CN117902899B - 一种稀土一体化改性C/C-UHTCs复合材料及其制备方法 - Google Patents

一种稀土一体化改性C/C-UHTCs复合材料及其制备方法 Download PDF

Info

Publication number
CN117902899B
CN117902899B CN202410302368.7A CN202410302368A CN117902899B CN 117902899 B CN117902899 B CN 117902899B CN 202410302368 A CN202410302368 A CN 202410302368A CN 117902899 B CN117902899 B CN 117902899B
Authority
CN
China
Prior art keywords
rare earth
composite material
uhtcs
powder
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410302368.7A
Other languages
English (en)
Other versions
CN117902899A (zh
Inventor
孙威
申雨竹
熊翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202410302368.7A priority Critical patent/CN117902899B/zh
Publication of CN117902899A publication Critical patent/CN117902899A/zh
Application granted granted Critical
Publication of CN117902899B publication Critical patent/CN117902899B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/5156Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on rare earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/553Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on fluorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/507Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明一种稀土一体化改性C/C‑UHTCs复合材料及其制备方法,将C/C多孔体表面包裹熔渗粉料进行熔盐熔渗处理,获得C/C‑MC‑REF3复合材料,然后将C/C‑MC‑REF3复合材料表面先涂刷树脂浆料,再涂刷混合氧化物粉末,热处理形成稀土六硼化物改性涂层即得稀土一体化改性C/C‑UHTCs复合材料;本发明提供的稀土一体化改性C/C‑UHTCs复合材料,复合材料内部与表面涂层均含有稀土,表面涂层在复合材料的烧蚀初期迅速建立一个短时有效的防护层,在表层液相氧化物挥发后,基体内部稀土氟化物氧化后生成的稀土氧化物同样能够起到稳定氧化物陶瓷的晶体结构、促进烧结的作用,为长时稳定抗热力氧化提供了保障。

Description

一种稀土一体化改性C/C-UHTCs复合材料及其制备方法
技术领域
本发明属于陶瓷复合材料制备技术领域,具体涉及一种稀土一体化改性C/C-UHTCs复合材料及其制备方法。
背景技术
随着航空航天飞行器快速发展,飞行器关键热结构部件如飞行器翼缘部位在实际的空天环境中将经受2000-3000℃的超高温环境氧化烧蚀,对组成的关键热结构部件的材料要求十分严苛。超高温陶瓷(UHTCs)如超高温碳化物或硼化物等改性C/C复合材料具有高温力学性能好和耐超高温烧蚀等优点,可有效满足超高声速飞行器关键热结构部件的严苛热、力学要求。为了改善C/C复合材料的高温抗烧蚀性能,通常选择对C/C复合材料进行改性处理,制备C/C-UHTCs复合材料。目前,国内外学者在热障涂层的制备中通常使用在ZrO2中掺杂一定量的稀土氧化物来稳定ZrO2的晶体结构,从而阻止其马氏体相变的发生,最终获得致密稳定的ZrO2。但以上对C/C-UHTCs复合材料的改性方法工艺较为复杂、成本较高,微观结构均匀性差,在烧蚀过程中表层封填物质耗散速度快,未能形成连续、致密、稳定性好的氧化膜,无法在较长时间内保持良好的烧蚀性能,因此,提高其抗氧化烧蚀性能成为了目前国内外研究的热点和难点。研究表明,在C/C-UHTCs复合材料表面制备稀土氧化物部分掺杂氧化锆的热障涂层,能够在温度变化过程中生成三价稀土离子固溶于氧化锆的置换固溶体,三价稀土离子的加入引起置换固溶反应,取代Zr4+离子在晶格中的位置,形成了三价稀土离子部分固溶的置换固溶体,使得氧化锆在室温下处于亚稳态的四方相能够稳定的在室温下存在。发生置换固溶后,三价稀土离子取代晶格中Zr4+离子的位置,为了保持电中性,晶格中会产生氧空位用来平衡电价,在材料的导热过程中,这些非本征空位的出现使得材料具备散射更大数量声子的能力,从而使材料的导热系数降低。总而言之,稀土元素的添加能够使得C/C-UHTCs复合材料在烧蚀过程中形成致密、稳定性好的氧化层。但传统稀土掺杂热障涂层技术存在以下问题:由于热膨胀系数存在差异,热障涂层与基体材料之间易发生开裂失效,失去防护作用。一旦含有稀土氧化物的表层脱落,复合材料的抗氧化烧蚀性能将会迅速下降。
因此,我们迫切需要一种稀土元素在基体内部和表面同时存在的、成分可设计并可控的C/C-UHTCs制备方法。
发明内容
针对现有技术的不足,本发明的第一个目的在于提供一种稀土一体化改性C/C-UHTCs复合材料的制备方法。
本发明的第二个目的在于提供上述制备方法所制备的一种稀土一体化改性C/C-UHTCs复合材料,本发明所提供的稀土一体化改性C/C-UHTCs复合材料,复合材料内部含有均匀分布的稀土氟化物,复合材料的表面涂层中含有稀土六硼化物,突破了稀土改性仅应用于涂层改性的局限,表面涂层在复合材料的烧蚀初期迅速建立一个短时有效的防护层,内部的稀土氟化物则为长时间烧蚀提供了稳定支撑,在表层液相氧化物挥发后,基体内部稀土氟化物氧化后生成的稀土氧化物同样能够起到稳定氧化物陶瓷的晶体结构、促进烧结的作用,为长时稳定抗热力氧化提供了保障。
为了实现上述目的,本发明采用如下技术方案,
本发明一种稀土一体化改性C/C-UHTCs复合材料的制备方法,将C/C多孔体表面包裹熔渗粉料进行熔盐熔渗处理,获得C/C-MC-REF3复合材料,然后将C/C-MC-REF3复合材料表面先涂刷树脂浆料,再涂刷混合氧化物粉末,热处理形成稀土六硼化物改性涂层即得稀土一体化改性C/C-UHTCs复合材料;
所述熔渗粉料由反应性熔盐、氯盐、稀土金属粉末组成,按摩尔比计,反应性熔盐:氯盐:稀土金属粉末=3~3.5:2.75~3.25:3.75~4.25;
所述混合氧化物粉末为B2O3粉与稀土氧化物粉末组成的混合粉末。
本发明一种稀土一体化改性C/C-UHTCs复合材料的制备方法,先通过熔盐熔渗制备C/C-MC-REF3复合材料,随后通过后续刷涂与热处理制备稀土六硼化物涂层,本发明所提供的稀土一体化改性C/C-UHTCs复合材料内部均匀分布的MC-REF3陶瓷相,表面为致密的REB6涂层,本发明解决了稀土元素难以引入基体内部的问题,突破了稀土改性仅应用于涂层改性的局限。在将本发明的稀土一体化改性C/C-UHTCs复合材料应用于超高温环境时,表层的稀土六硼化物在氧化烧蚀过程中与超高温陶瓷相的氧化产物反应生成高熔点稀土盐和B2O3,高熔点的稀土盐在烧蚀温度下形成高粘度、低挥发的液相氧化物,同时稀土阳离子与氧化物发生置换固溶稳定其晶体结构,阻止了氧化物的相变;B2O3则形成高流动性、易挥发的玻璃态液相氧化物,B2O3挥发带走表面大量热量,且有利于氧化产生的气体逸出,避免了表面液相粘度过高导致气体难以逸出最终氧化层鼓泡破裂的发生,内部的稀土氟化物则为长时间烧蚀提供了稳定支撑,在表层液相氧化物挥发后,基体内部稀土氟化物氧化后生成的稀土氧化物同样能够起到稳定氧化物晶体结构、促进烧结的作用,为长时稳定抗热力氧化提供了保障。
发明人发现,要采用熔盐熔渗处理大量的引入均匀分散的稀土氟化物基体才能够持续的外部涂层提供稳定支撑,而要获得均匀分散的稀土氟化物基体,将熔渗粉料的配比控制在本发明的范围内至关重要,若配比不合理,如氯盐配取量过少,稀土金属粉末的配取时过多,均将导致能够引入的REF3含量很少,如果进行基体改性,得到的复合材料致密度将很低,即使是仅作为涂层,由于稀土氟化物的含量较少,在烧蚀过程中无法在第一时间形成致密、完整的氧化层,仍然存在部分疏松氧化物。而采用发明的配方能够在基体中形成大量含量充足的稀土氟化物,在烧蚀中后期能够及时补充抗烧蚀组元,并形成液相愈合表面缺陷,从而能够持续保持优异的抗氧化烧蚀性能。
此外,发明人发现,在稀土六硼化物改性涂层的制备过程中,需要先涂刷树脂浆料,然后再涂刷混合氧化物粉末,因为先刷树脂碳,再铺粉烧结后,不仅使表层多余氧化物容易去除,且稀土六硼化物不会过多渗入基体内部;而若将树脂与B2O3粉及稀土氧化物粉共同混合后再刷涂则会导致稀土六硼化物过多,而稀土六硼化物氧化后会生成低熔点的B2O3,适量的B2O3能够带走表面热量,利于气体逸出,防止涂层鼓泡;过多的B2O3沸腾后产生大量气孔,不利于形成完整涂层。
优选的方案,所述反应性熔盐选自K2ZrF6、K2NbF7、K2TaF7中的至少一种。
所述述氯盐选自NaCl、KCl、CaCl2中的至少一种;
所述稀土金属粉末选自Y、La、Ce、Dy中的至少一种。
进一步的优选,所述反应性熔盐为K2ZrF6,氯盐为KCl,稀土金属粉末为Y。发明人发现,当熔渗粉料由K2ZrF6、KCl、Y混合获得时,最终所得复合材料的性能最优,因为其具备较低的熔点,能够保护碳纤维免受高温金属熔体的损伤,采用该混合粉料所获得的是ZrC-YF3复相陶瓷,Zr4+和Y3+的离子半径相近,二者的氧化物之间具有较高的固溶度。氟盐能够降低粉料整体熔点,同时代替难熔金属单质作为反应物制备目标碳化物陶瓷,氯盐与氟盐的比例采用接近共晶点的配比,进一步保证粉料体系的低熔点和高流动性,同时能与碳材料较好的润湿,二者协同作用确保了熔渗过程顺利、高效进行。
优选的方案,所述C/C多孔体由碳纤维预制体经化学气相沉积碳增密制得,所述碳纤维预制体选自2.5D针刺碳纤维预制体或3D细编穿刺碳纤维预制体,优选为2.5D针刺碳纤维预制体。发明人发现,采用2.5D针刺碳纤维预制体相比3D细编穿刺碳纤维预制体的针刺密度更高,整体密度更大,在第一次熔盐熔渗结束后表面平整度更高,更有利于后续的步骤实施。
在实际操作过程中,在将C/C多孔体采用熔渗粉料包埋之前,先在无水乙醇中进行超声处理,超声时间为10-20min,随后进行干燥处理,干燥处理的温度为40-80℃,干燥处理的时间为12-24h。
优选的方案,所述C/C多孔体的密度为0.94-1.29g/cm3
优选的方案,所述熔盐熔渗处理在保护气氛下进行,所述熔盐熔渗处理的温度为1200-1350℃,熔盐熔渗处理的时间为2-4h,升温速率为6-12℃/min,炉内气压为0-200Pa。
在本发明中,通过熔渗粉料配比的控制,使得可以在较低的温度下即能在基体中引入大量的REF3,不过熔盐熔渗处理的温度需要有效控制,若是熔渗反应温度过高,会导致熔体大量挥发,反应无法彻底进行;且易于发生晶粒二次长大导致晶粒粗大,微观组织均匀性受到影响。
进一步的优选,所述保护气氛为氩气。
进一步的优选,所述熔盐熔渗处理的过程为:先以10-12℃/min的升温速率升温至750-850℃,再以6-8℃/min的升温速率升温至1200-1300℃,保温2.5-3.5h。
在优选的方案中,前期熔渗粉料还未融化,先采用较快的升温速度升温至750-850℃,升到750-850℃后,熔体粘度迅速降低,此时为熔体渗透能够迅速进行的阶段,本发明通过需要放缓升温速率,使得熔体能够彻底浸润基体,充分反应。
在实际操作过程中,在熔盐熔渗结束后,用SiC砂纸将样品表面打磨光滑,在样品表面刷涂一层树脂碳。
优选的方案,所述树脂浆料中树脂的质量浓度为15%-25%。
优选的方案,所述树脂浆料中的树脂选自酚醛树脂、PVB树脂、环氧树脂中的至少一种。
优选的方案,所述树脂浆料由树脂溶解于有机溶剂中获得,所述有机溶剂选自无水乙醇,丙酮、松油醇中的至少一种。
优选的方案,将C/C-MC-REF3复合材料表面先涂刷树脂浆料,涂刷的次数为1~3次。
在本发明中刷涂树脂浆料是为了后续的氧化还原反应提供碳源,且树脂碳具有一定渗透作用,能够进入基体材料表层以下一定深度,实现稀土六硼化物与基体材料的强界面结合,在热处理温度下发生以下反应:6B2O3+RE2O3+21C=2REB6+21CO,以树脂碳为碳源,在C/C-MC-REF3复合材料表面生成REB6的涂层。
不过刷涂树脂碳的浓度和次数对于后续涂层的成分与结构十分重要,浓度过高或刷涂次数过多,会导致热处理过程中表层出现大量孔隙,影响材料抗氧化烧蚀性能;浓度过低,会导致表层碳源不足,无法生成足量的稀土六硼化物。
优选的方案,所述混合氧化物粉末中,按摩尔比计,稀土氧化物粉:B2O3粉=1-1.25:6。
优选的方案,所述稀土氧化物粉末选自Y2O3、La2O3、Ce2O3中的至少一种,优选为La2O3
优选的方案,所述B2O3粉的粒径为5-30µm,稀土氧化物粉末的粒径为10-15µm。
优选的方案,所述混合氧化物粉末的获取方法为:按设计成份比例配取B2O3粉与稀土氧化物粉末,置于球磨罐中,以ZrO2球为球磨球,以酒精为球磨介质,进行球磨,所述球磨的转速为100-150r/min,球磨的时间为6-12h。
在实际操作过程中,将经球磨混合的混合氧化物粉末平铺于刷涂了树脂碳的复合材料表面,放入石墨坩埚进行热处理。
优选的方案,所述热处理在保护气氛下进行,所述热处理的温度为1800-2000℃,热处理的时间为1.5-3.5h,升温速率为10-14℃/min,炉内气压为200-350Pa。
本发明还提供上述制备方法所制备的一种稀土一体化改性C/C-UHTCs复合材料。
原理与优势
针对现有超高温陶瓷改性C/C复合材料中陶瓷相组分、结构难以控制和稀土元素难以引入基体内部的问题,采用熔盐熔渗与刷涂-原位反应法制备了稀土一体化改性C/C-UHTCs复合材料,本发明突破了稀土改性仅应用于涂层改性的局限,制备了稀土元素在表面和内部同时存在的复合材料,实现了符合材料内部陶瓷相的成分与结构可控制备。
本发明提供的制备方法,先通过熔盐熔渗制备C/C-MC-REF3复合材料,随后通过后续刷涂与热处理制备稀土六硼化物涂层,解决了稀土元素难以引入基体内部的问题,突破了稀土改性仅应用于涂层改性的局限。在将本发明的稀土一体化改性C/C-UHTCs复合材料应用于超高温环境时,表层的稀土六硼化物在氧化烧蚀过程中与超高温陶瓷相的氧化产物反应生成高熔点稀土盐和B2O3,高熔点的稀土盐在烧蚀温度下形成高粘度、低挥发的液相氧化物,同时稀土阳离子与氧化物发生置换固溶稳定其晶体结构,阻止了氧化物的相变;B2O3则形成高流动性、易挥发的玻璃态液相氧化物,B2O3挥发带走表面大量热量,且有利于氧化产生的气体逸出,避免了表面液相粘度过高导致气体难以逸出最终氧化层鼓泡破裂的发生,内部的稀土氟化物则为长时间烧蚀提供了稳定支撑,在表层液相氧化物挥发后,基体内部稀土氟化物氧化后生成的稀土氧化物同样能够起到稳定氧化物晶体结构、促进烧结的作用,为长时稳定抗热力氧化提供了保障。
附图说明
图1 为实施例1中所得稀土一体化改性C/C-UHTCs复合材料表面微观结构;
图2 为实施例1中所得稀土一体化改性C/C-UHTCs复合材料横截面微观结构;
图3 为实施例1中所得稀土一体化改性C/C-UHTCs复合材料烧蚀60s后表面微观结构;
图4为实施例1中所得稀土一体化改性C/C-UHTCs复合材料烧蚀120s后表面微观结构;
图5 为对比例1中所得稀土一体化改性C/C-UHTCs复合材料烧蚀60s后表面微观结构;
图6 为对比例2中所得稀土一体化改性C/C-UHTCs复合材料热处理后表面微观形貌。
具体实施方式
实施例1
选择密度为1.26 g/cm3的2.5D整体针刺复合材料,先在无水乙醇中进行超声处理,超声时间为15min,随后进行干燥处理,干燥处理的温度为80℃,干燥处理的时间为24h。所述熔盐熔渗过程,熔渗粉料组成为氟盐(反应性熔盐)、氯盐、稀土金属粉末,所述反应性熔盐为K2ZrF6,所述稀土金属粉末为Y,所述氯盐为KCl;三者的摩尔比为:氟盐:氯盐:稀土金属=3.5:3:3.75。在石墨坩埚的底部放置石墨纸,随后放入C/C复合材料,在上方放入混合好的熔渗粉料,用石墨纸封住上方后加盖。熔盐熔渗的工艺为:以10℃/min的升温速率升温至800℃,再以8℃/min的升温速率升温至1300℃,保温3.25h,保护气氛为氩气。在熔盐熔渗结束后,用SiC砂纸将样品表面打磨光滑,在样品表面刷涂树脂浆料(树脂浆料由酚醛树脂粉末溶解于无水乙醇中获得),树脂浆料的浓度为16%,刷涂次数为1次。将混合氧化物粉末平铺于刷涂了树脂碳的复合材料表面,放入石墨坩埚进行热处理。所述混合氧化物粉末为B2O3粉末(粒径为25微米)与La2O3粉末(粒径为15微米)的混合粉末;获取混合氧化物粉末的方法如下:按La2O3和B2O3二者的摩尔比为1.25:6配取混合氧化物粉末放入球磨罐,加入ZrO2球和酒精进行球磨混合,所述球磨的转速为120r/min,球磨的时间为10h,过筛即得,所述热处理的温度为2000℃,保温时间3h,保护气氛为氩气,炉内气压保持在280Pa,升温速率为10℃/min,随炉冷却后即得到稀土一体化改性C/C-UHTCs复合材料。
图1为所得稀土一体化改性C/C-UHTCs复合材料表面微观结构,如图1所示,样品表面为LaB6的均匀致密涂层,能够观察到有许多细小的微孔,这是因为生成LaB6的反应会产生CO气体,气体的挥发在涂层的形成过程中会在表面留下孔隙,而且小尺寸的孔隙有利于气体逸出。
图2 实施例1中所得稀土一体化改性C/C-UHTCs复合材料横截面微观结构,如图2所示,ZrC与YF3的微米级晶粒均匀分布在基体内部。
图3为烧蚀60s后的样品烧蚀中心区微观形貌,可以看到中心区形成了结构致密的氧化层,成分为ZrO2、La2O3、La2Zr2O7,和少量B2O3,表面布满微孔,这是B2O3挥发形成的。在短时烧蚀过程中,B2O3尚未完全挥发。
图4为烧蚀120s后样品烧蚀中心区微观形貌,与图3对比,烧蚀120s后的中心区出现了更多孔洞,但氧化物仍然形成了致密的骨架,氧化膜的成分为ZrO2、La2Zr2O7,ZrxY1-xO2,在长时烧蚀过程中,B2O3已经完全挥发,表面涂层缺少液相愈合表面缺陷,出现氧扩散通道,此时基体中的YF3作为液相封填孔洞,同时其氧化物能够起到稳定氧化锆晶体结构的作用。
本实施例所制得的稀土一体化改性C/C-UHTCs复合材料,2500℃氧乙炔焰烧蚀60s,质量烧蚀率为-1.767mg/s,线烧蚀率为-0.238μm×cm-2×s-2。2500℃氧乙炔焰烧蚀240s,质量烧蚀率为-1.05 mg/s,线烧蚀率为-0.569μm×cm-2×s-2
实施例2:
其他实验步骤均与实施例1相同,但混合氧化物中的稀土氧化物变为Ce2O3。本实施例所制得的稀土一体化改性C/C-UHTCs复合材料,2500℃氧乙炔焰烧蚀60s,质量烧蚀率为-1.532mg/s,线烧蚀率为-0.067μm×cm-2×s-2。2500℃氧乙炔焰烧蚀240s,质量烧蚀率为-0.997 mg/s,线烧蚀率为1.508μm×cm-2×s-2
CeB6的熔点低于LaB6,在烧蚀温度下作为液相存在,在氧乙炔焰冲蚀作用下烧蚀中心区的液相氧化物会堆积在烧蚀过渡区,因此样品的线烧蚀率相对于实施例1较大。
实施例3:
其他实验步骤均与实施例1相同,但熔渗工艺改变,熔盐熔渗的工艺为:以12℃/min的升温速率升温至750℃,再以7℃/min的升温速率升温至1200℃,保温3.5h,保护气氛为氩气。本实施例所制得的稀土一体化改性C/C-UHTCs复合材料,2500℃氧乙炔焰烧蚀60s,质量烧蚀率为-1.65mg/s,线烧蚀率为-0.103μm×cm-2×s-2。2500℃氧乙炔焰烧蚀240s,质量烧蚀率为-1.102 mg/s,线烧蚀率为-0.654μm×cm-2×s-2
对比例1:
其他实验步骤均与实施例1相同,但熔盐熔渗的粉料组成发生改变,稀土金属粉末变为难熔金属粉末Zr,熔渗结束后得到C/C-ZrC复合材料。2500℃氧乙炔焰烧蚀60s,质量烧蚀率为-0.890mg/s,线烧蚀率为0.207μm×cm-2×s-2。2500℃氧乙炔焰烧蚀240s,质量烧蚀率为2.783mg/s,线烧蚀率为5.96μm×cm-2×s-2。图5为对比例1中样品烧蚀60s后中心区形貌,观察到氧化膜剥落,碳纤维全部露出,且损伤严重。
由于内部基体没有稀土氟化物的液相补充和稀土元素的补充,随着烧蚀时间的延长,表面涂层一旦出现裂纹,而基体中缺少能够稳定氧化锆结构的稀土成分,将会形成结构疏松的氧化层,无法阻止氧扩散通道,迅速失去热防护作用。
对比例2:
其他实验步骤均与实施例1相同,仅仅在刷涂树脂碳时浓度为35%,刷涂次数为3。2500℃氧乙炔焰烧蚀60s,质量烧蚀率为4mg/s,线烧蚀率为0.878μm×cm-2×s-2。2500℃氧乙炔焰烧蚀240s,质量烧蚀率为12mg/s,线烧蚀率为3.98μm×cm-2×s-2。这是由于树脂碳的浓度过高,刷涂次数较多,在热处理过程中会出现较多孔洞,对于后续生成六硼化镧的反应,提供了过多的碳源,反应结束后复合材料表面有较多碳残留,在烧蚀过程中迅速氧化成为气相逸出,在复合材料表层留下大量气孔,进一步对抗氧化烧蚀性能产生不利影响。
图6为对比例2中样品热处理后表面微观形貌,观察到表面存在许多残余碳,这是由于树脂碳浓度过高,刷涂次数过多,导致表面残留大量未反应的无定形碳,在烧蚀过程中无定形碳迅速氧化成为气相,且涂层存在较多裂纹,在烧蚀过程中作为氧扩散通道存在,对于样品的抗氧化烧蚀性能造成极大的负面影响。
对比例3:
其他条件与实施例1相同,仅是在熔盐熔渗结束后,没有再进行表面涂层,2500℃氧乙炔焰烧蚀60s,质量烧蚀率为5.383mg/s,线烧蚀率为1.836μm×cm-2×s-2。2500℃氧乙炔焰烧蚀240s,质量烧蚀率为9.465mg/s,线烧蚀率为2.01μm×cm-2×s-2
这是由于没有表面涂层,无法形成高温下低挥发的稀土锆酸盐,随着烧蚀时间的延长,液相稀土氟化物逐渐耗散,无法抵抗长时间烧蚀;由于碳纤维外露,在短时烧蚀条件下能够暂时形成结构稳定的氧化膜,但仍会造成较大质量损失。
对比例4
其他条件与实施例1相同,仅是熔盐熔渗粉料中,按摩尔比为:氟盐:氯盐:稀土金属=4:2:6.5。按照此比例无法成功制备样品。由于稀土金属添加量过多,会与碳基体直接接触,生成极易氧化粉化的稀土碳化物,出炉后与空气接触一段时间后即被氧化成为粉末,样品无法制备成功。
对比例5
其他条件与实施例1相同,仅是熔盐熔渗处理的温度为1600℃。由于熔渗温度过高,氟盐、氯盐会迅速挥发离开C/C多孔体,反应熔渗无法进行,样品无法制备成功。

Claims (10)

1.一种稀土一体化改性C/C-UHTCs复合材料的制备方法,其特征在于:将C/C多孔体表面包裹熔渗粉料进行熔盐熔渗处理,获得C/C-MC-REF3复合材料,然后将C/C-MC-REF3复合材料表面先涂刷树脂浆料,涂刷的次数为1~3次;再涂刷混合氧化物粉末,热处理形成稀土六硼化物改性涂层即得稀土一体化改性C/C-UHTCs复合材料;
所述熔渗粉料由反应性熔盐、氯盐、稀土金属粉末组成,按摩尔比计,反应性熔盐:氯盐:稀土金属粉末=3~3.5:2.75~3.25:3.75~4.25;
所述反应性熔盐选自K2ZrF6、K2NbF7、K2TaF7中的至少一种;
所述熔盐熔渗处理的温度为1200-1350℃;
所述树脂浆料中树脂的质量浓度为15%-25%;
所述混合氧化物粉末为B2O3粉与稀土氧化物粉末组成的混合粉末。
2.根据权利要求1所述的一种稀土一体化改性C/C-UHTCs复合材料的制备方法,其特征在于:所述氯盐选自NaCl、KCl、CaCl2中的至少一种;
所述稀土金属粉末选自Y、La、Ce、Dy中的至少一种。
3.根据权利要求1或2所述的一种稀土一体化改性C/C-UHTCs复合材料的制备方法,其特征在于:所述C/C多孔体由碳纤维预制体经化学气相沉积碳增密制得,所述碳纤维预制体选自2.5D针刺碳纤维预制体或3D细编穿刺碳纤维预制体,
所述C/C多孔体的密度为0.94-1.29g/cm3
4.根据权利要求1或2所述的一种稀土一体化改性C/C-UHTCs复合材料的制备方法,其特征在于:所述熔盐熔渗处理在保护气氛下进行,熔盐熔渗处理的时间为2-4h,升温速率为6-12℃/min,炉内气压为0-200Pa。
5.根据权利要求4所述的一种稀土一体化改性C/C-UHTCs复合材料的制备方法,其特征在于:所述熔盐熔渗处理的过程为:先以10-12℃/min的升温速率升温至750-850℃,再以6-8℃/min的升温速率升温至1200-1300℃,保温2.5-3.5h。
6.根据权利要求1或2所述的一种稀土一体化改性C/C-UHTCs复合材料的制备方法,其特征在于: 所述树脂浆料中的树脂选自酚醛树脂、PVB树脂、环氧树脂中的至少一种;
所述树脂浆料由树脂溶解于有机溶剂中获得,所述有机溶剂选自无水乙醇,丙酮、松油醇中的至少一种。
7.根据权利要求1所述的一种稀土一体化改性C/C-UHTCs复合材料的制备方法,其特征在于:所述混合氧化物粉末中,按摩尔比计,稀土氧化物粉:B2O3粉=1-1.25:6。
8.根据权利要求1或7所述的一种稀土一体化改性C/C-UHTCs复合材料的制备方法,其特征在于:所述稀土氧化物粉末选自Y2O3、La2O3、Ce2O3中的至少一种,
所述B2O3粉的粒径为5-30µm,稀土氧化物粉末的粒径为10-15µm;
所述混合氧化物粉末的获取方法为:按设计成份比例配取B2O3粉与稀土氧化物粉末,置于球磨罐中,以ZrO2球为球磨球,以酒精为球磨介质,进行球磨,所述球磨的转速为100-150r/min,球磨的时间为6-12h。
9.根据权利要求1或2所述的一种稀土一体化改性C/C-UHTCs复合材料的制备方法,其特征在于:所述热处理在保护气氛下进行,所述热处理的温度为1800-2000℃,热处理的时间为1.5-3.5h,升温速率为10-14℃/min,炉内气压为200-350Pa。
10.权利要求1-9任意一项所述的制备方法所制备的一种稀土一体化改性C/C-UHTCs复合材料。
CN202410302368.7A 2024-03-18 2024-03-18 一种稀土一体化改性C/C-UHTCs复合材料及其制备方法 Active CN117902899B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410302368.7A CN117902899B (zh) 2024-03-18 2024-03-18 一种稀土一体化改性C/C-UHTCs复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410302368.7A CN117902899B (zh) 2024-03-18 2024-03-18 一种稀土一体化改性C/C-UHTCs复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN117902899A CN117902899A (zh) 2024-04-19
CN117902899B true CN117902899B (zh) 2024-06-04

Family

ID=90682272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410302368.7A Active CN117902899B (zh) 2024-03-18 2024-03-18 一种稀土一体化改性C/C-UHTCs复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN117902899B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118359439A (zh) * 2024-06-18 2024-07-19 中南大学 一种分区域稀土改性C/C-UHTCs复合材料及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777152A (en) * 1984-05-29 1988-10-11 Ibiden Kabushiki Kaisha Porous silicon carbide sinter and its production
US4795677A (en) * 1984-11-30 1989-01-03 Ga Technologies Inc. Oxidation-inhibited carbon-carbon composites
US4824622A (en) * 1986-12-22 1989-04-25 Lanxide Technology Company, Lp Method of making shaped ceramic composites
CN101160639A (zh) * 2005-04-15 2008-04-09 3M创新有限公司 重复使用挠性模的方法和微结构前体组合物
CN106977223A (zh) * 2017-04-10 2017-07-25 中南大学 陶瓷改性及具有陶瓷涂层的c/c复合材料及其制备方法
CN107459359A (zh) * 2017-08-09 2017-12-12 航天特种材料及工艺技术研究所 一种二氧化硅基轻质陶瓷热防护材料及其制备方法和应用
CN110803942A (zh) * 2019-11-19 2020-02-18 中南大学 一种超高温陶瓷改性c/c复合材料的制备方法
CN112279646A (zh) * 2020-12-24 2021-01-29 中南大学 一种熔盐熔渗材料、陶瓷界面改性材料和超高温陶瓷改性复合材料的制备方法
CN114349540A (zh) * 2022-01-19 2022-04-15 中南大学 一种稀土掺杂抗烧蚀C/C-ZrC-SiC复合材料的制备方法
CN116239400A (zh) * 2023-05-08 2023-06-09 中南大学 一种含纳米复相超高温陶瓷内涂层的C/C-UHTCs复合材料及其制备方法
CN117551947A (zh) * 2023-10-30 2024-02-13 中南大学 一种含稀土氧化物的超高温陶瓷基复合材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531404B2 (ja) * 2004-01-13 2010-08-25 財団法人電力中央研究所 耐環境性皮膜構造体及びセラミック構造物
US20090297718A1 (en) * 2008-05-29 2009-12-03 General Electric Company Methods of fabricating environmental barrier coatings for silicon based substrates
US9409823B2 (en) * 2013-02-15 2016-08-09 Deborah D. L. Chung Microstructured high-temperature hybrid material, its composite material and method of making
CN110330353B (zh) * 2019-08-15 2020-03-13 中南大学 一种SiCf/SiC复合材料火焰筒及其自动化制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777152A (en) * 1984-05-29 1988-10-11 Ibiden Kabushiki Kaisha Porous silicon carbide sinter and its production
US4795677A (en) * 1984-11-30 1989-01-03 Ga Technologies Inc. Oxidation-inhibited carbon-carbon composites
US4824622A (en) * 1986-12-22 1989-04-25 Lanxide Technology Company, Lp Method of making shaped ceramic composites
CN101160639A (zh) * 2005-04-15 2008-04-09 3M创新有限公司 重复使用挠性模的方法和微结构前体组合物
CN106977223A (zh) * 2017-04-10 2017-07-25 中南大学 陶瓷改性及具有陶瓷涂层的c/c复合材料及其制备方法
CN107459359A (zh) * 2017-08-09 2017-12-12 航天特种材料及工艺技术研究所 一种二氧化硅基轻质陶瓷热防护材料及其制备方法和应用
CN110803942A (zh) * 2019-11-19 2020-02-18 中南大学 一种超高温陶瓷改性c/c复合材料的制备方法
CN112279646A (zh) * 2020-12-24 2021-01-29 中南大学 一种熔盐熔渗材料、陶瓷界面改性材料和超高温陶瓷改性复合材料的制备方法
CN114349540A (zh) * 2022-01-19 2022-04-15 中南大学 一种稀土掺杂抗烧蚀C/C-ZrC-SiC复合材料的制备方法
CN116239400A (zh) * 2023-05-08 2023-06-09 中南大学 一种含纳米复相超高温陶瓷内涂层的C/C-UHTCs复合材料及其制备方法
CN117551947A (zh) * 2023-10-30 2024-02-13 中南大学 一种含稀土氧化物的超高温陶瓷基复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
微波固相合成纳米LaB_6的组织结构及其透光特性;苏玉长;张鹏飞;肖立华;陈宏艳;;中南大学学报(自然科学版);20111026(第10期);第134-138页 *

Also Published As

Publication number Publication date
CN117902899A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
CN117902899B (zh) 一种稀土一体化改性C/C-UHTCs复合材料及其制备方法
JP5823104B2 (ja) 耐環境コーティングを製造するための水系スラリー組成物及び該組成物からなる耐環境コーティング
Zhu et al. SiC-Si coating with micro-pores to protect carbon/carbon composites against oxidation
CN110396003B (zh) 一种多元掺杂改性二硼化锆-碳化硅涂层的制备方法
JP5875753B2 (ja) 焼結助剤を用いた耐環境コーティングの製造方法
JP5898835B2 (ja) 高温セラミック部品用の水系耐環境コーティング
JP5906008B2 (ja) 焼結助剤を用いた水系耐環境コーティングの製造方法
JP2009046765A (ja) 機能性層の製造方法
CN105541334B (zh) 多层孔筋结构的碳化硅基复合泡沫陶瓷及其制备方法
WO2021103560A1 (zh) 一种长时耐烧蚀超高熔点含氮碳化物超高温陶瓷及其应用
CN110963799B (zh) 一种液相硅辅助成形热防护类Z-pins硅化物陶瓷棒结构的制备方法
CN103980006B (zh) 构件表面具有自愈合能力的环境屏障涂层及制备方法
CN117551947B (zh) 一种含稀土氧化物的超高温陶瓷基复合材料及其制备方法
CN107814589B (zh) 一种氧化物原位包覆二硼化锆-碳化硅团聚粉体的方法
CN114315390B (zh) 一种碳/碳复合材料表面宽温域长寿命抗氧化涂层及低温制备方法
Wang et al. High-temperature oxidation and ablation behavior of plasma sprayed LaB6-MoSi2-TiB2 composite coating
CN110981546A (zh) C-C复合材料表面抗氧化ZrB2-SiC-Y2O3涂层及其制备方法
Wang et al. Low-pressure plasma spraying of ZrB2-SiC coatings on C/C substrate by adding TaSi2
CN115286390A (zh) C/C复合材料表面ZrC-SiC抗烧蚀涂层及涂刷法结合气相反应复合制备方法
Wang et al. Study on the mechanism of ultra-high temperature ablation of ZrB2–SiC–TaSi2 coatings by low-pressure plasma spraying on the C/C composites
CN113845379A (zh) 基于微孔骨架结构制备SiC/SiC-HfB2双相镶嵌抗氧化涂层及制备方法
CN102503585B (zh) 一种碳/碳复合材料抗氧化磷酸盐稀土玻璃涂层的制备方法
CN109321874A (zh) 一种纯钨表面硅铝共渗抗氧化复合涂层的制备方法
JP6949953B2 (ja) 耐酸化層が形成された炭化ケイ素焼結体およびその製造方法
CN108218427B (zh) 一种耐烧蚀的用于碳基耗散防热复合材料的三元合金耗散剂及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant