NiZn铁氧体薄膜的磁谱曲线;由图可知,虽然磁导率有所下降,但截止频率有所提高。

Claims (2)

1.一种(222)取向生长镍锌铁氧体薄膜低温制备方法,其特征在于,包括以下步骤:
步骤1、反应台清洗:
使用砂纸打磨反应台至表面光滑后,采用无水乙醇、丙酮清洗,自然晾干;
步骤2、配制溶液:
2.1将缓冲剂乙酸盐和氧化剂可溶性亚硝酸盐加入去离子水中,混合均匀后得到氧化剂溶液,其中乙酸盐的摩尔浓度为20~30mmol/L,亚硝酸盐的摩尔浓度为2~4mmol/L;
2.2将氯化亚铁、氯化锌和氯化镍加入去离子水中,混合均匀后得到还原剂溶液,其中氯化亚铁的摩尔浓度为9~12mmol/L,氯化锌的摩尔浓度为0.5~2mmol/L,氯化镍的摩尔浓度为1~2mmol/L;
步骤3、薄膜的制备:
将玻璃基板放置于步骤1清洗后的反应台中央,在基板温度为85~95℃、氧化剂溶液的供应速率为15~20mL/min、还原剂溶液的供应速率为15~20mL/min、雾化功率为0.1~0.5W、工作气压为0.02~0.05MPa、反应台转速为120~140r/min的条件下,采用旋转喷涂法沉积薄膜,沉积时间为20~40min,沉积完成后,得到所述NiZn铁氧体薄膜。
2.根据权利要求1所述的(222)取向生长镍锌铁氧体薄膜低温制备方法,其特征在于,步骤3中,将清洗后的反应台加热至50~60℃后,将玻璃基板放置于反应台中央。
CN202410220438.4A 2024-02-28 2024-02-28 一种(222)取向生长镍锌铁氧体薄膜低温制备方法 Pending CN117966135A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410220438.4A CN117966135A (zh) 2024-02-28 2024-02-28 一种(222)取向生长镍锌铁氧体薄膜低温制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410220438.4A CN117966135A (zh) 2024-02-28 2024-02-28 一种(222)取向生长镍锌铁氧体薄膜低温制备方法

Publications (1)

Publication Number Publication Date
CN117966135A true CN117966135A (zh) 2024-05-03

Family

ID=90845856

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410220438.4A Pending CN117966135A (zh) 2024-02-28 2024-02-28 一种(222)取向生长镍锌铁氧体薄膜低温制备方法

Country Status (1)

Country Link
CN (1) CN117966135A (zh)

Similar Documents

Publication Publication Date Title
CN109852929B (zh) 一种NiZn铁氧体薄膜的制备方法
US20040238796A1 (en) Composite magnetic material prepared by compression forming of ferrite-coated metal particles and method for preparation thereof
CN101429646B (zh) 无诱导磁场下产生面内单轴磁各向异性的薄膜的制备方法
Li et al. Magnetic behavior of soft magnetic composites constructed by rapidly quenched flake-like FeSiAl alloy
Guo et al. Growth and characterization of yttrium iron garnet films on Si substrates by Chemical Solution Deposition (CSD) technique
CN104193316A (zh) 一种钇铁石榴石薄膜及其制备方法
CN117809925B (zh) 一种高频变压器纳米晶磁芯材料及其制备方法
CN111403168A (zh) 一种磁性薄膜环形电感器的制作方法
Li et al. FeSiCr soft magnetic composites with significant improvement of high-frequency magnetic properties by compositing nano-YIG ferrite insulating layer
CN117966135A (zh) 一种(222)取向生长镍锌铁氧体薄膜低温制备方法
Matsushita et al. High-rate low-temperature (90/spl deg/C) deposition of Ni-Zn ferrite films highly permeable in gigahertz range
US6716488B2 (en) Ferrite film formation method
Liu et al. The effect of the vacuum extraction and the Fe/Ba ratio on the phase formation of barium ferrite thin film synthesized by sol–gel method
CN112216507B (zh) 无支撑铁氧体磁性薄膜的制备方法及其应用
CN113087532B (zh) 一种高性能NiZn铁氧体薄膜的制备方法
KR102239950B1 (ko) 다층 페라이트 박막 및 그의 제조방법
CN118851587A (zh) 一种低温调控NiZn铁氧体薄膜晶粒生长特性的方法
CN113838658B (zh) 一种铁硅磁粉芯的制备方法
CN113070196B (zh) 一种改善旋转喷涂制备NiZn铁氧体薄膜性能的方法
CN118039347A (zh) 一种NiZn铁氧体薄膜磁性能及取向生长的调控方法
CN117393262A (zh) 一种镍铁氧体薄膜低温制备及择优取向调控方法
CN113073313A (zh) 一种降低旋转喷涂溶液接触角的薄膜制备方法
CN110607503A (zh) 一种高频磁芯用软磁复合膜及其制备方法
CN115608996B (zh) 一种铁基纳米晶软磁合金粉体及其制备方法
CN118441251B (zh) 一种非晶软磁薄膜材料、其制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination