CN108218427B - 一种耐烧蚀的用于碳基耗散防热复合材料的三元合金耗散剂及方法 - Google Patents

一种耐烧蚀的用于碳基耗散防热复合材料的三元合金耗散剂及方法 Download PDF

Info

Publication number
CN108218427B
CN108218427B CN201810259472.7A CN201810259472A CN108218427B CN 108218427 B CN108218427 B CN 108218427B CN 201810259472 A CN201810259472 A CN 201810259472A CN 108218427 B CN108218427 B CN 108218427B
Authority
CN
China
Prior art keywords
ternary alloy
carbon
parts
agent
dissipative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810259472.7A
Other languages
English (en)
Other versions
CN108218427A (zh
Inventor
康鹏超
武高辉
刘豪
邓恒
李卫鹏
严鸥鹏
芶华松
乔菁
陈国钦
张强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201810259472.7A priority Critical patent/CN108218427B/zh
Publication of CN108218427A publication Critical patent/CN108218427A/zh
Application granted granted Critical
Publication of CN108218427B publication Critical patent/CN108218427B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

一种耐烧蚀的用于碳基耗散防热复合材料的三元合金耗散剂及方法。本发明涉及轻质耐烧蚀复合材料领域。本发明要解决现有制备的碳基耗散放热复合材料耐烧蚀性能差的技术问题。三元合金耗散剂按照质量份数由20~40份的铝、40~60份的硅和10~30份的锆三元合金组成。方法:一、制备耗散剂;二、处理碳基体材料;三、反应浸渗,制备碳基耗散防热复合材料。本发明提出的三元合金耗散剂制备的碳基耗散放热复合材料具有优异的耐烧蚀性能。本发明耗散剂用于制备碳基耗散防热复合材料。

Description

一种耐烧蚀的用于碳基耗散防热复合材料的三元合金耗散剂 及方法
技术领域
本发明涉及轻质耐烧蚀复合材料领域。
背景技术
耐烧蚀材料是国防和航天领域重要的工程材料,其作用是受热部件在高温和高速气流冲刷条件下,在工作时间内能够维持气动外形以保证飞行器正常飞行速度和轨迹。随着航天技术的不断发展对轻质耐烧蚀材料的需求越来越迫切。现在常用的轻质耐烧蚀材料主要包括树脂基复合材料和碳/碳复合材料等。树脂基复合材料一般通过热解吸收外界热量,因而烧蚀率大;碳/碳及其改性的复合材料主要是辐射和烧蚀式防热机理,C/SiC等改性的碳/碳复合材料具有优异的耐烧蚀性能,在很多重要的受热部件上获得了应用,但其制备工艺复杂,制备周期长,成本高。
发明内容
本发明要解决现有制备的碳基耗散放热复合材料耐烧蚀性能差的技术问题,而提供一种耐烧蚀的用于碳基耗散防热复合材料的三元合金耗散剂及方法。
一种耐烧蚀的用于碳基耗散防热复合材料的三元合金耗散剂按照质量份数由20~40份的铝、40~60份的硅和10~30份的锆三元合金组成;该三元合金耗散剂通过热力学计算的熔点为1100~1600℃。
三元合金耗散剂制备碳基耗散防热复合材料的方法,具体按以下步骤进行:
一、在石墨坩埚内壁均匀涂覆BN,将所述的三元合金耗散剂装入石墨坩埚中;三元合金耗散剂按照质量份数由20~40份的铝、40~60份的硅和10~30份的锆三元合金组成;
二、将碳基体材料加工成构件,然后超声清洗,烘干;
三、将步骤一处理的石墨坩埚放入气压浸渗炉中,将步骤二处理的碳基体材料构件连接到气压浸渗炉中的提拉杆上;关闭炉门抽真空至压力为0.9×10-3~1.0×10-3Pa,然后控制升温速率为20~30℃/min,升温时充入氩气至压力为0.1~0.2大气压;继续升温到反应浸渗温度,保温1~1.5小时,得到熔融的三元合金耗散剂,然后下降提拉杆将碳基体材料构件浸入熔融的三元合金耗散剂中,炉内充入高纯氩气至浸渗气压,然后升起提拉杆将碳基体材料构件从熔融的三元合金耗散剂中提出,关闭加热电源,冷却后,获得碳基耗散防热复合材料。
本发明的有益效果是:本发明所涉及三元合金耗散剂,具有低于基体碳的氧化自由能,在烧蚀条件下优先于基体碳与氧反应,消耗掉氧保护基体碳不被氧化,同时,三元合金耗散剂中的物质与氧反应生成的Al2O3、SiO2、ZrO2等氧化物,在高温下形成液态氧化膜附着在碳基体的表面,起到阻止氧向基体扩散防止基体氧化的作用。耗散剂高的熔化焓和蒸发焓在烧蚀过程中可以吸收和带走大量的热量,降低基体的温度,且ZrO2热导率低,也可以起到阻止表面的热量向基体传导,抑制基体升温的作用。因此,由本发明提出的三元合金耗散剂制备的碳基耗散放热复合材料具有优异的耐烧蚀性能。
本发明耗散剂用于制备碳基耗散防热复合材料,也可用于多孔耐高温陶瓷、C/C-SiC复合材料、C/C-ZrC-SiC复合材料等其他多孔的基体材料中,可以提高其耐烧蚀性能。
附图说明
图1为实施例一制备的碳基耗散防热复合材料的照片;图2为实施例一制备的碳基耗散防热复合材料烧蚀后的照片。
具体实施方式
本发明技术方案不局限于以下所列举的具体实施方式,还包括各具体实施方式之间的任意组合。
具体实施方式一:本实施方式一种耐烧蚀的用于碳基耗散防热复合材料的三元合金耗散剂按照质量份数由20~40份的铝、40~60份的硅和10~30份的锆三元合金组成;该三元合金耗散剂通过热力学计算的熔点为1100~1600℃。
具体实施方式二:本实施方式与具体实施方式一不同的是:该三元合金耗散剂按照质量份数由20份的铝、55份的硅和25份的锆三元合金组成。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:该三元合金耗散剂按照质量份数由40份的铝、45份的硅和15份的锆三元合金组成。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:该三元合金耗散剂按照质量份数由40份的铝、50份的硅和10份的锆三元合金组成。其它与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:该三元合金耗散剂按照质量份数由30份的铝、50份的硅和20份的锆三元合金组成。其它与具体实施方式一至四之一相同。
具体实施方式六:利用具体实施方式一所述三元合金耗散剂制备碳基耗散防热复合材料的方法,具体按以下步骤进行:
一、在石墨坩埚内壁均匀涂覆BN,将具体实施方式一所述的三元合金耗散剂装入石墨坩埚中;三元合金耗散剂按照质量份数由20~40份的铝、40~60份的硅和10~30份的锆三元合金组成;
二、将碳基体材料加工成构件,然后超声清洗,烘干;
三、将步骤一处理的石墨坩埚放入气压浸渗炉中,将步骤二处理的碳基体材料构件连接到气压浸渗炉中的提拉杆上;关闭炉门抽真空至压力为0.9×10-3~1.0×10-3Pa,然后控制升温速率为20~30℃/min,升温时充入氩气至压力为0.1~0.2大气压;继续升温到反应浸渗温度,保温1~1.5小时,得到熔融的三元合金耗散剂,然后下降提拉杆将碳基体材料构件浸入熔融的三元合金耗散剂中,炉内充入高纯氩气至浸渗气压,然后升起提拉杆将碳基体材料构件从熔融的三元合金耗散剂中提出,关闭加热电源,冷却后,获得碳基耗散防热复合材料。
具体实施方式七:本实施方式与具体实施方式六不同的是:步骤二中碳基体材料的孔隙率为10~35%。其它与具体实施方式六相同。
具体实施方式八:本实施方式与具体实施方式六或七不同的是:步骤二中碳基体材料为石墨或低密度C/C复合材料。其它与具体实施方式六或七相同。
具体实施方式九:本实施方式与具体实施方式六至八之一不同的是:步骤三中设定温度为1700~2000℃。其它与具体实施方式六至八之一相同。
具体实施方式十:本实施方式与具体实施方式六至九之一不同的是:步骤三中充入高纯氩气的压力为3~10MPa。其它与具体实施方式六至九之一相同。
具体实施方式十一:本实施方式与具体实施方式六至十之一不同的是:步骤一中三元合金耗散剂按照质量份数由30份的铝、50份的硅和20份的锆三元合金组成;步骤二中碳基体材料为高纯石墨,密度为1.65~1.82g/cm3;步骤三中反应浸渗温度为1600~1800℃。其它与具体实施方式六至十之一相同。
具体实施方式十二:本实施方式与具体实施方式六至十一之一不同的是:步骤一中三元合金耗散剂按照质量份数由40份的铝、45份的硅和15份的锆三元合金组成;步骤二中碳基体材料为C/C复合材料,密度为1.45~1.80g/cm3;步骤三中反应浸渗温度为1500~1700℃。其它与具体实施方式六至十一之一相同。
具体实施方式十三:本实施方式与具体实施方式六至十二之一不同的是:步骤一中三元合金耗散剂按照质量份数由20份的铝、55份的硅和25份的锆三元合金组成,步骤三中反应浸渗温度为1800℃,浸渗气压为10MPa。其它与具体实施方式六至十二之一相同。
采用以下实施例验证本发明的有益效果:
实施例一:
本实施例一种耐烧蚀的用于碳基耗散防热复合材料的三元合金耗散剂按照质量份数由20份的铝、55份的硅和25份的锆三元合金组成。
利用所述三元合金耗散剂制备碳基耗散防热复合材料的方法,具体按以下步骤进行:
一、在石墨坩埚内壁均匀涂覆BN,将所述的三元合金耗散剂装入石墨坩埚中;三元合金耗散剂按照质量份数由20份的铝、55份的硅和25份的锆三元合金组成;
二、将碳基体材料加工成
Figure BDA0001609880470000041
的构件,然后超声清洗,烘干;
三、将步骤一处理的石墨坩埚放入气压浸渗炉中,将6~8个步骤二处理的碳基体材料构件用卡具连接到气压浸渗炉中的提拉杆上;关闭炉门抽真空至压力为1.0×10-3Pa,然后控制升温速率为30℃/min,升温时充入氩气至压力为0.2大气压;继续升温到反应浸渗温度1800℃,保温1.5小时,得到熔融的三元合金耗散剂,然后下降提拉杆将碳基体材料构件浸入熔融的三元合金耗散剂中,炉内充入高纯氩气至浸渗气压5MPa,然后升起提拉杆将碳基体材料构件从熔融的三元合金耗散剂中提出,关闭加热电源,冷却后,获得碳基耗散防热复合材料。
本实施例制备的碳基耗散防热复合材料在氧乙炔烧蚀条件下,烧蚀100s,线烧蚀率达到0.8×10-3mm/s。
本实施例制备的碳基耗散防热复合材料的照片如图1所示;本实施例制备的碳基耗散防热复合材料烧蚀后的照片如图2所示。
实施例二:
本实施例一种耐烧蚀的用于碳基耗散防热复合材料的三元合金耗散剂按照质量份数由40份的铝、50份的硅和10份的锆三元合金组成。
利用所述三元合金耗散剂制备碳基耗散防热复合材料的方法,具体按以下步骤进行:
一、在石墨坩埚内壁均匀涂覆BN,将所述的三元合金耗散剂装入石墨坩埚中;三元合金耗散剂按照质量份数由40份的铝、50份的硅和10份的锆三元合金组成;
二、将孔隙率为25.9%碳基体材料加工成构件,然后超声清洗,烘干;碳基体材料为碳/碳,密度为1.63g/cm3;烘干温度为80℃,烘干时间为2h;
三、将步骤一处理的石墨坩埚放入气压浸渗炉中,将步骤二处理的碳基体材料构件用卡具连接到气压浸渗炉中的提拉杆上;关闭炉门抽真空至压力为1.0×10-3Pa,然后控制升温速率为30℃/min,升温时充入氩气至压力为0.2大气压;继续升温到反应浸渗温度1350℃,保温1小时,得到熔融的三元合金耗散剂,然后下降提拉杆将碳基体材料构件浸入熔融的三元合金耗散剂中,炉内充入高纯氩气至浸渗气压10MPa,然后升起提拉杆将碳基体材料构件从熔融的三元合金耗散剂中提出,关闭加热电源,冷却后,获得碳基耗散防热复合材料。
本实施例制备的碳基耗散防热复合材料在氧乙炔烧蚀条件下,烧蚀100s,线烧蚀率达到1.1×10-3mm/s。

Claims (2)

1.一种耐烧蚀的用于碳基耗散防热复合材料的三元合金耗散剂的制备方法,其特征在于所述一种耐烧蚀的用于碳基耗散防热复合材料的三元合金耗散剂按照质量份数由20份的铝、55份的硅和25份的锆三元合金组成;
利用所述三元合金耗散剂制备碳基耗散防热复合材料的方法,具体按以下步骤进行:
一、在石墨坩埚内壁均匀涂覆BN,将所述的三元合金耗散剂装入石墨坩埚中;三元合金耗散剂按照质量份数由20份的铝、55份的硅和25份的锆三元合金组成;
二、将碳基体材料加工成
Figure FDA0002943732040000011
的构件,然后超声清洗,烘干;
三、将步骤一处理的石墨坩埚放入气压浸渗炉中,将6~8个步骤二处理的碳基体材料构件用卡具连接到气压浸渗炉中的提拉杆上;关闭炉门抽真空至压力为1.0×10-3Pa,然后控制升温速率为30℃/min,升温时充入氩气至压力为0.2大气压;继续升温到反应浸渗温度1800℃,保温1.5小时,得到熔融的三元合金耗散剂,然后下降提拉杆将碳基体材料构件浸入熔融的三元合金耗散剂中,炉内充入高纯氩气至浸渗气压5MPa,然后升起提拉杆将碳基体材料构件从熔融的三元合金耗散剂中提出,关闭加热电源,冷却后,获得碳基耗散防热复合材料。
2.一种耐烧蚀的用于碳基耗散防热复合材料的三元合金耗散剂的制备方法,其特征在于所述一种耐烧蚀的用于碳基耗散防热复合材料的三元合金耗散剂按照质量份数由40份的铝、50份的硅和10份的锆三元合金组成;
利用所述三元合金耗散剂制备碳基耗散防热复合材料的方法,具体按以下步骤进行:
一、在石墨坩埚内壁均匀涂覆BN,将所述的三元合金耗散剂装入石墨坩埚中;三元合金耗散剂按照质量份数由40份的铝、50份的硅和10份的锆三元合金组成;
二、将孔隙率为25.9%碳基体材料加工成构件,然后超声清洗,烘干;碳基体材料为碳/碳,密度为1.63g/cm3;烘干温度为80℃,烘干时间为2h;
三、将步骤一处理的石墨坩埚放入气压浸渗炉中,将步骤二处理的碳基体材料构件用卡具连接到气压浸渗炉中的提拉杆上;关闭炉门抽真空至压力为1.0×10-3Pa,然后控制升温速率为30℃/min,升温时充入氩气至压力为0.2大气压;继续升温到反应浸渗温度1350℃,保温1小时,得到熔融的三元合金耗散剂,然后下降提拉杆将碳基体材料构件浸入熔融的三元合金耗散剂中,炉内充入高纯氩气至浸渗气压10MPa,然后升起提拉杆将碳基体材料构件从熔融的三元合金耗散剂中提出,关闭加热电源,冷却后,获得碳基耗散防热复合材料。
CN201810259472.7A 2018-03-27 2018-03-27 一种耐烧蚀的用于碳基耗散防热复合材料的三元合金耗散剂及方法 Active CN108218427B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810259472.7A CN108218427B (zh) 2018-03-27 2018-03-27 一种耐烧蚀的用于碳基耗散防热复合材料的三元合金耗散剂及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810259472.7A CN108218427B (zh) 2018-03-27 2018-03-27 一种耐烧蚀的用于碳基耗散防热复合材料的三元合金耗散剂及方法

Publications (2)

Publication Number Publication Date
CN108218427A CN108218427A (zh) 2018-06-29
CN108218427B true CN108218427B (zh) 2021-06-15

Family

ID=62659159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810259472.7A Active CN108218427B (zh) 2018-03-27 2018-03-27 一种耐烧蚀的用于碳基耗散防热复合材料的三元合金耗散剂及方法

Country Status (1)

Country Link
CN (1) CN108218427B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112853250B (zh) * 2020-12-28 2022-08-05 哈尔滨工业大学 一种组合燃气舵构件的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0951462A1 (fr) * 1996-10-22 1999-10-27 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Traitement thermochimique, en atmosphere halogenee, d'un materiau carbone, pas, peu ou tres poreux
CN104402525A (zh) * 2014-10-30 2015-03-11 中国人民解放军国防科学技术大学 石墨表面抗烧蚀层及其制备方法
CN104909793A (zh) * 2015-05-27 2015-09-16 哈尔滨工业大学 耐烧蚀复合材料及其制备方法
CN107021773A (zh) * 2017-05-22 2017-08-08 中南大学 一种新型超高温陶瓷一体化改性抗烧蚀炭/炭复合材料及其制备方法
CN107311684A (zh) * 2017-07-24 2017-11-03 哈尔滨工业大学 一种耗散防热复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0951462A1 (fr) * 1996-10-22 1999-10-27 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Traitement thermochimique, en atmosphere halogenee, d'un materiau carbone, pas, peu ou tres poreux
CN104402525A (zh) * 2014-10-30 2015-03-11 中国人民解放军国防科学技术大学 石墨表面抗烧蚀层及其制备方法
CN104909793A (zh) * 2015-05-27 2015-09-16 哈尔滨工业大学 耐烧蚀复合材料及其制备方法
CN107021773A (zh) * 2017-05-22 2017-08-08 中南大学 一种新型超高温陶瓷一体化改性抗烧蚀炭/炭复合材料及其制备方法
CN107311684A (zh) * 2017-07-24 2017-11-03 哈尔滨工业大学 一种耗散防热复合材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Al-Si(Zr)/Gr耗散防热复合材料的性能和耐烧蚀机理研究;高福刚;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20150215(第2期);第B020-117页 *
Gr/Al-Si耗散防热材料的设计制备及性能研究;王梦得;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20170215(第2期);第23页 *
Microstructure and ablation mechanism of graphite/SiC composites under oxy-acetylene flame;Bingqing Li et al.;《Ceramics International》;20131106;第40卷;第5497-5505页 *
Microstructure and ablation mechanism of SiC-ZrC-Al2O3 coating for SiC coated C/C composites under oxyacetylene torch test;Caixia Huo et al.;《Journal of Alloy and Compounds》;20171121;第735卷;第914-927页 *

Also Published As

Publication number Publication date
CN108218427A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
Yao et al. A SiC/ZrB2–SiC/SiC oxidation resistance multilayer coating for carbon/carbon composites
US20220009838A1 (en) Long-term ablation-resistant nitrogen-containing carbide ultra-high temperature ceramic with ultra-high melting point and application thereof
Zhu et al. SiC-Si coating with micro-pores to protect carbon/carbon composites against oxidation
Ren et al. Ultra-high temperature ceramic TaB2–TaC–SiC coating for oxidation protection of SiC-coated carbon/carbon composites
Qian-Gang et al. Microstructure and anti-oxidation property of CrSi2–SiC coating for carbon/carbon composites
Hu et al. SiC coatings for carbon/carbon composites fabricated by vacuum plasma spraying technology
Xue et al. Fabrication and microstructure of ZrB 2–ZrC–SiC coatings on C/C composites by reactive melt infiltration using ZrSi 2 alloy
CN106966753B (zh) 一种C/Al-Si-X防烧蚀复合材料的制备方法
CN103387422A (zh) 在炭材料表面制备碳化硅/二硅化钼复合涂层的方法
Li et al. High strength retention and improved oxidation resistance of C/C composites by utilizing a layered SiC ceramic coating
CN110258131A (zh) 一种固化碳毡防护涂层
Abdollahi et al. SiC nanoparticles toughened-SiC/MoSi 2-SiC multilayer functionally graded oxidation protective coating for carbon materials at high temperatures
CN113387724B (zh) 一种碳/碳复合材料表面耐高温长寿命复合涂层及制备方法
Abdollahi et al. C/SiC gradient oxidation protective coating on graphite by modified reactive melt infiltration method: effects of processing parameters on transition interface thickness and high-temperature anti-oxidation behavior
Chen et al. Microstructure and oxidation behavior of a novel bilayer (c-AlPO4–SiCw–mullite)/SiC coating for carbon fiber reinforced CMCs
CN113716977A (zh) 一种碳/碳复合材料表面宽温域复合抗氧化涂层及制备方法
CN105753514B (zh) 一种石墨碳素材料表面抗氧化SiC复合保护层的制备方法
CN108218427B (zh) 一种耐烧蚀的用于碳基耗散防热复合材料的三元合金耗散剂及方法
Tatarko et al. Design of Lu2O3-reinforced Cf/SiC-ZrB2-ZrC ultra-high temperature ceramic matrix composites: Wetting and interfacial reactivity by ZrSi2 based alloys
Jiang et al. Oxidation and ablation behaviour of multiphase ultra-high-temperature ceramic Ta0· 5Zr0· 5B2–Si–SiC protective coating for graphite
CN109608235B (zh) 一种c/c复合材料异形件的凝胶熔渗陶瓷化改性方法
CN104087806B (zh) 热防护用SiC-Cu复相发汗冷却材料及其制备方法
Qian et al. Corrosion behavior of Y2O3-doped mullite-ZrSiO4 coatings applied on C/C–SiC composites in the presence of moisture at temperatures of 1373–1773 K
Jiao et al. Oxidation behavior of SiC/glaze-precursor coating on carbon/carbon composites
Jiang et al. Microstructure and oxidation behaviors of dense mullite‑silicon carbide‑silicon coating for graphite fabricated by dipping-pyrolysis and reactive infiltration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Kang Pengchao

Inventor after: Zhang Qiang

Inventor after: Wu Gaohui

Inventor after: Liu Hao

Inventor after: Deng Heng

Inventor after: Li Weipeng

Inventor after: Yan Oupeng

Inventor after: Zhihua Pine

Inventor after: Qiao Jing

Inventor after: Chen Guoqin

Inventor before: Kang Pengchao

Inventor before: Zhang Qiang

Inventor before: Wu Gaohui

Inventor before: Liu Hao

Inventor before: Deng Heng

Inventor before: Li Weipeng

Inventor before: Yan Oupeng

Inventor before: Zhihua Pine

Inventor before: Qiao Jing

Inventor before: Chen Guoqin

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant