CN117393262A - 一种镍铁氧体薄膜低温制备及择优取向调控方法 - Google Patents

一种镍铁氧体薄膜低温制备及择优取向调控方法 Download PDF

Info

Publication number
CN117393262A
CN117393262A CN202311224393.XA CN202311224393A CN117393262A CN 117393262 A CN117393262 A CN 117393262A CN 202311224393 A CN202311224393 A CN 202311224393A CN 117393262 A CN117393262 A CN 117393262A
Authority
CN
China
Prior art keywords
ferrite film
nickel ferrite
film
nickel
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311224393.XA
Other languages
English (en)
Inventor
冉茂君
余忠
周晓军
邬传健
张凯
孙科
蒋晓娜
李启帆
兰中文
李子愚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruyuan Dong Yang Guang Materials Co ltd
University of Electronic Science and Technology of China
Original Assignee
Ruyuan Dong Yang Guang Materials Co ltd
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruyuan Dong Yang Guang Materials Co ltd, University of Electronic Science and Technology of China filed Critical Ruyuan Dong Yang Guang Materials Co ltd
Priority to CN202311224393.XA priority Critical patent/CN117393262A/zh
Publication of CN117393262A publication Critical patent/CN117393262A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • B05D2203/35Glass

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemically Coating (AREA)

Abstract

本发明公开了一种镍铁氧体薄膜低温制备及择优取向调控方法,属于薄膜制备技术领域。本发明首先采用NaNO2氧化剂、乙酸盐缓冲剂配置氧化反应液;采用可溶性二价铁盐、可溶性二价镍盐配置还原反应液;然后利用旋转喷涂技术制备低温沉积织构化的镍铁氧体薄膜。本发明通过提高氧化剂的浓度,影响不同晶面对离子的吸附,优化镍铁氧体薄膜晶粒生长过程,为体系提供足够多的能量沿着简单晶面(400)排列形成织构,稳定生长正方形柱状晶粒,晶粒尺寸分布更加均匀且不团聚,提高了旋转喷涂法制备镍铁氧体薄膜的结晶性能、显微结构、磁性能,降低了薄膜表面粗糙度。

Description

一种镍铁氧体薄膜低温制备及择优取向调控方法
技术领域
本发明属于薄膜制备技术领域,具体涉及一种镍铁氧体薄膜低温制备及择优取向调控方法。
背景技术
针对SoC(System-On-Chip,片上系统)的薄膜电感应用需求,需要重点解决高性能磁性薄膜低温沉积问题,以实现与半导体工艺兼容。片上系统中的电感一般为空心线圈式电感,其电感密度很低,想要提高电感性能需大大增加片上系统的面积,空心电感不能满足电子元器件的小型化、轻量化的需求。而带有磁芯的电感可以较大程度提升单位面积的电感密度,从而节省大量的芯片空间,然后利用这些空间来满足其他不断增长的功能需求,降低损耗。铁氧体磁性薄膜凭借优异的绝缘性能,和金属薄膜相比,不仅高频下涡流损耗更低,并且具有更高的负载电流规格。但传统的铁氧体薄膜在半导体工艺兼容上存在很大的劣势,诸如溅射、脉冲激光沉积、溶胶凝胶等传统铁氧体薄膜制备技术,需要600℃以上的高温才能使铁氧体较好结晶,这类制备技术无法与半导体工艺兼容。
旋转喷涂法制备铁氧体薄膜有如下特点:不需要进行热处理,在空气中低于100℃下即可完成晶化,生产工艺能耗低,因而可在塑料、GaAs集成电路等耐热性差的物体上进行铁氧体沉积;薄膜的生成反应在水中进行,在形状复杂物体的表面也能均匀地进行铁氧体膜沉积;成膜不需要高温、高压等特殊条件,生产设备简单,操作容易等。M.Abe(M.Abe,Y.Tamaura,Ferrite-Plating in Aqueous Solution:A New Method for PreparingMagnetic Thin Film,Jpn J Appl Phys,22(1983)L511-L513.)提出旋转喷涂低温(<100℃)沉积技术,实现了在Cu,聚对苯二甲酸乙二醇酯(PET)和不锈钢基板不同基板上合成Fe3O4和CoFe2O4薄膜。高原(高原,低温下制备NixFe3-xO4铁氧体纳米薄膜及颗粒的结构与磁性研究,兰州:兰州大学,35-45(2008).)利用上述旋转喷涂装置成功地在Si基片、玻璃片等不同基片上低温制备了不同Ni含量的NixFe3-xO4(0≤X≤0.34)软磁薄膜,单一尖晶石晶相,无择优取向,膜厚约300nm,晶粒表面成球形,晶粒生长质量差。随着薄膜中Ni含量增加,其结晶度下降且晶粒尺寸减小,并且样品的Ms和Hc均下降。当X=0时,最大Ms为210kA·m-1,当X=0.28时,面内矫顽力Hc-//的值则减小至65.0Oe,同时他们发现外场平行于膜面时容易磁化。Liu M(M.Liu,O.Obi,Spin-spray deposited multiferroic composite Ni0.23Fe2.77O4/Pb(Zr,Ti)O3with strong interface adhesion,Applied Physics Letters,92(15):152504(2008).)通过在Pb(Zr,Ti)O3衬底上旋转喷涂沉积Ni0.23Fe2.77O4薄膜,实现了在90℃下合成多铁复合材料Ni0.23Fe2.77O4(NFO)/Pb(Zr,Ti)O3(PZT),通过高分辨率透射电子显微镜观察到NFO和PZT间的强界面粘附。O.Obi(O.Obi,M.Liu,Spin-spray deposited NiZn-Ferrite films exhibitingμr'>50at GHz range,J Appl Phys,109(2011).)通过施加外部360Oe磁场的旋转喷涂工艺,在0.1mm玻璃基板上制备了无择优取向的NiZn铁氧体薄膜Ni0.27Zn0.1Fe2.63O4,其饱和磁化强度为358KA/m。但是,在这些工作中,没有对薄膜晶粒生长形貌进行调控来提高薄膜质量的技术,特别是利用旋转喷涂法制备的镍铁氧体薄膜晶粒生长研究甚少。
中国专利公开号为CN201910202780.0,公开的《一种NiZn铁氧体薄膜的制备方法》,具体是采用旋转喷涂法在玻璃基片上制备NiZn铁氧体种子层,然后采用射频磁控溅射在种子层上沉积铁氧体薄膜Ni0.27Zn0.03Fe2.7O4,溅射温度控制在100~300℃,其中低温制备工艺只是用于种子层,并且没有对晶体生长进行调控。中国专利公开号为CN202110225386.6,公开的《一种NiZn铁氧体薄膜的制备方法》,具体是采用旋转喷涂法制备Ni0.17Zn0.52Fe2.31O4薄膜,在氧化液中加入适量乙酸,调节氧化液pH值,利用预先在氧化液中构建乙酸-乙酸钠缓冲对的原理,稳定体系pH值,调控旋转喷涂中离子沉积过程,提高了薄膜饱和磁化强度Ms近25%,但是未对NiZn铁氧体薄膜晶粒形貌进行调控和研究。
基于上述,当前旋转喷涂法制备铁氧体薄膜主要在NiZn铁氧体薄膜的生长和性能调控上,对于薄膜晶粒取向生长的研究非常少,同时对于旋转喷涂法制备的镍铁氧体薄膜晶粒生长质量差等问题没有进行有效的技术调控和研究。目前旋转喷涂技术制备的不同Ni含量的NixFe3-xO4(0≤X≤0.34)软磁薄膜,无择优取向时膜厚最大约300nm,晶粒表面成球形,晶粒易团聚,晶粒生长质量差,结晶度较低,饱和磁化强度最大仅210kA·m-1,面内矫顽力Hc-//的最小值为65.0Oe。
发明内容
本发明针对现有旋转喷涂制备镍铁氧体薄膜膜厚不可控、成膜质量差、晶粒团聚以及饱和磁化度低等问题,提供了一种镍铁氧体薄膜低温制备及择优取向调控方法。本发明通过调控反应溶液中的氧化剂含量,增大体系反应能量,使得反应体系晶粒生长更加均匀,发生(400)方向的择优取向,形成柱状正方形晶粒,从而改善成膜质量与镍铁氧体薄膜性能。
本发明的核心思想是:旋转喷涂法制备铁氧体薄膜,其实质是利用旋转喷涂装置,按照一定比例制得的金属盐类物质溶液(即包括Fe2+、Ni2+等)以喷雾的形式沉积于衬底层上,通过连续的喷涂,在衬底层表面形成一层均匀的水膜,该水膜经过一系列的化学反应,在连续的力作用下,液体副产品被甩出去,最终获得所需要的薄膜。
本发明的成膜原理包括四个基本过程:第一步,在基板表面覆盖一层连续的金属离子,如M2+(Ni2+、Zn2+、Mn2+、Co2+等)和Fe2+,基板表面含有供金属离子吸附的羟基基团,这些金属离子吸附在基板表面上。第二步,氧化剂喷涂在表面上,连续一层,将所述Fe2+离子部分氧化为Fe3+离子。第三步,金属离子被吸附到表面,形成尖晶石铁氧体层,H+离子被游离并释放。第四步,重复步骤一到三,形成多个尖晶石铁氧体层。在反应过程中,氧化剂不仅将溶液中的Fe2+离子部分氧化为Fe3+离子,同时在结晶过程中提供能量给反应体系;另外,氧化剂对不同晶面的吸附作用也不同,从而影响晶体的生长与形貌,所以氧化剂类型的选择以及采用的浓度范围对于薄膜生长质量影响极大。
本发明中采用NaNO2作为氧化剂,同时使用乙酸盐作为缓冲剂;还原液包括可溶性二价铁盐、可溶性二价镍盐。通过改变氧化剂的浓度,影响不同晶面对离子的吸附,优化镍铁氧体薄膜晶粒生长过程,为体系提供足够多的能量沿着简单晶面(400)排列形成织构,稳定生长正方形柱状晶粒,晶粒尺寸分布更加均匀且不团聚,提高了旋转喷涂法制备镍铁氧体薄膜的结晶性能、显微结构、磁性能,降低薄膜表面粗糙度。
本发明是通过以下技术方案实现的:
一种镍铁氧体薄膜低温制备及择优取向调控方法,其特征在于,包括以下步骤:
步骤1、清洗基板,自然晾干;
步骤2、配制氧化反应液和还原反应液:
将可溶性二价铁盐、镍盐加入去离子水中,搅拌混合均匀,得到还原反应液,还原反应液中,二价铁盐的浓度为10.8mmol/L,镍盐的浓度为2.0mmol/L;将NaNO2、乙酸盐加入去离子水中,搅拌混合均匀,得到氧化反应液,氧化反应液中,氧化剂NaNO2的浓度为2.18~6.54mmol/L,缓冲剂乙酸盐的浓度为10~18mmol/L;
步骤3、旋转喷涂制备镍铁氧体薄膜:
将步骤1的基板放置于旋转喷涂设备的加热板中央,在基板温度为88℃~92℃、旋转速度为100~150r/min、氧化反应液和还原反应液的供应速率相同为0.6~1.0L/h、喷嘴处超声雾化功率为2~3W、空气气氛的条件下,沉积10~60min,得到镍铁氧体薄膜。
进一步地,步骤1所述基板为玻璃基板、单抛SiO2层的硅基板、镀PI层的硅基板、单抛氧化铝蓝宝石基板等。
进一步地,步骤2所述可溶性二价铁盐为FeCl2或FeSO4等,镍盐为NiCl2·6H2O或NiSO4等;乙酸盐为CH3COONa、CH3COONH4或CH3COOK等。
与现有技术相比,本发明的有益效果是:
1、本发明采用旋转喷涂法在常压空气中制备镍铁氧体薄膜;通过控制晶粒稳定生长条件,保持晶粒稳速生长;通过反应时间准确控制膜厚,工艺流程简单可控。
2、采用本发明方法制备镍铁氧体薄膜,通过适当提高氧化剂NaNO2浓度的方法,稳定调控晶粒生长进程,形成(400)方向择优取向的正方形晶粒,结晶度更高、晶粒尺寸更加均匀,优化镍铁氧体薄膜结晶性和微观形貌,可降低薄膜粗糙度,改善成膜质量和磁性能;本发明对制备相关微磁器件提供了新方法。
3、传统控制晶粒取向生长的制膜方法需要高温高压等条件,本发明利用旋转喷涂技术可实现低温(88~92℃)沉积织构化的镍铁氧体薄膜,无需高温退火处理,与现代半导体工艺可兼容。
附图说明
图1所示为对比例和实施例1~4的XRD图谱。其中,NaNO2=2.18mM为对比例得到的镍铁氧体薄膜的XRD,NaNO2=3.27mM为实施例1得到的镍铁氧体薄膜的XRD,NaNO2=4.36mM为实施例2得到的镍铁氧体薄膜的XRD,NaNO2=5.45mM为实施例3得到的镍铁氧体薄膜的XRD,NaNO2=6.54mM为实施例4得到的镍铁氧体薄膜的XRD。
图2所示为对比例和实施例1~4的薄膜XRD峰强比(I400/I311)变化趋势。其中,NaNO2=2.18mM对应的点为对比例得到的镍铁氧体薄膜的XRD峰强比(I400/I311),NaNO2=3.27mM对应的点为实施例1得到的镍铁氧体薄膜的XRD峰强比(I400/I311),NaNO2=4.36mM对应的点为实施例2得到的镍铁氧体薄膜的XRD峰强比(I400/I311),NaNO2=5.45mM对应的点为实施例3得到的镍铁氧体薄膜的XRD峰强比(I400/I311),NaNO2=6.54mM对应的点为实施例4得到的镍铁氧体薄膜的XRD峰强比(I400/I311)。
图3所示为对比例和实施例1~4的拉曼图谱。其中,NaNO2=2.18mM为对比例得到的镍铁氧体薄膜的拉曼光谱,NaNO2=3.27mM为实施例1得到的镍铁氧体薄膜的拉曼光谱,NaN O2=4.36mM为实施例2得到的镍铁氧体薄膜的拉曼光谱,NaNO2=5.45mM为实施例3得到的镍铁氧体薄膜的拉曼光谱,NaNO2=6.54mM为实施例4得到的镍铁氧体薄膜的拉曼光谱。
图4所示为对比例与实施例4的SEM表面图。其中,(a)为对比例得到的镍铁氧体薄膜的SEM表面图;(b)为实施例4得到的镍铁氧体薄膜的SEM表面图。
图5所示为对比例与实施例4的SEM晶粒大小统计图。其中,(a)为对比例得到的镍铁氧体薄膜的SEM晶粒大小统计图;(b)为实施例4得到的镍铁氧体薄膜的SEM晶粒大小统计图。
图6所示为对比例与实施例4的SEM断面图。其中,(a)为对比例得到的镍铁氧体薄膜的SEM断面图;(b)为实施例4得到的镍铁氧体薄膜的SEM断面图。
图7所示为对比例与实施例4的AFM图。其中,(a)为对比例得到的镍铁氧体薄膜的AFM图;(b)为实施例4得到的镍铁氧体薄膜的AFM图。
图8所示为对比例和实施例1~4的磁滞回线。其中,NaNO2=2.18mM为对比例得到的镍铁氧体薄膜的磁滞回线,NaNO2=3.27mM为实施例1得到的镍铁氧体薄膜的磁滞回线,NaN O2=4.36mM为实施例2得到的镍铁氧体薄膜的磁滞回线,NaNO2=5.45mM为实施例3得到的镍铁氧体薄膜的磁滞回线,NaNO2=6.54mM为实施例4得到的镍铁氧体薄膜的磁滞回线。
图9所示为对比例与实施例4的磁谱曲线。其中,(a)为对比例得到的镍铁氧体薄膜的磁谱曲线;(b)为实施例4得到的镍铁氧体薄膜的磁谱曲线。
具体实施方式
以下结合附图和具体实施方式对本发明作进一步的说明。
实施例1
本实施例1具体实施方法如下:
S1.基板清洗:将厚0.2mm的5寸玻璃基板置于装有乙醇的烧杯中,采用超声设备清洗基板10min,基板取出后自然晾干。
S2.反应溶液制备:将可溶性FeCl2、NiCl2·6H2O加入1L去离子水中,搅拌混合均匀,得到还原反应液,其中FeCl2摩尔浓度为10.8mmol/L,NiCl2·6H2O摩尔浓度为2.0mmol/L,如此得到的镍铁氧体薄膜分子式为Ni0.17Fe2.83O4
将NaNO2、乙酸盐加入1L去离子水中,搅拌混合均匀,得到氧化反应液,其中缓冲剂CH3COONa摩尔浓度为17.4mmol/L,氧化剂NaNO2摩尔浓度为3.27mmol/L。
S3.在旋转喷涂设备的加热板中央贴上清洗后的基板,打开设备的吸附按钮,保证设备气压充足可持续吸紧加热板上的基板。设置加热板温度为128℃,加热20分钟以上,用红外扫描仪确定基板表面温度在88~92℃;设置旋转速度为130r/min、氧化反应液和还原反应液的供应速率均为0.8L/h、喷嘴处超声雾化功率为3W、空气气氛的条件下,沉积20min,制备得到1微米厚的镍铁氧体薄膜。
S4.对上一步骤得到的镍铁氧体薄膜进行相关测试:通过X射线衍射仪((Aerisrange ofbenchtop X-Ray diffractometers,Cu-Kα光源)表征结晶相;通过拉曼衍射仪(XploRA PL US Raman spectrometer(Horiba))表征材料有无结构转变;通过扫描电子显微镜(JEOL JS M-7800F)观察薄膜表面和横截面的显微结构;通过原子力显微镜(Grapestechnology HR-AFM)表征材料形貌变化及粗糙度;通过振动样品磁力计(Lake ShoreCryotronics 8604)测量磁滞回线;通过微波网络分析仪(Agilent N5227A PNA)得到薄膜样品磁谱曲线。
实施例2
本实施例与实施例1的区别为:步骤②中配制氧化液时加入的氧化剂NaNO2为4.36mM。
实施例3
本实施例与实施例1的区别为:步骤②中配制氧化液时加入的氧化剂NaNO2为5.45mM。
实施例4
本实施例与实施例1的区别为:步骤②中配制氧化液时加入的氧化剂NaNO2为6.54mM。
对比例:
本实施例与实施例1的区别为:步骤②中配制氧化液时加入的氧化剂NaNO2为2.18mM。
图1表示对比例和实施例1~4的XRD图谱,结果显示对比例(NaNO2=2.18mM)薄膜样品样品无择优取向,结晶度较低,实施例4(NaNO2=6.54mM)呈现(400)择优取向,结晶度增高。
图2表示对比例和实施例1~4的薄膜XRD峰强比(I400/I311)变化趋势,结果显示由于氧化剂浓度的增大,(400)择优取向逐渐增强,当氧化剂浓度超过5.45mM后,取向程度大幅度增加。
图3表示对比例和实施例1~4的拉曼图谱,结果显示体系的氧化剂浓度在2.18~6.54mmo l/L范围调整,样品都具备铁氧体尖晶石结构的五个特征模式,即A1g+Eg+3T2g,说明在该范围内氧化剂不影响镍铁氧体薄膜晶体结构。
图4表示对比例与实施例4的SEM表面图,结果显示对比例(NaNO2=2.18mM)薄膜样品无择优取向,晶粒分布不均匀,晶界不明显,有轻微团聚现象。实施例4(NaNO2=6.54mM)呈现(400)择优取向,晶体呈现正方形形貌,晶粒尺寸分布相对均匀,晶界明显,无晶粒团聚现象。
图5表示对比例与实施例4的SEM晶粒大小统计图,结果显示实施例4(NaNO2=6.54mM)晶粒尺寸分布相对较窄,分布相对均匀。
图6表示对比例与实施例4的SEM断面图,结果显示对比例(NaNO2=2.18mM)薄膜样品断面无柱状结构,有部分团聚的现象。实施例4(NaNO2=6.54mM)断面呈现清晰的柱状结构,无任何团聚现象。
图7表示对比例与实施例4的AFM图,结果显示对比例(NaNO2=2.18mM)薄膜样品晶界模糊,利用Gwyddion可算出其粗糙度RMS=19.85nm。实施例4(NaNO2=6.54mM)可观察到正方形形貌,与SEM表面图对应,利用Gwyddion可算出其粗糙度RMS=15.35nm。
图8表示对比例和实施例1~4的磁滞回线,结果显示实施例3(NaNO2=5.45mM)的饱和磁化强度最强,由于柱状形貌晶粒的形成,实施例3面外矫顽力最小。
图9表示对比例与实施例4的磁谱曲线,结果表明由于实施例4中晶粒择优取向形成织构,优化薄膜生长质量,磁导率大幅提升。
对比例与实施例1~4镍铁氧体薄膜的测试结果如下表:
测试结果说明:采用Ni0.17Fe2.83O4配方,在旋转喷涂法制备镍铁氧体薄膜时,与氧化剂NaNO2为2.18mM的对比例相比,在氧化液中适量增加氧化剂NaNO2浓度,可形成(400)择优取向,随着氧化剂浓度的增加,取向程度增强,形成织构的晶粒生长更加均匀,晶粒形貌呈柱状正方形,同时样品保持铁氧体尖晶石结构,无结构转变,粗糙度下降。随着氧化剂的增加,面内矫顽力先增大后减小,面外矫顽力先减小后增大,磁导率大幅度提升。且实施例4中,(400)织构最强,柱状正方形形貌明显,粗糙度降至RMS=15.35nm,磁导率与对比例相比提升近30%。

Claims (3)

1.一种镍铁氧体薄膜低温制备及择优取向调控方法,其特征在于,包括以下步骤:
步骤1、清洗基板,自然晾干;
步骤2、配制氧化反应液和还原反应液:
将可溶性二价铁盐、镍盐加入去离子水中,搅拌混合均匀,得到还原反应液,还原反应液中,二价铁盐的浓度为10.8mmol/L,镍盐的浓度为2.0mmol/L;将NaNO2、乙酸盐加入去离子水中,搅拌混合均匀,得到氧化反应液,氧化反应液中,氧化剂NaNO2的浓度为2.18~6.54mmol/L,缓冲剂乙酸盐的浓度为10~18mmol/L;
步骤3、旋转喷涂制备镍铁氧体薄膜:
将步骤1的基板放置于旋转喷涂设备的加热板中央,在基板温度为88℃~92℃、旋转速度为100~150r/min、氧化反应液和还原反应液的供应速率相同为0.6~1.0L/h、喷嘴处超声雾化功率为2~3W、空气气氛的条件下,沉积10~60min,制备得到镍铁氧体薄膜。
2.如权利要求1所述的一种镍铁氧体薄膜低温制备及择优取向调控方法,其特征在于,步骤1所述基板为玻璃基板、单抛SiO2层的硅基板、镀PI层的硅基板、单抛氧化铝蓝宝石基板。
3.如权利要求1所述的一种镍铁氧体薄膜低温制备及择优取向调控方法,其特征在于,步骤2所述可溶性二价铁盐为FeCl2或FeSO4,镍盐为NiCl2·6H2O或NiSO4;乙酸盐为CH3COONa、CH3COONH4或CH3COOK。
CN202311224393.XA 2023-09-21 2023-09-21 一种镍铁氧体薄膜低温制备及择优取向调控方法 Pending CN117393262A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311224393.XA CN117393262A (zh) 2023-09-21 2023-09-21 一种镍铁氧体薄膜低温制备及择优取向调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311224393.XA CN117393262A (zh) 2023-09-21 2023-09-21 一种镍铁氧体薄膜低温制备及择优取向调控方法

Publications (1)

Publication Number Publication Date
CN117393262A true CN117393262A (zh) 2024-01-12

Family

ID=89469194

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311224393.XA Pending CN117393262A (zh) 2023-09-21 2023-09-21 一种镍铁氧体薄膜低温制备及择优取向调控方法

Country Status (1)

Country Link
CN (1) CN117393262A (zh)

Similar Documents

Publication Publication Date Title
CN109852929B (zh) 一种NiZn铁氧体薄膜的制备方法
US7700194B2 (en) High-frequency magnetic material comprising an oxide phase and method for producing the same
Obi et al. Spin-spray deposited NiZn-Ferrite films exhibiting μr′> 50 at GHz range
Guo et al. Growth and characterization of yttrium iron garnet films on Si substrates by Chemical Solution Deposition (CSD) technique
Kong et al. Magnetic properties of FePt nanoparticle assemblies embedded in atomic-layer-deposited Al 2 O 3
Akbar et al. Role of precursor to solvent ratio in tuning the magnetization of iron oxide thin films–A sol-gel approach
Liu et al. Anisotropic growth and magnetic properties of nickel–zinc ferrite thin film by spin spray deposition
Lu et al. Synthesis of FeNi3/(Ni0. 5Zn0. 5) Fe2O4 nanocomposite and its high frequency complex permeability
Ibrahim et al. The microstructure and magnetic properties of yttrium iron garnet film prepared using water-alcohol solvents
Matsushita et al. High-rate low-temperature (90/spl deg/C) deposition of Ni-Zn ferrite films highly permeable in gigahertz range
Zi et al. Influence of annealing temperature on surface morphology and magnetic properties of Ni0. 7Zn0. 3Fe2O4 ferrite thin films
US6716488B2 (en) Ferrite film formation method
CN117393262A (zh) 一种镍铁氧体薄膜低温制备及择优取向调控方法
Hong et al. New barium ferrite particles: Spherical shape
Kostishin et al. Characterization of c-oriented BaFe12O19 films synthesized by ion beam deposition on Al2O3 (102) substrate
Baubet et al. Influence of tetragonal distortion on magnetic and magneto-optical properties of copper ferrite films
Masoudpanah et al. Effect of oxygen pressure on microstructure and magnetic properties of strontium hexaferrite (SrFe12O19) film prepared by pulsed laser deposition
Nandy et al. Synthesis of nanostructured ferrites and cation distribution studies by X-ray magnetic circular dichroism, Mössbauer spectroscopy, and X-ray absorption spectroscopy
CN113070196B (zh) 一种改善旋转喷涂制备NiZn铁氧体薄膜性能的方法
Noratiqah et al. Pure polycrystalline barium hexaferrite film prepared without buffer layer, using a sol–gel method
CN113087532B (zh) 一种高性能NiZn铁氧体薄膜的制备方法
US5728421A (en) Article comprising spinel-structure material on a substrate, and method of making the article
Saravanan et al. Tailoring the structural and magnetic properties of sol-gel derived Sm–Co nanogranular films
Gabal et al. Sucrose-assisted combustion synthesis and characterization of zn-substituted NiFe 2 O 4 nanocrystals
CN117966135A (zh) 一种(222)取向生长镍锌铁氧体薄膜低温制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination