CN117813417A - 具有电化学活性顶层的复合结构多孔传输电极 - Google Patents

具有电化学活性顶层的复合结构多孔传输电极 Download PDF

Info

Publication number
CN117813417A
CN117813417A CN202180100990.4A CN202180100990A CN117813417A CN 117813417 A CN117813417 A CN 117813417A CN 202180100990 A CN202180100990 A CN 202180100990A CN 117813417 A CN117813417 A CN 117813417A
Authority
CN
China
Prior art keywords
layer
porous
porous layer
electrochemically active
μιη
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180100990.4A
Other languages
English (en)
Inventor
托比亚斯·舒勒
费利克斯·布基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scherrer Paul Institut
Original Assignee
Scherrer Paul Institut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scherrer Paul Institut filed Critical Scherrer Paul Institut
Publication of CN117813417A publication Critical patent/CN117813417A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • C25B11/032Gas diffusion electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • C25B11/063Valve metal, e.g. titanium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/069Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of at least one single element and at least one compound; consisting of two or more compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/861Porous electrodes with a gradient in the porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明的目的是提供紧凑的多孔传输电极,其示出电池效率的提高以及优异的耐久性,消除了针对低催化剂负载量和高催化剂负载量的低催化剂利用率和催化剂层降解的问题。同时,在单个部件设计中统一多个部件使得资本支出降低。根据本发明,该目的通过复合多孔传输电极来实现,该复合多孔传输电极基于对电化学电池中的气体物质和液体物质具有渗透性的多个薄的烧结多孔层和至少电化学活性顶层;所述多层的多孔传输电极适于组装在电化学电池的双极板与膜之间,所述多层的多孔传输电极包括:a)包括导电材料的纤维和非限定形状的颗粒的至少第一支撑多孔层和第二中间多孔层,其中,平均颗粒尺寸在从双极板看向膜的方向上逐层减小;以及b)第一多孔层由导电材料的烧结纤维制成,并且第二层由导电材料的非限定形状的颗粒制成,其中,具有能够朝向双极板定向的接触表面的第一多孔层的孔径大于具有能够朝向膜定向的接触表面的第二多孔层的孔径;以及c)沉积在第二多孔层上的包括电化学活性材料或其混合物的电化学活性顶层,其中,电化学活性顶层具有能够朝向膜定向的接触表面,并且具有比第二多孔层和第一多孔层更小的孔径。对包括可选地与导热和导电涂层结合的多个多孔层和至少一个电化学活性顶层的复合设计的多孔电极结构的采用通过性能优化和在单个部件设计中对多部件的统一同时提供了经济改进和技术改进。

Description

具有电化学活性顶层的复合结构多孔传输电极
本发明涉及多孔传输电极,其基于对电化学电池中的气体物质和液体物质具有渗透性的具有不同颗粒几何形状的多个烧结多孔层和电化学活性顶层;所述多层的多孔传输电极适于组装在电化学电池的双极板与膜之间。
具有堆叠部件的电化学装置,诸如聚合物电解质水电解槽(PEWE)和聚合物电解质燃料电池(PEFC),被认为是将水转化为氧气和氢气或通过氢气和氧气的重组来生成电力的电化学设备。电化学装置包括质子传导固体电解质、阳极催化剂层和阴极催化剂层以及多孔传输层(PTL)。当多个电池以堆叠配置串联放置时,集电器(即所谓的双极板)用于单电池之间的电荷转移。通常,所述多孔传输层夹在双极板与催化剂涂覆膜(CCM)之间,该催化剂涂覆膜包括在离子导电聚合物膜一侧的阳极催化剂层(CL)和在聚合物膜另一侧的阴极催化剂层。
在PEWE中,多孔传输层和催化剂层是促进产物和离析物的两相流、电传输、热传输的关键部件,并且催化剂层驱动将水电化学分解成氧气和氢气的电化学反应。苛刻的酸性条件和高工作电压(开路电压与3V之间的电压)要求采用电化学惰性和稳定的阀金属,优选地是用于PTL和双极板的钛基材料。诸如Ir和Ru的Pt族金属、它们的氧化物和合金优选地与电化学惰性支撑材料(诸如Ti氧化物)或透明导电氧化物(TCO)(例如锑掺杂氧化锡(ATO))结合用于催化剂层。PEWE的升级关键取决于常规使用的低丰度元素铱的可用性,这在当今技术下将PEWE的生产能力限制在约2GW/a。电解槽的效率受到多孔传输层和催化剂层的特性的高度影响。特别地,它们的机械干扰决定了效率是PEWE中的关键参数,因为运行成本通常占系统寿命成本的70%。描述催化剂层与多孔传输层表面之间的物理接触面积的所谓的界面接触面积影响了催化剂的利用率。这又对所有损失类别有影响。
常规的准不可压缩的单层多孔传输层(SL-PTL)在与延展性催化剂涂覆膜结合时,提供不合适的机械特性和电化学特性。由于高度不均匀的接触压力分布,PTL的粗糙表面特性在CCM中引起高机械应力。这使得膜变形高达整个膜厚度的25%。观察到催化剂层和膜的塑性变形。因此,机械降解可能以催化剂层裂纹的形成/扩展和膜变薄的形式发生。此外,已知不与PTL直接接触的催化剂层域显示出低至没有电化学活性。这在一定程度上通过具有大于0.3mgcat/cm2的电催化剂负载量的高负载催化剂层来减轻,其中电催化剂的现有技术的催化剂负载量在1mgcat/cm2至2mgcat/cm2之间,从而确保相互连接的电气和离子渗流网络。
当针对具有小于0.3mgcat/cm2的电催化剂负载量的低负载催化剂层时,则发生催化剂层的部分之间的分离。创建局部非连接的凝聚域。单层PTL材料的结构防止使用低催化剂负载量。在膜上的局部隔离域很大程度上不与粗糙的PTL表面颗粒接触,并且因此催化剂利用率降低,转化为更高的损失和更低的效率。
已知通过稀释电化学活性材料来增加催化剂层中的支撑材料的体积是具有挑战性的,这是由于支撑材料的低电子导电特性(例如对于TiO2)和/或由于低稳定性和高降解率(例如对于ATO)。基于该方法,实现在>80.0000小时的范围内的PEWE占空比是非常具有挑战性的。
基于单层PTL进行了将催化剂层和多孔传输层结合以形成所谓的多孔传输电极的首次尝试。粗糙的PTL表面特性和低界面接触面积的问题表现为催化剂层利用率低,这是由于催化剂在大孔隙空间中的沉积使得膜无法接触并无法提供用于驱动电化学反应的离子导电性。此外,催化剂层在几何形状平坦的膜上的直接沉积使得厚催化剂层抑制了效率的提高,这是由于较长渗流长度和相关联的高质量传输、离子和电损失。催化剂层中的水和气体的两相流通过从孔隙空间通过离聚物薄膜至活性位点的离析物的非优化传输来影响性能。
因此,本发明的目的是提供新型高效薄复合多孔传输电极,其通过实现较高催化剂利用率和在多孔支撑层主体和催化剂层中的改善的流体传输以及消除施加在催化剂层上的机械应力的优异耐久性,来实现提高的系统效率以及特别地对低负载催化剂层的采用。
根据本发明,该目的通过多孔传输电极来实现,该多孔传输电极基于对电化学电池中的气体物质和液体物质具有渗透性的具有不同颗粒几何形状的多个烧结多孔层和电化学活性顶层;所述多层的多孔传输电极适于组装在电化学电池的双极板与膜之间,所述多层的多孔传输电极包括:
a)包括导电材料的纤维和非限定形状的颗粒的至少第一支撑多孔层和第二中间多孔层,其中,平均颗粒尺寸在从双极板看向膜的方向上逐层减小;以及
b)第一多孔层由导电材料的烧结纤维制成,以及第二层由导电材料的非限定形状的颗粒制成,其中,具有能够朝向双极板定向的接触表面的第一多孔层的孔径大于具有能够朝向膜定向的接触表面的第二多孔层的孔径;以及
c)沉积在第二多孔层上的包括电化学活性材料或其混合物的电化学活性顶层,其中,电化学活性顶层具有能够朝向膜定向的接触表面,并且具有比第二多孔层和第一多孔层更小的孔径。
使用包括基于不同颗粒几何形状的多个多孔层和沉积的多孔催化剂层(并且可选地与第二层与电化学活性顶层之间的一个或更多个导电性涂层结合)的复合多层设计的多孔传输电极,通过将单层统一为一个部件,同时提供了经济和技术改进,并提供了技术和电化学特性的优化。当在多孔支撑层与催化剂层(电化学活性顶层)之间采用第二中间层时,由于扩展的、更大的表面面积,也可以获得减小的催化剂层厚度。较薄的催化剂层转化为质量、电气和离子传输的减少的损失,并提高电池效率。这种在单个部件设计中统一若干部件的方法由于提高了效率和节省了材料成本,因此使得运营支出(Opex)和资本支出(Capex)同时降低。
基于纤维材料的第一层提供了高机械完整性,并且使得能够制造薄而紧凑的PTE设计,相比之下,对于高达600bar的高压应用,由于机械稳定性要求和制造限制,采用非限定形状的颗粒作为PTL主体结构的材料将PTL的厚度限制为≥0.5mm。此外,当采用高孔隙率来改善薄支撑结构中的水和气体传输分布时,基于纤维的支撑层的较高的弹性模量是令人感兴趣的。
薄支撑层和具有高孔隙率的宽孔径分布的结合对于减少第一层中的质量传输损失是强制性的。由于通过毛细管压力驱动的流体传输而分别在大孔隙和小孔隙中的气体和水传输的流线,因此提高了电池效率。
基于小的非限定形状的颗粒的第二层的精细结构提供了高的机械完整性和高的导热性和导电性。此外,固有给定的高表面面积为电化学活性顶层(以下也称为第三层)的沉积提供了扩展的表面,这在基于纤维的第一层上是不可能的。
与第二层相比,直接沉积在第二层的高表面面积上的第三层具有更小的孔径,并且基于电化学活性材料。第二层与第三层之间的直接接触确保对第三层的所有沉积的颗粒的导电性,并实现了高电化学活性和高催化剂利用率。第二层与第三层之间的优选的导电涂层进一步降低了电接触电阻并改善了热管理。
具有多层结构和每层之间的孔径梯度的紧凑PTE设计产生膜与双极板之间的气体和水传输的受控流线。与具有PTL和CCM电池设计的配置相比,对于PTE和膜配置的总气体饱和度降低,从而提高电池效率并且由于多孔层主体中的气体饱和度降低而减轻了在催化剂层界面处的气体钝化。
此外,与PTL和CCM配置相比,整个催化剂层与第二层直接电接触并且可以被有效利用。催化剂层在第二层的平滑和扩展的表面上的直接沉积消除了施加在延展性催化剂层上的机械应力,并提高了催化剂层的寿命。
优选地,第一多孔层可以具有从低于5μm至50μm的平均纤维直径,并且/或者标记为支撑层的第二多孔层具有0.5μm至50μm范围内的平均颗粒尺寸,并且第三层可以具有0.005μm至2.5μm的平均颗粒尺寸。
合适地,第一多孔层的厚度在10μm至300μm的范围内,以及第二多孔层的厚度在10μm至200μm的范围内。第三层的厚度在0.1μm至50μm的范围内。
在本发明的优选实施方式中,第一层和第二层的导电材料是钛和/或阀金属和/或具有耐腐蚀涂层的不锈钢。第三层基于电化学活性材料,该电化学活性材料可以是但不限于铂族金属及其合金和氧化物,优选地支撑在高表面面积材料上,所述铂族金属及其合金和氧化物诸如Ti氧化物或透明导电氧化物(TCO)诸如氧化铟锡、氧化氟锡、掺杂铝的氧化锌和氧化锑锡。
为了减轻第二层的表面处Ti氧化物层的形成并改善热传输,第二多孔层可以至少部分地包括导电涂层,该导电涂层基于合金或惰性金属,优选地是Au、Pt和Ir中的一种或组合,优选地具有在0.01μm至0.8μm的范围内的厚度。
为了提供优化的水和气体流体传输,每层可以包括孔径梯度,其中孔径从双极板至膜位点减小。级联状孔结构是有效供应离析物以及通过多孔支撑层主体将产物移入和移出催化剂层的活性表面的关键。
下文参照附图更详细地描述本发明的优选实施方式,附图描述如下:
图1是在截面视图中展示的三层多孔传输电极配置的简化图;
图2是在截面视图中示出的包括接触表面处的导电层的5层多孔传输电极配置的简化图;
本发明涉及用于具有堆叠部件和固体电解质的电化学装置的基于不同烧结颗粒几何形状和电化学活性顶层的复合配置的多层的多孔传输电极(PTE)。对不同几何形状的颗粒(即第一层1中的纤维形状和第二层2中的非限定形状的颗粒)的采用结合作为第三层3的催化剂层在第二层2的扩展的颗粒表面上的直接沉积提供了新颖的紧凑设计和多个部件在单个单元中的集成,同时获得了优异的效率和较低的机械催化剂降解,即使对于特征为电催化剂负载量小于0.3mgcat/cm2的低催化剂负载量也是如此。
此外,PTE的多层是通过纤维和颗粒的烧结工艺获得的,其中根据现有技术,真空等离子喷涂和基于粘合剂的喷涂导致高弯曲度和疏水表面特性,从而使得性能下降。此外,所述制造技术阻碍了催化剂层沉积的高表面面积和平滑表面特性的基本要求。第三层3优选地通过喷涂沉积,但也不限于活性催化剂层材料的印刷、热沉积、化学沉积或物理沉积。
图1展示了使用单个支撑层、单个中间层和单个催化剂层的多层PTE的简化表示,因为根据现有技术这不是常识。
常规的单层多孔传输电极为催化剂层沉积提供了不合适的电化学特性和机械特性。粗糙表面和低表面面积结合大孔不能提供较高催化剂层利用率。单层PTE表面处的深谷阻止了膜接触沉积在深孔中的催化剂层。因此,观察到较低催化剂利用率。催化剂层3在平滑且高表面的中间第二层上的直接沉积同时提供了高导电率,而且还降低了施加至催化剂层上的局部机械应力。孔径的梯度结构和紧凑设计控制了两相流的流线。
薄支撑层1与高表面面积、低表面粗糙度中间层2的创新统一和催化剂层3的直接沉积以经济可行的生产成本提供了对持久、高性能部件的基本要求。复合多层的多孔传输电极由至少一个基于薄纤维的支撑层和至少一个基于颗粒的中间层以及至少一个催化剂层组成。层1的优选开口孔隙率被确定为在35%至80%的范围内,层2的开口孔隙率被确定为在30%至60%的范围内,以及层3的开口孔隙率被确定为25%至70%。
图2示出了基于5层配置的多层PTE结构,其包括在层6与层8之间的界面处的导电涂层7,以提高导热率和导电率。在图2中示出的支撑层4包括这样的纤维:该纤维的尺寸在5μm至50μm范围内,并且特征是优选地厚度为0.3mm下至0.03mm,优选地为100μm至200μm。
通过复合结构的多孔传输电极的应用获得催化剂沉积面积的显著增加。中间层5和中间层6烧结在支撑层4上。支撑层的深谷首先由非形状限定的高表面颗粒层5和层6填充,其中,层5的平均孔径大于层6。中间层5和中间层6的颗粒尺寸优选在0.5μm至50μm的范围内。中间层的特征是厚度为10μm至200μm。多烧结中间层的方法产生具有改进的平滑度的扩展的表面面积和更有效的流体传输。基于纤维的层和基于颗粒的层的烧结使得能够制造用于沉积催化剂层的薄的、高表面支撑基质。梯度孔结构、宽孔径分布和在30%至70%范围内的高开口孔隙率实现了水和气体在材料主体中的传输的受控流线。电化学活性催化剂层直接沉积在第二中间层的涂覆的高表面面积上,与沉积在几何形状平坦的膜上相比,使得催化剂层厚度较低。当催化剂层直接沉积在不可压缩多孔层的表面轮廓线上而不是延展性膜上时,机械应力局部降低,并且裂纹形成受到抑制。此外,由于与多孔传输层直接接触,获得了较高催化剂利用率。与层9相比具有更大开口孔隙率的催化剂层8的多层梯度孔隙率结构提供了离析物到面向膜的最外层催化剂层的更高的可及性。从而获得了优化的从活性位点的气体去除。从而减少了与电动力学相关的质量传输和电压损失,并优化了电池效率。
作为补充,使用高惰性、导热和导电涂层的导电层。改善的界面特性转化为更好的热管理和优异的电化学性能,同时抑制中间层表面处半导体氧化物层的生长。合金和如Au、Pt和Ir的金属常规地用作涂层材料。薄膜经由化学、物理或电化学沉积技术沉积,优选地使用溅射。
通常,PEWE损失基于三类,即动力学、欧姆和质量传输。复合PTE的新颖设计使得能够制造由于多孔支撑层1、中间层2和催化剂层3中较短的渗流、扩散和渗透长度而抑制质量传输损失的薄的紧凑单元。与涂覆在膜上的催化剂层的现有知识相比,在中间层的平滑、扩展的表面上的催化剂层沉积进一步提供了产生薄催化剂层的机会。由于中间层2提供的平滑、扩展的沉积区域,因此该实施方式优于催化剂涂覆的单层PTE设计。在从支撑层至催化剂层的方向上减小的孔径的梯度引起气体和水传输路径的流线。获得了较低的气体饱和度,抑制了催化剂层上/催化剂层中的气体钝化效应,减少了动力学和质量传输损失。催化剂层在准不可压缩多孔层结构上的直接沉积确保了较高催化剂层利用率和改善的导热率以及导电率。同时,催化剂层和膜的机械变形是解耦的,这与使用CCM设计的现有技术相反。因此,获得了均匀的热和机械接触压力分布,提供了催化剂层和膜的长期耐久性和稳定性。通过兼性采用导电涂层,可以进一步降低欧姆界面电阻的贡献。
复合多孔传输电极(h-PTE)的制造可以通过技术经济上建立的烧结工艺结合催化剂层沉积和涂层工艺来进行。
第一层1的原料基于纤维材料,例如通过Ti棒的集束拉拔获得的纤维材料。经济上可行的原料诸如加氢-脱氢(HDH)Ti粉末可以用于第二层。可以通过压制纤维层和颗粒层或通过在压制后的纤维层顶部沉积包括粘合剂、粉末和溶剂的浆料来实现包括至少层1和层2的多层结构化生坯。通过烧结工艺,优选地真空烧结,获得机械特性和形态特性。常规的烧结参数是l×10-3Pa至5×10-3Pa的真空压力、1100℃至1350℃之间的温度和1h至4h的浸泡时间。
导电性涂层沉积工艺包括优选地通过酸蚀刻执行的去除半导体表面层TiO2,以及随后优选地通过热、物理、化学或电化学沉积技术(诸如溅射、物理气相沉积或电镀)进行涂层沉积。
经由印刷、物理或化学或电化学沉积,催化剂层沉积在中间层的顶部上。优选地采用液体涂层或溅射。在液体涂层的情况下,油墨基于溶剂、水、聚合物粘合剂和电化学活性粉末材料的混合物。作为油墨中的添加剂,采用诸如石墨基颗粒的成孔剂来控制催化剂层的孔隙和孔隙率的变化。

Claims (10)

1.一种多孔传输电极,其基于对电化学电池中的气体物质和液体物质具有渗透性的具有不同颗粒几何形状的多个烧结多孔层和电化学活性顶层;所述多层的多孔传输电极适于组装在所述电化学电池的双极板与膜之间,所述多孔传输电极包括:
a)包括导电材料的纤维和非限定形状的颗粒的至少第一支撑多孔层和第二中间多孔层,其中,平均颗粒尺寸在从所述双极板看向所述膜的方向上逐层减小;以及
b)所述第一多孔层由所述导电材料的纤维制成,并且所述第二层由导电材料的非限定形状的颗粒制成,其中,具有能够朝向所述双极板定向的接触表面的所述第一多孔层的孔径大于具有能够朝向所述膜定向的接触表面的所述第二多孔层的孔径;以及
c)沉积在所述第二多孔层上的包括电化学活性材料或其混合物的所述电化学活性顶层,其中,所述电化学活性顶层具有能够朝向所述膜定向的接触表面,并且具有比所述第二多孔层和所述第一多孔层更小的孔径。
2.根据权利要求1所述的多孔传输电极,其中,所述第一多孔层具有在5μm至50μm范围内的平均颗粒尺寸,并且/或者所述第二多孔层具有在0.5μm至50μm范围内的平均颗粒尺寸,并且所述电化学活性顶层具有0.005μm至2.5μm的平均颗粒尺寸。
3.根据权利要求1或2所述的多孔传输电极,其中,所述第一多孔层的厚度在10μm至300μm的范围内,以及所述第二多孔层的厚度在10μm至200μm的范围内, 以及所述电化学活性顶层的厚度在0.1μm至50μm的范围内。
4.根据前述权利要求中任一项所述的多孔传输电极,
其中,所述第一层和所述第二层的所述导电材料是钛和/或具有保护层的不锈钢和/或阀金属,并且所述电化学活性顶层的材料基于电化学活性材料,所述电化学活性材料包括但不限于金属或合金或氧化物,优选地是铂族金属中的一种或组合,并且优选地支撑在高表面材料上。
5.根据前述权利要求中任一项所述的多孔传输电极,
其中,所述第二多孔层至少部分地包括导电涂层,所述导电涂层包括惰性金属或合金,优选地是Au、Pt和Ir中的一种或组合。
6.根据权利要求5所述的多孔传输电极,其中,所述导电涂层的厚度在0.01μm至1μm的范围内。
7.根据前述权利要求中任一项所述的多孔传输电极,其中,至少一个附加多孔层设置在所述第一多孔层与所述第二多孔层之间;所述附加多孔层具有小于所述第一多孔层且大于所述第二多孔层的平均颗粒尺寸,并且由纤维组成。
8.根据前述权利要求中任一项所述的多孔传输电极,其中,至少一个附加基多孔层设置在所述第二多孔层与所述电化学活性顶层之间;所述附加多孔层具有小于所述第二多孔层且大于所述第三多孔层的平均颗粒尺寸,并且由非限定形状的颗粒组成。
9.根据前述权利要求中任一项所述的多孔传输电极,其中,至少一个附加多孔层设置在所述第三多孔层上;所述附加多孔层具有与所述电化学活性顶部多孔层不同的孔径,并且由电化学活性材料组成。
10.根据前述权利要求中任一项所述的多孔传输电极,其中,至少一个附加导电涂层沉积在所述第二层与所述电化学活性顶层之间。
CN202180100990.4A 2021-07-29 2021-07-29 具有电化学活性顶层的复合结构多孔传输电极 Pending CN117813417A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2021/071247 WO2023006202A1 (en) 2021-07-29 2021-07-29 Hybrid structured porous transport electrodes with electrochemically active top-layer

Publications (1)

Publication Number Publication Date
CN117813417A true CN117813417A (zh) 2024-04-02

Family

ID=77520685

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180100990.4A Pending CN117813417A (zh) 2021-07-29 2021-07-29 具有电化学活性顶层的复合结构多孔传输电极

Country Status (2)

Country Link
CN (1) CN117813417A (zh)
WO (1) WO2023006202A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240344204A1 (en) * 2023-04-14 2024-10-17 Robert Bosch Gmbh Electrolysis cell having a porous transport electrode with infiltrated ionomer
US20240344205A1 (en) * 2023-04-14 2024-10-17 Robert Bosch Gmbh Electrolysis cell having electrode localized contacting regions
US20240344206A1 (en) * 2023-04-14 2024-10-17 Robert Bosch Gmbh Electrolysis cell having localized electronic contact porous transport layer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276157A (ja) * 1985-09-28 1987-04-08 Nippon Seisen Kk 溶融炭酸塩型燃料電池用電極材
JP2001279481A (ja) * 2000-03-29 2001-10-10 Shinko Pantec Co Ltd 給電体の製造方法および給電体
JP4585867B2 (ja) * 2005-01-07 2010-11-24 ダイソー株式会社 不溶性陽極
JP6608277B2 (ja) * 2012-06-13 2019-11-20 ヌヴェラ・フュエル・セルズ,エルエルシー 電気化学セルと共に使用するためのフロー構造
US11289708B2 (en) * 2017-04-13 2022-03-29 Nv Bekaert Sa Gas diffusion layer
CN107369838B (zh) * 2017-06-23 2020-09-22 华南理工大学 一种用于直接甲醇燃料电池的免热压复合电极及其制备方法
US11502305B2 (en) * 2018-03-19 2022-11-15 Toho Titanium Co., Ltd. Titanium-based porous body and method of producing the same
EP3686318A1 (en) * 2019-01-23 2020-07-29 Paul Scherrer Institut Porous transport layer based on plurality of sintered porous layers

Also Published As

Publication number Publication date
WO2023006202A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
CN117813417A (zh) 具有电化学活性顶层的复合结构多孔传输电极
Brandon et al. Engineering porous materials for fuel cell applications
Dong et al. Overall design of anode with gradient ordered structure with low iridium loading for proton exchange membrane water electrolysis
US9406941B2 (en) Catalyst layer, membrane electrode assembly, and electrochemical cell
KR102061922B1 (ko) 전기 전도성이고 내부식성인 금속 표면
US20110076587A1 (en) Highly electrically conductive surfaces for electrochemical applications and methods to produce same
KR102039536B1 (ko) 연료 전지 전극 재료 및 장치
CN113348269A (zh) 基于多个微米和纳米烧结多孔层的多孔传输层
KR20050083660A (ko) 연료 전지 전극
US20170183788A1 (en) Electrode, membrane electrode assembly, electrochemical cell, and stack
EP2956247B1 (en) Corrosion resistant and electrically conductive surface of metallic components for electrolyzers
US9531012B2 (en) Gas diffusion layer with flowpaths
US20110136047A1 (en) Fuel cell catalyst support with boron carbide-coated metal oxides/phosphates and method of manufacturing same
EP3958360A1 (en) Hybrid structured porous transport electrodes with electrochemically active top-layer
US9252431B2 (en) Fuel cell catalyst with metal oxide/phosphate support structure and method of manufacturing same
JP2007128908A (ja) 固体高分子電解質型燃料電池のセルユニット
JP6010938B2 (ja) 燃料電池
JP2017088955A (ja) 固体高分子形燃料電池のセパレータ用チタン材、およびそれを用いたセパレータ
Yang et al. Existing challenges and development directions of PEM water electrolysis
US20040033408A1 (en) Selective coatings for PEM fuel cell electrode contacts
US20240344204A1 (en) Electrolysis cell having a porous transport electrode with infiltrated ionomer
US20240344206A1 (en) Electrolysis cell having localized electronic contact porous transport layer
US20240344205A1 (en) Electrolysis cell having electrode localized contacting regions
US20240290993A1 (en) A separator element arrangement for an electrochemical cell comprising a nanostructure
SE545852C2 (en) A separator element with a coating comprising nanostructures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination