CN113087532B - 一种高性能NiZn铁氧体薄膜的制备方法 - Google Patents
一种高性能NiZn铁氧体薄膜的制备方法 Download PDFInfo
- Publication number
- CN113087532B CN113087532B CN202110238727.3A CN202110238727A CN113087532B CN 113087532 B CN113087532 B CN 113087532B CN 202110238727 A CN202110238727 A CN 202110238727A CN 113087532 B CN113087532 B CN 113087532B
- Authority
- CN
- China
- Prior art keywords
- chloride
- film
- nizn ferrite
- performance
- reduction reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62218—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/265—Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2658—Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2666—Other ferrites containing nickel, copper or cobalt
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/24—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3279—Nickel oxides, nickalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Power Engineering (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemically Coating (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Thin Magnetic Films (AREA)
- Compounds Of Iron (AREA)
Abstract
一种高性能NiZn铁氧体薄膜的制备方法,属于薄膜制备技术领域。包括:1)将亚硝酸钠、乙酸钠加入去离子水中,搅拌混合均匀,得到氧化反应液;2)将氯化亚铁、氯化镍、氯化锌、氯化钴加入去离子水中,搅拌混合均匀,得到还原反应液;3)将干净的基板放置于旋转喷涂设备的加热板中央,调节基板温度、旋转速度、氧化反应液和还原反应液的供应速率、超声雾化功率,沉积薄膜。本发明通过减少主配方中Fe含量并引入Co,降低了薄膜面内磁各向异性,提高NiZn铁氧体薄膜起始磁导率的同时还兼具高的截止频率和饱和磁化强度,为磁性薄膜应用于片上系统的电感器和高频开关电源提供了有效方法。
Description
技术领域
本发明属于薄膜制备技术领域,具体涉及一种高性能NiZn铁氧体薄膜的低温制备方法。
背景技术
近年来,电子信息产品往高频化、小型化、集成化方面快速发展,特别是随着半导体工艺地不断进步,电子电路的集成度也日益提升。作为无源器件的电阻器和电容器已经能够进行薄膜化,从而在电子系统中集成应用。然而,作为三大无源器件之一的电感器,却因为传统磁性材料庞大的体积和质量,限制了其在电路系统中的集成化发展。因此,高性能软磁薄膜的发展需求变得日益迫切。NiZn铁氧体薄膜具有高电阻率、高居里温度、优良的机械耐磨性及稳定的化学性能等优点,是在高频磁性器件中广泛应用的软磁薄膜。
考虑到高频磁性器件的应用需求,NiZn铁氧体薄膜通常需要高磁导率和高截止频率,前者是磁性器件具有良好性能的前提,后者决定了磁性器件的工作频率。然而,一般情况下高磁导率和高截止频率很难同时兼顾,这也是制约NiZn铁氧体薄膜应用的因素之一。
目前,制备NiZn铁氧体薄膜的方法主要有磁控溅射法、激光脉冲沉积法、溶胶-凝胶法等,这些方法通常需要高温热处理(800℃以上),而硅基集成电路基板的最大承受温度一般不超过400℃,因此这些薄膜制备技术不能与半导体工艺兼容。旋转喷涂法作为一种低温沉积薄膜技术,不仅具有工艺简单、沉积速度较快等优点,更重要的是其反应所需要的加热温度不超过150℃(实际成膜温度低于100℃),整个工艺流程能与硅基集成电路的半导体工艺相兼容,受到了科研人员的广泛关注。Matsushita N等人(Matsushita N,Chong C P,Mizutani T,et al.Ni–Zn ferrite films with high permeability(μ′=~30,μ″=~30)at 1GHz prepared at90℃[J].Journal of Applied Physics,2002,91(10):7376-7378.)通过旋转喷涂法在90℃的玻璃基板上制备了主配方为Ni0.21Zn0.19Fe2.60O4的NiZn铁氧体薄膜,得到的薄膜的截止频率fr高达1.2GHz,而起始磁导率μ′最大仅为42。中国专利CN109852929A公开了一种NiZn铁氧体薄膜的制备方法,其先采用旋转喷涂法在玻璃基片上制备NiZn铁氧体种子层,再采用射频磁控溅射法在种子层上沉积NiZn铁氧体薄膜,最终得到的NiZn铁氧体薄膜具有起始磁导率μ′≥200和截止频率fr≥1.85GHz的优异性能。但是,该方法工艺复杂,反应时间长,不利于推广应用。
发明内容
本发明的目的在于,针对背景技术存在的缺陷,提出了一种高性能NiZn铁氧体薄膜的制备方法,该方法得到的NiZn铁氧体薄膜兼具低矫顽力、高磁导率和高截止频率特性。
为实现上述目的,本发明采用的技术方案如下:
一种高性能NiZn铁氧体薄膜的制备方法,其特征在于,包括以下步骤:
步骤1、配制氧化反应液和还原反应液:
1.1将亚硝酸钠、乙酸钠加入去离子水中,搅拌混合均匀,得到氧化反应液,氧化反应液中,亚硝酸钠的浓度为0.1g/L~0.2g/L,乙酸钠的浓度为1.3g/L~1.5g/L;
1.2将氯化亚铁、氯化镍、氯化锌、氯化钴加入去离子水中,搅拌混合均匀,得到还原反应液,还原反应液中,氯化亚铁、氯化镍、氯化锌和氯化钴的摩尔比为(12.83~13.97):(0.61~2.83):1:(0.11~0.67),氯化亚铁的浓度为1.3g/L~1.6g/L;
步骤2、将干净的基板放置于旋转喷涂设备的加热板中央,在基板温度为90~95℃、旋转速度为100~120r/min、氧化反应液的供应速率为10mL/min~20mL/min、还原反应液的供应速率为10mL/min~20mL/min、超声雾化功率为2~3W、空气气压为2MPa~3MPa的条件下,沉积20min~60min,即可得到所述高性能NiZn铁氧体薄膜。
进一步地,步骤2得到的高性能NiZn铁氧体薄膜的厚度为1μm~3μm。
本发明方法得到的高性能NiZn铁氧体薄膜,其性能指标为:
(1)高起始磁导率:μ′(100MHz)≥80(25℃);
(2)高截止频率:fr≥150MHz(25℃);
(3)高饱和磁化强度:4πMs≥4500Gs(25℃);
(4)低矫顽力:Hc≤15Oe(25℃);
与现有技术相比,本发明的有益效果为:
1、本发明提供的一种高性能NiZn铁氧体薄膜的制备方法,通过减少主配方中Fe含量并引入Co,降低了薄膜面内磁各向异性,提高NiZn铁氧体薄膜起始磁导率的同时还兼具高的截止频率和饱和磁化强度,为磁性薄膜应用于片上系统(SOC)的电感器和高频开关电源提供了有效方法。
2、本发明提供的一种高性能NiZn铁氧体薄膜的制备方法,反应温度控制在90~95℃,且无需后续高温热处理过程,可实现与半导体工艺的兼容。
附图说明
图1为本发明实施例1制得的NiZn铁氧体薄膜的XRD图谱;
图2为本发明对比例制得的NiZn铁氧体薄膜的XRD图谱;
图3为本发明实施例1制得的NiZn铁氧体薄膜的SEM图;
图4为本发明对比例制得的NiZn铁氧体薄膜的SEM图;
图5为本发明实施例1制得的NiZn铁氧体薄膜的磁滞回线;
图6为本发明对比例制得的NiZn铁氧体薄膜的磁滞回线;
图7为本发明实施例1制得的NiZn铁氧体薄膜的磁谱图;
图8为本发明对比例制得的NiZn铁氧体薄膜的磁谱图。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
一种高性能NiZn铁氧体薄膜的制备方法,其特征在于,包括以下步骤:
步骤1、依次采用无水乙醇、丙酮清洗基板,自然晾干;
步骤2、配制氧化反应液和还原反应液:
2.1将亚硝酸钠、乙酸钠加入去离子水中,搅拌混合均匀,得到氧化反应液,氧化反应液中,亚硝酸钠的浓度为0.1g/L~0.2g/L,乙酸钠的浓度为1.3g/L~1.5g/L;
2.2将氯化亚铁、氯化镍、氯化锌、氯化钴加入去离子水中,搅拌混合均匀,得到还原反应液,还原反应液中,氯化亚铁、氯化镍、氯化锌和氯化钴的摩尔比为(12.83~13.97):(0.61~2.83):1:(0.11~0.67),氯化亚铁的浓度为1.3g/L~1.6g/L;
步骤3、将步骤1清洗后的基板放置于旋转喷涂设备的加热板中央,向旋转喷涂设备中通入纯净干燥的空气,空气气压为2MPa~3MPa;调整超声波雾化功率,使反应液以喷雾形式落在加热板上,超声雾化功率为2~3W;调整反应喷嘴流量,控制氧化反应液的供应速率为10mL/min~20mL/min、还原反应液的供应速率为10mL/min~20mL/min;调整反应台转速,控制旋转速率为100~120r/min;调整加热板温度,控制基板温度为90~95℃;
步骤4、开启加热装置,对基片进行预热20min~30min;将步骤2配制的氧化反应液和还原反应液接入反应装置,进行旋转喷涂,反应时间为20min~60min,制得的高性能NiZn铁氧体薄膜的厚度为1μm~3μm。
步骤5、对步骤4得到的NiZn铁氧体薄膜进行测试:采用X射线衍射仪表征薄膜样品的物相结构;采用扫描电子显微镜(SEM)观察薄膜样品的显微结构;采用振动样品磁强计(VSM)测量薄膜样品的饱和磁化强度及矫顽力;采用矢量网络分析仪测量薄膜样品磁谱曲线。
实施例1
一种高性能NiZn铁氧体薄膜的制备方法,其特征在于,包括以下步骤:
步骤1、依次采用无水乙醇、丙酮清洗PI基板,自然晾干;
步骤2、配制氧化反应液和还原反应液:
2.1将亚硝酸钠、乙酸钠加入去离子水中,搅拌混合均匀,得到氧化反应液,氧化反应液中,亚硝酸钠的浓度为0.1506g/L,乙酸钠的浓度为1.4257g/L;
2.2将氯化亚铁、氯化镍、氯化锌、氯化钴加入去离子水中,搅拌混合均匀,得到还原反应液,还原反应液中,氯化亚铁、氯化镍、氯化锌和氯化钴的摩尔比为12.86:2.28:1:0.28,氯化亚铁的浓度为1.3076g/L;
步骤3、将步骤1清洗后的基板放置于旋转喷涂设备的加热板中央,向旋转喷涂设备中通入纯净干燥的空气,空气气压为2.4MPa;调整超声波雾化功率,使反应液以喷雾形式落在加热板上,超声雾化功率为2.8W;调整反应喷嘴流量,控制氧化反应液的供应速率为15mL/min、还原反应液的供应速率为15mL/min;调整反应台转速,控制旋转速率为120r/min;调整加热板温度,控制基板温度为90℃;
步骤4、开启加热装置,对PI基片进行预热20min;将步骤2配制的氧化反应液和还原反应液接入反应装置,进行旋转喷涂,反应时间为20min,制得的高性能NiZn铁氧体薄膜的厚度为1μm。
步骤5、对步骤4得到的NiZn铁氧体薄膜进行测试:采用X射线衍射仪表征薄膜样品的物相结构;采用扫描电子显微镜(SEM)观察薄膜样品的显微结构;采用振动样品磁强计(VSM)测量薄膜样品的饱和磁化强度及矫顽力;采用矢量网络分析仪测量薄膜样品磁谱曲线。
实施例2
本实施例与实施例1相比,区别在于:步骤2中,配制还原反应液时,氯化亚铁、氯化镍、氯化锌和氯化钴的摩尔比为13.42:1.72:1:0.28,氯化亚铁的浓度为1.3693g/L;其余步骤与实施例1相同。
实施例3
本实施例与实施例1相比,区别在于:步骤2中,配制还原反应液时,氯化亚铁、氯化镍、氯化锌的摩尔比为13.97:1.17:1:0.56,氯化亚铁的浓度为1.4261g/L;其余步骤与实施例1相同。
实施例4
本实施例与实施例1相比,区别在于:步骤2中,配制还原反应液时,氯化亚铁、氯化镍、氯化锌和氯化钴的摩尔比为12.83:2.31:1:0.28,氯化亚铁的浓度为1.3076g/L;其余步骤与实施例1相同。
对比例
步骤1、依次采用无水乙醇、丙酮清洗PI基板,自然晾干;
步骤2、配制氧化反应液和还原反应液:
2.1将亚硝酸钠、乙酸钠加入去离子水中,搅拌混合均匀,得到氧化反应液,氧化反应液中,亚硝酸钠的浓度为0.1506g/L,乙酸钠的浓度为1.4257g/L;
2.2将氯化亚铁、氯化镍、氯化锌加入去离子水中,搅拌混合均匀,得到还原反应液,还原反应液中,氯化亚铁、氯化镍、氯化锌的摩尔比为15.06:2.83:1,氯化亚铁的浓度为1.5398g/L;
步骤3、将步骤1清洗后的基板放置于旋转喷涂设备的加热板中央,向旋转喷涂设备中通入纯净干燥的空气,空气气压为2.4MPa;调整超声波雾化功率,使反应液以喷雾形式落在加热板上,超声雾化功率为2.8W;调整反应喷嘴流量,控制氧化反应液的供应速率为15mL/min、还原反应液的供应速率为15mL/min;调整反应台转速,控制旋转速率为120r/min;调整加热板温度,控制基板温度为90℃;
步骤4、开启加热装置,对PI基片进行预热20min;将步骤2配制的氧化反应液和还原反应液接入反应装置,进行旋转喷涂,反应时间为20min,制得的高性能NiZn铁氧体薄膜的厚度为1μm。
图1和图2分别为实施例1和对比例薄膜样品的XRD图谱,结果显示实施例1得到的薄膜样品的晶相倾向于沿(222)取向。
图3和图4分别为实施例1和对比例薄膜样品的SEM图,结果显示实施例1样品晶粒呈三角形,与(222)取向吻合,且晶粒尺寸分别为0.2与0.5μm,可知,得到的NiZn铁氧体薄膜的晶粒更加细化、均匀。
图5和图6分别为实施例1和对比例薄膜样品的磁滞回线图,结果显示实施例1得到的NiZn铁氧体薄膜样品的矫顽力Hc减小。
图7和图8分别为实施例1和对比例薄膜样品的磁谱图,结果显示实施例1得到的NiZn铁氧体薄膜样品虽然截止频率会降低,但是磁导率大幅提高,矫顽力下降。
实施例与对比例得到的薄膜样品的测试结果如下表:
Claims (2)
1.一种高性能NiZn铁氧体薄膜的制备方法,其特征在于,包括以下步骤:
步骤1、配制氧化反应液和还原反应液:
1.1将亚硝酸钠、乙酸钠加入去离子水中,搅拌混合均匀,得到氧化反应液,氧化反应液中,亚硝酸钠的浓度为0.1g/L~0.2g/L,乙酸钠的浓度为1.3g/L~1.5g/L;
1.2将氯化亚铁、氯化镍、氯化锌、氯化钴加入去离子水中,搅拌混合均匀,得到还原反应液,还原反应液中,氯化亚铁、氯化镍、氯化锌和氯化钴的摩尔比为(12.83~13.97):(0.61~2.83):1:(0.11~0.67),氯化亚铁的浓度为1.3g/L~1.6g/L;
步骤2、将干净的基板放置于旋转喷涂设备的加热板中央,在基板温度为90~95℃、旋转速度为100~120r/min、氧化反应液的供应速率为10mL/min~20mL/min、还原反应液的供应速率为10mL/min~20mL/min、超声雾化功率为2~3W、空气气压为2MPa~3MPa的条件下,沉积20min~60min,即可得到所述高性能NiZn铁氧体薄膜。
2.根据权利要求1所述的高性能NiZn铁氧体薄膜的制备方法,其特征在于,步骤2得到的高性能NiZn铁氧体薄膜的厚度为1μm~3μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110238727.3A CN113087532B (zh) | 2021-03-04 | 2021-03-04 | 一种高性能NiZn铁氧体薄膜的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110238727.3A CN113087532B (zh) | 2021-03-04 | 2021-03-04 | 一种高性能NiZn铁氧体薄膜的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113087532A CN113087532A (zh) | 2021-07-09 |
CN113087532B true CN113087532B (zh) | 2022-10-14 |
Family
ID=76667890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110238727.3A Active CN113087532B (zh) | 2021-03-04 | 2021-03-04 | 一种高性能NiZn铁氧体薄膜的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113087532B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62250625A (ja) * | 1986-04-23 | 1987-10-31 | Matsushita Electric Ind Co Ltd | フエライト薄膜の製造方法 |
JP2004107107A (ja) * | 2002-09-13 | 2004-04-08 | Nec Tokin Corp | フェライト膜とその製造方法、およびそれを用いた電磁雑音抑制体 |
CN104030672A (zh) * | 2014-06-10 | 2014-09-10 | 电子科技大学 | 一种尖晶石铁氧体薄膜的制备方法 |
CN105236948A (zh) * | 2015-08-28 | 2016-01-13 | 电子科技大学 | Ka波段环行器用NiCuZn铁氧体厚膜材料制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03237019A (ja) * | 1990-02-14 | 1991-10-22 | Nippon Paint Co Ltd | フェライト被覆方法 |
US7160636B2 (en) * | 2002-09-13 | 2007-01-09 | Nec Tokin Corporation | Ferrite thin film, method of manufacturing the same and electromagnetic noise suppressor using the same |
CN102643082A (zh) * | 2012-03-05 | 2012-08-22 | 沈阳理工大学 | 一种w型钡铁氧体的制备方法 |
CN102701720A (zh) * | 2012-05-15 | 2012-10-03 | 电子科技大学 | 高导低损铁氧体材料、铁氧体薄膜及制备方法 |
DE102012219989B4 (de) * | 2012-10-31 | 2016-09-29 | WZR ceramic solutions GmbH | Druckverfahren zur Herstellung eines Grünkörpers, Grünkörper und keramischer Formkörper |
CN109852929B (zh) * | 2019-03-18 | 2020-10-23 | 电子科技大学 | 一种NiZn铁氧体薄膜的制备方法 |
-
2021
- 2021-03-04 CN CN202110238727.3A patent/CN113087532B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62250625A (ja) * | 1986-04-23 | 1987-10-31 | Matsushita Electric Ind Co Ltd | フエライト薄膜の製造方法 |
JP2004107107A (ja) * | 2002-09-13 | 2004-04-08 | Nec Tokin Corp | フェライト膜とその製造方法、およびそれを用いた電磁雑音抑制体 |
CN104030672A (zh) * | 2014-06-10 | 2014-09-10 | 电子科技大学 | 一种尖晶石铁氧体薄膜的制备方法 |
CN105236948A (zh) * | 2015-08-28 | 2016-01-13 | 电子科技大学 | Ka波段环行器用NiCuZn铁氧体厚膜材料制备方法 |
Non-Patent Citations (1)
Title |
---|
镍锌铁氧体薄膜的显微结构和低温磁性质;王九经等;《功能材料》;20051220(第12期);第41-44页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113087532A (zh) | 2021-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109852929B (zh) | 一种NiZn铁氧体薄膜的制备方法 | |
Glass | Ferrite films for microwave and millimeter-wave devices | |
US5656101A (en) | Soft magnetic alloy thin film with nitrogen-based amorphous phase | |
US20070048440A1 (en) | Ferrite thin film for high-frequency devices and production method thereof | |
CN104193316B (zh) | 一种钇铁石榴石薄膜及其制备方法 | |
CN113087532B (zh) | 一种高性能NiZn铁氧体薄膜的制备方法 | |
WO2008091297A2 (en) | Method of manufacturing thick-film, low microwave loss, self-biased barium-hexaferrite having perpendicular magnetic anisotropy | |
Zi et al. | Influence of annealing temperature on surface morphology and magnetic properties of Ni0. 7Zn0. 3Fe2O4 ferrite thin films | |
US6716488B2 (en) | Ferrite film formation method | |
CN101230446A (zh) | 一种降低尖晶石铁氧体薄膜材料退火温度的制备方法 | |
CN117966135A (zh) | 一种(222)取向生长镍锌铁氧体薄膜低温制备方法 | |
CN113073313A (zh) | 一种降低旋转喷涂溶液接触角的薄膜制备方法 | |
CN113070196B (zh) | 一种改善旋转喷涂制备NiZn铁氧体薄膜性能的方法 | |
CN117393262A (zh) | 一种镍铁氧体薄膜低温制备及择优取向调控方法 | |
Zhang et al. | Preparation of NiZn ferrite films by spin‐spray ferrite plating on oxygen‐plasma‐treated substrates | |
US9741656B2 (en) | High-frequency integrated device with an enhanced inductance and a process thereof | |
JP2002359137A (ja) | フェライト薄膜の製造方法 | |
CN118039347A (zh) | 一种NiZn铁氧体薄膜磁性能及取向生长的调控方法 | |
Kim et al. | Crystallographic and magnetic properties of CoAl/sub 0.2/Fe/sub 1.8/O/sub 4/thin films prepared by a sol-gel method | |
CN112899629B (zh) | 一种高熵氧化物薄膜及其制备方法和应用 | |
An et al. | Magnetic properties of water-based sol-gel derived BaFe/sub 12/O/sub 19//SiO/sub 2//Si (100) thin films | |
JPH0729879B2 (ja) | 透光性磁性イットリウム鉄ガーネット膜及びその製造方法 | |
AU2021101181A4 (en) | A chemical synthesis method of all-oxide soft-hard magnetic composite film (NZFO/SLCFO)3/Al2O3 | |
US11434171B1 (en) | Low-temperature-deposited self-biased magnetic composite films containing discrete hexaferrite platelets | |
Sun et al. | Effect of annealing parameters on the magnetic properties of NiZn ferrite thin films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |