CN117801958A - 一株高产β-葡萄糖苷酶的木质纤维素降解菌株及其应用 - Google Patents

一株高产β-葡萄糖苷酶的木质纤维素降解菌株及其应用 Download PDF

Info

Publication number
CN117801958A
CN117801958A CN202311661763.6A CN202311661763A CN117801958A CN 117801958 A CN117801958 A CN 117801958A CN 202311661763 A CN202311661763 A CN 202311661763A CN 117801958 A CN117801958 A CN 117801958A
Authority
CN
China
Prior art keywords
strain
culture
glucosidase
fermentation
trichoderma asperellum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311661763.6A
Other languages
English (en)
Inventor
蒋羽佳
牟璐
信丰学
章文明
姜万奎
姜岷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202311661763.6A priority Critical patent/CN117801958A/zh
Publication of CN117801958A publication Critical patent/CN117801958A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/145Fungal isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/01Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2445Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/885Trichoderma

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一株高产β‑葡萄糖苷酶的木质纤维素降解菌株及其应用,所述菌株的分类命名为棘孢木霉(Trichoderma asperellum)ML02,已保藏于中国典型培养物保藏中心,保藏编号为CCTCC NO:M 20221877,保藏日期为2022年12月5日。该菌株生长迅速,72 h即能覆盖PDA平板,同时菌丝更加茂密,有利于水解酶的分泌和与底物的结合,降解性能提升。用该菌株可用于直接降解未经预处理的玉米芯和小麦秸秆等木质纤维素,降解率分别为54.6%和56.8%,表明其出色的木质纤维素降解能力和广泛的底物谱。将其与乳酸菌混合培养后,以纤维素为碳源时,乳酸产量168 h就能达到50 g/L,缩短了发酵周期。本发明生物炼制提供了一株性能优异的木质纤维素降解菌株,具有较大的工业发展潜力。

Description

一株高产β-葡萄糖苷酶的木质纤维素降解菌株及其应用
技术领域
本发明属于微生物技术领域,具体涉及一株高产β-葡萄糖苷酶的木质纤维素降解菌株及其应用。
背景技术
木质纤维素是地球上最为丰富的生物质,作为绿色可再生资源,对其进行充分利用能有效缓解环境污染和能源危机。纤维素作为木质纤维素的主要成分(40-50%),对其进行有效转化是生物精炼工业的重要前提。纤维素的降解需要内切葡聚糖酶(内切酶,EG,EC3.2.1.4),外切葡聚糖酶(外切酶,CBH,EC 3.2.1.74)和β-葡萄糖苷酶(BG,EC 3.2.1.21)的共同协作。内切葡聚糖酶随机切割纤维素内部长链,产生不同程度的低聚糖;外切葡聚糖酶通过水解纤维素的还原和非还原端产生纤维二糖,最后β-葡萄糖苷酶攻击纤维二糖糖苷键生成还原糖。
丝状真菌因其蛋白质合成能力强,纤维素降解酶系相对丰富且分泌效率高,是用于纤维素转化的常用菌株。但以里氏木霉为代表的工业模式菌株普遍存在β-葡萄糖苷酶分泌不足的明显缺陷,因此极大的限制了降解效率,从而增加了酶的用量和成本,阻碍了生物炼制的工业化发展。另一方面,混菌体系因其省工节能、工艺设备相对简化,减少中间产物分离等经济效益的优点而成为研究热点。而其上游菌株(通常是降解型菌株)的底物利用效率以及能否为下游菌株提供充足的可发酵糖是决定整个体系优劣和工业化推广的关键。因此,急需开发出高产β-葡萄糖苷酶的菌株,以弥补纤维素降解酶系分泌不足的缺陷,提高纤维素降解率。
发明内容
发明目的:本发明所要解决的技术问题是针对现有纤维素降解菌株存在纤维素酶系不全,且主要存在β-葡萄糖苷酶分泌不足的问题,提供一株高产β-葡萄糖苷酶且酶系分泌较全面且降解性能较高的菌株。
本发明还要解决的技术问题是提供上述菌株的应用。
为了进一步提高降解纤维素的效率,本发明通过对实验室原有的一株木质纤维素降解性能良好的棘孢木霉进行两轮甲基磺酸乙酯(EMS)诱变,经刚果红平板和柠檬酸七叶皂苷平板初筛,辅以摇瓶复筛,选育出了一株高产BG的诱变菌,其BG酶活可达1.11U/mL,是原始菌的3倍,将其命名为ML02。同时,内切酶,外切酶也分别为出发菌株的1.6、1.9倍。经稳定性验证后,发现其传代六代后酶活依旧保持稳定。同时,其降解效率非常高,对微晶纤维素的降解率8天就可达40%以上。
本发明公开了一种高产β-葡萄糖苷酶的菌株,其分类命名为棘孢木霉(Trichoderma asperellum)ML02,已保藏于中国典型培养物保藏中心,保藏地址为中国武汉·武汉大学,保藏编号为CCTCC NO:M 20221877,保藏日期为2022年12月5日。
本发明所述棘孢木霉(Trichoderma asperellum)ML02的诱变方法为:活化出发菌Trichoderma asperellum LYS1(该菌株保藏于中国典型培养物保藏中心,保藏编号为CCTCC NO:M 20211179,保藏日期为2021年9月15日)于PDA平板,30℃培养3-4天后,用0.9%生理盐水冲洗PDA平板,调整孢子浓度为1×108/mL。各取1mL孢子液于10个2mL EP管中,再加入40μL EMS,放入30℃摇床诱变相应时间(20-180min,180rpm)后取出,加入5%硫代硫酸钠解毒剂解毒5min。稀释103倍后取100μL涂布于刚果红平板。致死率曲线表明100-120min为合适诱变时间。
本发明所述棘孢木霉(Trichoderma asperellum)ML02的筛选方法为:将原始菌孢子液在合适诱变时间诱变,解毒稀释后涂布于柠檬酸铁七叶皂苷平板,30℃培养1-2天后挑取柠檬酸铁七叶皂苷平板上比原始菌黑的点接种于刚果红平板(如图2所示)。接着,挑取刚果红平板上透明圈/直径比值比原始菌大的点进行摇瓶复筛。从而筛选出高产β-葡萄糖苷酶的诱变菌株(Trichoderma asperellum)ML02。
筛选平板:筛选平板为柠檬酸铁七叶皂苷平板和刚果红平板。
刚果红平板:2g/L羧甲基纤维素钠(CMC-Na),0.5g/L七水合硫酸镁,1.0g/L磷酸二氢钾,1.1g/L蛋白胨,1.0g/L乳糖,1.0g/L脱氧胆酸钠,0.1g/L刚果红,20.0g/L琼脂,其余为水。
柠檬酸铁七叶皂苷平板:0.5g/L七水合硫酸镁,1.0g/L磷酸二氢钾,1.1g/L蛋白胨,1.0g/L乳糖,1.0g/L脱氧胆酸钠,2.0g/L七叶皂苷,0.5g/L柠檬酸铁,20.0g/L琼脂。其余为水;培养温度为28-30℃,优选30℃;培养时间为48-72h,优选48h。
筛选得到的菌株的性质:上述的棘孢木霉ML02菌株的菌落特征为马铃薯葡萄糖(PDA)培养基上30℃培养3天菌丝即能覆盖满板,生长较原始菌更加迅速。其菌落颜色一直为白色(原始菌菌落先为白色,后为绿色,衰老后呈现黄色)。菌落结构成呈绒毡状,边缘呈圆齿状,比较整齐,产孢子量少,菌丝致密,有利于水解酶的分泌和与底物结合,促进降解。
所述菌株的培养条件:
平板培养:将棘孢木霉ML02接种于平板培养基,培养温度为28-30℃,培养时间为72-96h;所述平板培养基为马铃薯葡萄糖培养基(PDA),酵母膏胨培养基(YPD)或麦芽汁琼脂培养基(MEA)。本实验优选马铃薯葡萄糖培养基(PDA),碳源为土豆200-300g/L,葡萄糖15-20g/L,琼脂粉15-20g/L,其余为水;培养温度优选30℃;培养优选72h。
种子培养:将平板培养的菌株接种到种子培养基中,培养温度为28-30℃,培养时间为24-48h,培养转速160-200rpm;
所述种子液培养基的各组分的含量为:0.1-0.5g/L尿素、0.5-1.0g/L蛋白胨、0.2-0.5g/L酵母提取物、1.0-2.0g/L硫酸铵,1.5-2.5g/L磷酸二氢钾,0.1-0.5g/L氯化钙,0.1-0.5g/L七水合硫酸镁,10.0-20.0g/L葡萄糖,0.002-0.008g/L七水合硫酸亚铁,0.001-0.003g/L四水合硫酸锰,0.001-0.003g/L七水合硫酸锌,0.001-0.003g/L六水合氯化钴,其余为水。
进一步优选地,种子培养基为0.3g/L尿素、0.75g/L蛋白胨、0.25g/L酵母提取物、1.4g/L硫酸铵,2.0g/L磷酸二氢钾,0.3g/L氯化钙,0.3g/L七水合硫酸镁,10.0g/L葡萄糖,0.002-0.008g/L七水合硫酸亚铁,0.001-0.003g/L四水合硫酸锰,0.001-0.003g/L七水合硫酸锌,0.001-0.003g/L六水合氯化钴,其余为水;培养温度优选30℃;培养时间优选48h;培养转速优选180rpm。
发酵培养:将种子培养的菌株接种到发酵培养基中,培养温度为28-30℃,培养时间为168-192h,培养转速160-200rpm;
所述发酵培养基的各组分的含量为:0.1-0.5g/L尿素、0.5-1.0g/L蛋白胨、0.2-0.5g/L酵母提取物、1.0-2.0g/L硫酸铵,1.5-2.5g/L磷酸二氢钾,0.1-0.5g/L氯化钙,0.1-0.5g/L七水合硫酸镁,10.0-20.0g/L葡萄糖,0.002-0.008g/L七水合硫酸亚铁,0.001-0.003g/L四水合硫酸锰,0.001-0.003g/L七水合硫酸锌,0.001-0.003g/L六水合氯化钴,其余为水;
进一步优选地,发酵培养基为0.3g/L尿素、0.75g/L蛋白胨、0.25g/L酵母提取物、1.4g/L硫酸铵,2.0g/L磷酸二氢钾,0.3g/L氯化钙,0.3g/L七水合硫酸镁,60.0g/L微晶纤维素(MCC),0.005g/L七水合硫酸亚铁,0.0016g/L四水合硫酸锰,0.0014g/L七水合硫酸锌,0.002g/L六水合氯化钴,其余为水;培养温度优选30℃;培养时间优选192h;培养转速优选180rpm。
所述棘孢木霉(Trichoderma asperellum)ML02在发酵生产β-葡萄糖苷酶的应用。
将上述种子液接种到发酵培养基中进行液态发酵。
其中,所述种子液接种到发酵培养基中的接种量为1%-10%v/v,优选为10%。
其中,所有培养基都经115℃,20min高温高压灭菌。
其中,所述培养为摇床培养。
其中,所述发酵培养过程中从第二天开始用3mol/L氢氧化钠和1mol/L稀盐酸调节发酵液pH稳定在5.5,并于第8天取样测酶活。
所述高产β-葡萄糖苷酶的菌株在降解木质纤维素中的应用。
将上述发酵培养基的60.0g/L微晶纤维素替换成60.0g/L的未经过预处理的玉米芯/玉米秸秆/小麦秸秆。其余操作与上述发酵生产β-葡萄糖苷酶的应用操作相同。发酵结束后,将发酵液以8000rpm离心5min后,收集固体于70℃烘干值恒重,计算降解率。
所述高产β-葡萄糖苷酶的菌株在以纤维素为底物的混菌体系中产乳酸中的应用。
将所述高产β-葡萄糖苷酶的菌株与乳酸菌混菌培养产乳酸。
副干酪乳杆菌MRS培养基:10.0g/L蛋白胨,5.0g/L牛肉膏粉,4.0g/L酵母膏粉,20.0g/L葡萄糖,1.0g/L吐温-80,2.0g/L磷酸氢二钾,5.0g/L乙酸钠,2.0g/L柠檬酸三铵,0.2g/L七水合硫酸镁,0.05g/L四水合硫酸锰,20.0g/L琼脂,其余为水,pH 6.0。
副干酪乳杆菌种子培养基:5.0g/L酵母粉,10.0g/L碳酸氢钠,10.0g/L二水合磷酸二氢钠,15.0g/L三水合磷酸氢二钾,3.0g/L玉米浆干粉,10.0g/L葡萄糖,溶剂为水。
乳酸浓度的测定:取1mL发酵液,12000rpm条件下离心1min,上清液用流动相进行20-100倍数的稀释,再过膜(0.22μm)两次。通过高效液相色谱法对有机酸酸浓度进行检测,检测条件为:以0.25mmol/L的H2SO4溶液作为流动相,流速为0.5mL/min。色谱分析柱为有机酸色谱柱。
混菌培养产乳酸:用无菌水冲洗副干酪乳杆菌MRS固体培养基中的菌落,并接种于副干酪乳杆菌种子培养基中,于37℃,180rpm培养12-18h。同时棘孢木霉ML02同发酵生产β-葡萄糖苷酶相同操作(除了将60g/L MCC的底物浓度替换为80g/L MCC),在有氧条件下于30℃,180rpm培养48h。接着,将活化18h的副干酪乳杆菌Lactobacillus paracasei LYS2(已保藏于中国典型培养物保藏中心,保藏编号为CCTCC NO:M 20211178,保藏日期为2021年9月15日)以10%(v/v)接种量接种到培养48h的棘孢木霉发酵培养基中,同时添加7.5g/L玉米浆干粉和15g/L CaCO3并转入厌氧条件下于37℃培养若干天。
本发明中棘孢木霉ML02对微晶纤维素的8天降解率达到了40%以上,比原始菌30%的降解率提升了33.3%,且其对未经预处理的玉米芯,小麦秸秆的8天降解率也分别达54.6%和56.8%。与范丙全等人报道的扩张青霉菌10天对秸秆的56.3%相比具有明显优势。可作为性能优良的上游菌株用于混菌体系,降低成本,促进生物质的精炼工业化发展。
本发明所述菌株棘孢木霉(Trichoderma asperellum)ML02,生长迅速,72h即能覆盖PDA平板,同时菌丝更加茂密,有利于水解酶的分泌和与底物的结合,降解性能提升。同时,用该菌株以微晶纤维素为底物进行发酵,第8天的β-葡萄糖苷酶酶活能达到1.1U/mL,微晶纤维素的降解率可达40%以上,比原始菌30%的降解率相比提高33.3%;且可用于直接降解未经预处理的玉米芯和小麦秸秆等木质纤维素,降解率分别为54.6%和56.8%,表明其出色的木质纤维素降解能力和广泛的底物谱。将其与乳酸菌混合培养后,以纤维素为碳源时,乳酸产量168h就能达到50g/L,而原始菌达到此产量需要近240h,缩短了发酵周期,且终产量达72.5g/L,与原始菌终产量57.6g/L相比提高28.9%。
有益效果:与现有技术相比,本发明具有如下优势:
本发明以实验室现有的一株棘孢木霉为出发菌株,经过两轮EMS诱变,通过柠檬酸铁七叶皂苷平板和刚果红平板初筛,辅以摇瓶复筛,选育出一株高产β-葡萄糖苷酶的诱变菌。此菌株不仅BG酶活为出发菌株的3倍,内切酶,外切酶也分别为出发菌株的1.6、1.9倍。本发明提供的菌株有效弥补了纤维素降解酶系不平衡的缺陷且具有高效的降解效率,且生长快速,同时菌丝更加致密,有利于水解酶的分泌和与底物结合,降解性能提升。将ML02作为上游降解菌株与乳酸菌进行混合培养,发现其与原始菌相比,具有发酵周期变短,产量和产率提升的优点,在工业上有较高的开发潜力和应用价值。
附图说明
下面结合附图和具体实施方式对本发明做更进一步的具体说明,本发明的上述和/或其他方面的优点将会变得更加清楚。
图1为诱变致死曲线;
图2为柠檬酸铁七叶皂苷筛菌平板(左边为出发菌,右边为ML02);
图3为诱变菌棘孢木霉(Trichoderma asperellum)ML02平板图;
图4为ML02β-葡萄糖苷酶稳定性传代(原始菌酶活设定为100%);
图5为ML02内切酶稳定性传代(原始菌酶活设定为100%);
图6为ML02外切酶稳定性传代(原始菌酶活设定为100%);
图7为原始菌和ML02的8天降解率;
图8为ML02对不同木质纤维素底物的降解情况;
图9为原始菌的乳酸产量及葡萄糖、纤维二糖的积累量;
图10为ML02的乳酸产量及葡萄糖、纤维二糖的积累量。
具体实施方式
下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
副干酪乳杆菌Lactobacillus paracasei LYS2,已保藏于中国典型培养物保藏中心,保藏编号为CCTCC NO:M 20211178,保藏日期为2021年9月15日。
实施例1
高产β-葡萄糖苷酶的棘孢木霉(Trichoderma asperellum)ML02的诱变选育及鉴定:
活化出发菌Trichoderma asperellum LYS1于PDA平板,30℃培养3-4天后,用0.9%生理盐水冲洗PDA平板,调整孢子浓度为1×108/mL。各取1mL孢子液于10个2mL EP管中,再加入40μL EMS,放入30℃摇床,转速设置为180rpm,诱变相应时间(20-180min)后取出,加入5%硫代硫酸钠解毒剂解毒5min。稀释103倍后取100μL涂布于刚果红平板。致死率曲线表明100-120min为合适诱变时间(如图1所示)。
本发明所述棘孢木霉(Trichoderma asperellum)ML02的筛选方法为:将原始菌孢子液在合适诱变时间诱变,解毒稀释后涂布于柠檬酸铁七叶皂苷平板,30℃培养1-2天后挑取柠檬酸铁七叶皂苷平板上比原始菌黑的点接种于刚果红平板(如图2所示)。接着,挑取刚果红平板上透明圈/直径比值比原始菌大的点进行摇瓶复筛。从而筛选出高产β-葡萄糖苷酶的诱变菌株(Trichoderma asperellum)ML02。
最后,对该诱变菌株进行18s rDNA测定:利用引物ITS1:5’-TCCGTAGGTGAACCTGCGG-3’和ITS4:5’-TCCTCCGCTTATTGATATGC-3’
进行PCR扩增,经过NCBI数据库比对,在分子水平上将菌株ML02鉴定至Trichoderma asperellum菌属,其18s rDNA核苷酸序列如SEQ ID NO.1所示。
上述的棘孢木霉ML02菌株的菌落特征:马铃薯葡萄糖(PDA)培养基上30℃培养3天菌丝即能覆盖满板,生长较原始菌更加迅速。其菌落颜色一直为白色(原始菌菌落先为白色,后为绿色,衰老后呈现黄/黄绿色)。菌落结构成呈绒毡状,边缘呈圆齿状,比较整齐,产孢子量少,菌丝多且致密,有利于水解酶的分泌和与底物结合,促进降解(如图3所示)。
上述培养过程中所用PDA平板培养基为:土豆200g/L,葡萄糖20g/L,琼脂粉20g/L,其余为水;
刚果红平板培养基:2g/L羧甲基纤维素钠(CMC-Na),0.5g/L七水合硫酸镁,1.0g/L磷酸二氢钾,1.1g/L蛋白胨,1.0g/L乳糖,1.0g/L脱氧胆酸钠,0.1g/L刚果红,20.0g/L琼脂,其余为水。
柠檬酸铁七叶皂苷平板培养基:0.5g/L七水合硫酸镁,1.0g/L磷酸二氢钾,1.1g/L蛋白胨,1.0g/L乳糖,1.0g/L脱氧胆酸钠,2.0g/L七叶皂苷,0.5g/L柠檬酸铁,20.0g/L琼脂。其余为水。
PCR反应体系为:真菌基因组DNA 10μL,2×Rapid Taq Master Mix 25μL,10μmol/L的上下游引物各1μL,然后加灭菌纯水至50μL。PCR条件:95℃预变性8min,95℃变性15s,55℃复性15s,72℃延伸1min,总共30个循环;72℃修复延伸10min,4℃下终止反应。
实施例2
以微晶纤维素为底物的液体发酵产酶特性及稳定性研究。
将菌株棘孢木霉(Trichoderma asperellum)ML02接种到PDA培养平板(土豆200g,葡萄糖20g,琼脂20g,蒸馏水1000mL,115℃灭菌20min)中,30℃培养72h。用灭菌枪头将所述菌株平板培养接入到种子液培养基中,接入量为每mL种子液含有108个孢子。在30℃,180rpm条件下培养48h。接着,用枪头吸取菌丝溶液以接种量10%v/v接种到发酵培养基,接种完后用封口膜包裹瓶口防止染菌,放入30℃摇床,转速设置为180rpm培养。从第2天开始用3mol/L氢氧化钠和1mol/L稀盐酸调节发酵液pH稳定在5.5。于第8天取样测内切酶活,外切酶活,β-葡萄糖苷酶酶活,考察其六代传代稳定性。
种子培养基为0.3g/L尿素、0.75g/L蛋白胨、0.25g/L酵母提取物、1.4g/L硫酸铵,2.0g/L磷酸二氢钾,0.3g/L氯化钙,0.3g/L七水合硫酸镁,10.0g/L葡萄糖,0.005g/L七水合硫酸亚铁,0.0016g/L四水合硫酸锰,0.0014g/L七水合硫酸锌,0.002g/L六水合氯化钴,其余为水。
发酵培养基配方为:0.3g/L尿素、0.75g/L蛋白胨、0.25g/L酵母提取物、1.4g/L硫酸铵,2.0g/L磷酸二氢钾,0.3g/L氯化钙,0.3g/L七水合硫酸镁,60.0g/L微晶纤维素(MCC),0.005g/L七水合硫酸亚铁,0.0016g/L四水合硫酸锰,0.0014g/L七水合硫酸锌,0.002g/L六水合氯化钴,其余为水。
测定酶活所用试剂配制方法如下。
pH 4.8,50mM的柠檬酸缓冲液配制:一水柠檬酸210g,无菌水750mL,加入氢氧化钠(50-60g),稀释至1000mL,获得pH 4.5的1mol/L柠檬酸缓冲液母液。稀释20倍至50mM时,pH值为4.8)。
1%羧甲基纤维素钠溶液:称取1g羧甲基纤维素钠于100mL容量瓶,加入pH 4.8,50mM的柠檬酸缓冲液,定容至刻度线,加热至完全溶解。
2%微晶纤维素悬浊液:称取2g微晶纤维素于100mL容量瓶,加入pH 4.8,50mM的柠檬酸缓冲液,定容至刻度线,超声震荡。
1mM对硝基苯基-β-D-吡喃葡萄糖苷(1mM pNPG):称取0.0301g硝基苯基-β-D-吡喃葡萄糖苷于100mL容量瓶,加入pH 4.8,50mM的柠檬酸缓冲液,定容至刻度线。
上述各酶活测定方法如下。
内切酶酶活(内切葡聚糖酶活)的测定方法:取发酵液,12000rpm离心5min。在容积为2mL的离心管中,加入50μL适当稀释的上清液,250μL pH 4.8,50mM的柠檬酸缓冲液和100μL 1%羧甲基纤维素钠溶液,50℃恒温水浴10min。随后加入400μL DNS溶液,沸水浴5min,立即冷却。OD 540nm下测定光吸收值,测算酶活力。每个处理设置3次重复,灭活酶液作为对照。内切酶酶活力按照国际单位定义为:在pH 4.8,50℃下,每分钟催化水解生成1μmol葡萄糖的酶量为一个酶活力单位IU。
外切酶酶活(外切葡聚糖酶活)的测定方法:取发酵液,12000rpm离心5min。在容积为2mL的离心管中,加入50μL适当稀释的上清液,250μL pH 4.8,50mM的柠檬酸缓冲液和100μL 2%微晶纤维素溶液,50℃恒温水浴30min。随后加入400μL DNS溶液,沸水浴5min,立即冷却。OD 540nm下测定光吸收值,测算酶活力。每个处理设置3次重复,灭活酶液作为对照。外切酶酶活力按照国际单位定义为:在pH 4.8,50℃下,每分钟催化水解生成1μmol葡萄糖的酶量为一个酶活力单位IU。
β-葡萄糖苷酶酶活力测定:取发酵液,12000rpm离心5min。在容积为2mL的离心管中,加入100μL适当稀释的上清液,900μL的1mM对硝基苯基-β-D-吡喃葡萄糖苷,50℃恒温水浴10min。随后加入500μL 10%碳酸钠溶液终止反应,OD 400nm下测定光吸收值,测算酶活力。对照为失活酶液,每个处理设置3次重复。β-葡萄糖苷酶酶活力的定义:在pH 4.8,50℃下,每分钟催化pNPG水解生成1μmol对硝基苯酚(pNP)的酶量为一个单位(IU)。
从图4,5,6可以看出,此诱变菌株具有较高的传代稳定性,多轮传代后仍维持相对较高的β-葡萄糖苷酶,内切酶和外切酶酶活,可维持较强的降解性能。
实施例3
验证诱变菌棘孢木霉ML02的降解高效性,以微晶纤维素为底物测量降解率。
将菌株棘孢木霉(Trichoderma asperellum)ML02种到PDA培养平板(土豆200g,葡萄糖20g,琼脂20g,蒸馏水1000mL,115℃灭菌20min)中,30℃培养72h。用灭菌枪头将所述菌株平板培养接入到种子液培养基中,接入量为每mL种子液含有108个孢子。在30℃,180rpm条件下培养24-48h。接着,用枪头吸取菌丝溶液以接种量10%v/v接种到70mL 60g/L MCC棘孢木霉发酵培养基(0.3g/L尿素、0.75g/L蛋白胨、0.25g/L酵母提取物、1.4g/L硫酸铵,2.0g/L磷酸二氢钾,0.3g/L氯化钙,0.3g/L七水合硫酸镁,60.0g/L微晶纤维素(MCC),0.005g/L七水合硫酸亚铁,0.0016g/L四水合硫酸锰,0.0014g/L七水合硫酸锌,0.002g/L六水合氯化钴,其余为水;接种完后用封口膜包裹瓶口防止染菌,放入30℃摇床,转速设置为180rpm培养。从第2天开始用3mol/L氢氧化钠和1mol/L稀盐酸调节发酵液pH稳定在5.5。于第8天将发酵液8000rpm,5min离心后,收集固体于70℃烘干值恒重,计算降解率。
原始菌操作同上。
如图7所示,ML02的降解率相比于原始菌提升了33.3%,说明此诱变菌具有更强的降解效率,可实现高效的生物质转化,具有广阔的应用前景。
实施例4
ML02对微晶纤维素的降解具体操作同实例3,同时增加了60g/L的玉米芯和小麦秸秆等木质纤维素为底物。如图8所示,诱变菌棘孢木霉ML02对玉米芯和小麦秸秆的8天降解率分别达到了54.6%和56.8%,同时这些底物都未经过预处理,说明其对木质纤维素具有较好的降解能力,且降解底物谱广泛。
实施例5
验证诱变菌棘孢木霉ML02的高效降解能力的实际应用性,与乳酸菌混菌培养。
副干酪乳杆菌MRS培养基:10.0g/L蛋白胨,5.0g/L牛肉膏粉,4.0g/L酵母膏粉,20.0g/L葡萄糖,1.0g/L吐温-80,2.0g/L磷酸氢二钾,5.0g/L乙酸钠,2.0g/L柠檬酸三铵,0.2g/L七水合硫酸镁,0.05g/L四水合硫酸锰,20.0g/L琼脂,其余为水,pH 6.0。
副干酪乳杆菌种子培养基:5.0g/L酵母粉,10.0g/L碳酸氢钠,10.0g/L二水合磷酸二氢钠,15.0g/L三水合磷酸氢二钾,3.0g/L玉米浆干粉,10.0g/L葡萄糖,溶剂为水。
乳酸浓度的测定:取1mL发酵液,12000rpm条件下离心1min,上清液用流动相进行20-100倍数的稀释,再过膜(0.22μm)两次。通过高效液相色谱法对有机酸酸浓度进行检测,检测条件为:以0.25mmol/L的H2SO4溶液作为流动相,流速为0.5mL/min。色谱分析柱为有机酸色谱柱。
棘孢木霉培养如实例3所示(除了将60g/L MCC的底物浓度替换为80g/LMCC)。
混菌培养产乳酸:用无菌水冲洗副干酪乳杆菌MRS固体培养基中的菌落,并接种于副干酪乳杆菌种子培养基中,于37℃,180rpm培养12-18h。同时棘孢木霉ML02同发酵生产β-葡萄糖苷酶相同操作在有氧条件下于30℃,180rpm培养48h。接着,将活化18h的副干酪乳杆菌Lactobacillus paracasei LYS2以10%(v/v)接种量接种到培养48h的棘孢木霉发酵培养基中,同时添加7.5g/L玉米浆干粉和15.0g/L CaCO3并转入厌氧条件下于37℃培养若干天。
从图10可以看出,诱变后的菌株ML02的乳酸产量168h就达50g/L,而出发菌达到此产量需要近240h,有效缩短了发酵周期,且终产量达72.5g/L,与原始菌终产量57.6g/L相比,乳酸合成产量提高28.9%,有效地优化了木质纤维素生物炼制的多细胞体系,具有较大的工业发展潜力。
以上实施例的只是用于分析理解本发明的制备方法及应用范围,但本发明不限于以上实例。如果本领域的普通技术人员受其启示,对本发明直接进行改变、替代、修饰等,均应属于本专利的保护范围。

Claims (10)

1.一株高产β-葡萄糖苷酶的木质纤维素降解菌株,其分类命名为棘孢木霉(Trichoderma asperellum)ML02,已保藏于中国典型培养物保藏中心,保藏编号为CCTCCNO:M 20221877,保藏日期为2022年12月5日。
2.权利要求1所述高产β-葡萄糖苷酶的木质纤维素降解菌株在发酵生产β-葡萄糖苷酶中的应用。
3.权利要求1所述高产β-葡萄糖苷酶的木质纤维素降解菌株在降解木质纤维素中的应用。
4.权利要求1所述高产β-葡萄糖苷酶的木质纤维素降解菌株在以纤维素为底物的混菌体系中产乳酸的应用。
5.根据权利要求2所述的应用,其特征在于,将菌株棘孢木霉ML02进行平板培养、种子液培养和发酵培养,获取相应酶活;
所述平板培养为:将棘孢木霉ML02接种与平板培养基,培养温度为28-30 ℃,培养时间为72-96 h ;
种子培养:将平板培养的菌株接种到种子培养基中,培养温度为28-30 ℃,培养时间为24-48 h,培养转速160-200 rpm;
发酵培养:将种子培养的菌株接种到发酵培养基中,培养温度为28-30 ℃,培养时间为168-192 h,培养转速160-200 rpm。
6.根据权利要求5所述的应用,其特征在于,将所述菌株平板培养接入到种子液培养基中,接入量为每mL种子液含有107-9个孢子。
7.根据权利要求5所述的应用,其特征在于,所述种子液培养基的各组分的含量为:0.1-0.5 g/L尿素、0.5-1.0 g/L蛋白胨、0.2-0.5 g/L酵母提取物、1.0-2.0 g/L硫酸铵,1.5-2.5 g/L磷酸二氢钾,0.1-0.5 g/L氯化钙,0.1-0.5 g/L七水合硫酸镁,10.0-20.0 g/L葡萄糖,0.002-0.008 g/L七水合硫酸亚铁,0.001-0.003 g/L四水合硫酸锰,0.001-0.003g/L七水合硫酸锌,0.001-0.003 g/L六水合氯化钴,其余为水。
8.根据权利要求5所述的应用,其特征在于,所述菌株种子液接种到发酵培养基中的接种量为1%-10% v/v。
9.根据权利要求5所述的应用,其特征在于,所述发酵培养基的各组分的含量为:0.1-0.5 g/L尿素、0.5-1.0 g/L蛋白胨、0.2-0.5 g/L酵母提取物、1.0-2.0 g/L硫酸铵,1.5-2.5g/L 磷酸二氢钾,0.1-0.5 g/L氯化钙,0.1-0.5 g/L七水合硫酸镁,10.0-20.0 g/L葡萄糖,0.002-0.008 g/L七水合硫酸亚铁,0.001-0.003 g/L 四水合硫酸锰,0.001-0.003 g/L 七水合硫酸锌,0.001-0.003 g/L 六水合氯化钴,其余为水。
10.根据权利要求5所述的应用,其特征在于,所述种子液培养的温度为30 ℃,培养时间为48 h,转速为180 rpm,发酵培养温度为30 ℃,发酵培养时间为192 h,转速为180 rpm。
CN202311661763.6A 2023-12-05 2023-12-05 一株高产β-葡萄糖苷酶的木质纤维素降解菌株及其应用 Pending CN117801958A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311661763.6A CN117801958A (zh) 2023-12-05 2023-12-05 一株高产β-葡萄糖苷酶的木质纤维素降解菌株及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311661763.6A CN117801958A (zh) 2023-12-05 2023-12-05 一株高产β-葡萄糖苷酶的木质纤维素降解菌株及其应用

Publications (1)

Publication Number Publication Date
CN117801958A true CN117801958A (zh) 2024-04-02

Family

ID=90428984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311661763.6A Pending CN117801958A (zh) 2023-12-05 2023-12-05 一株高产β-葡萄糖苷酶的木质纤维素降解菌株及其应用

Country Status (1)

Country Link
CN (1) CN117801958A (zh)

Similar Documents

Publication Publication Date Title
CN113403207B (zh) 高产β-葡萄糖苷酶黑曲霉菌株及应用
CN101717728B (zh) 一株青霉菌及其用于催化水解木质纤维素的用途
CN112251374A (zh) 一种耐高温的高产纤维素酶枯草芽孢杆菌及其应用
WO2009108081A1 (en) Penicillium verruculosum filamentous fungus strain producer of a highly active complex of cellulases and accessory enzymes and a method of production of biocatalyst for cellulose and hemicellulose hydrolysis
US10053680B2 (en) Strain and a method to produce cellulase and its use
US11407974B2 (en) Method for preparation and screening of fungal mutant with high hydrolytic activity and catabolite derepressed character
CN113512501B (zh) 一株草酸青霉菌xzh-2及其应用
CN103937691A (zh) 一株产β-果糖苷酶的米曲霉菌株及其培养方法与应用
CN114480205A (zh) 一株解淀粉芽孢杆菌及其在固态发酵食醋酿造中的应用
CN110527634A (zh) 一株西藏来源生产纤维素酶的哈茨木霉菌株及其应用
Chu et al. Hydrolysis of bamboo cellulose and cellulase characteristics by Streptomyces griseoaurantiacus ZQBC691
CN102787076B (zh) 一株耐冷玫红假裸囊菌及其在制备冷水纤维素酶中的应用
CN117801958A (zh) 一株高产β-葡萄糖苷酶的木质纤维素降解菌株及其应用
CN113122460B (zh) 一种水稻秸秆降解菌及其筛选方法和应用
CN109182150B (zh) 一种高产纤维素酶的密丝明孢曲霉及其发酵方法与应用
CN110835610B (zh) 一种适用于降解秸秆的复合菌剂及制备方法
CN110564629A (zh) 一株里氏木霉及其培养方法与应用
CN102559511B (zh) 高产嗜温耐乙醇β-葡萄糖苷酶的肉座菌及其应用
CN114214206B (zh) 一株高效降解生物质的菌株及其应用
CN114657073B (zh) 一株高产纤维二糖酶的橘青霉菌株及其应用
CN102719370B (zh) 一种大肠埃希氏菌rb3菌株及用它液态发酵制备乙酰酯酶的方法
CN109161481A (zh) 一种突变黑曲霉菌株及应用
CN115820428B (zh) 一种真菌Talaromyces endophyticus及其应用
CN114958623B (zh) 一株高产纤维素酶的盖姆斯木霉及其应用
JP5461026B2 (ja) β−グルコシダーゼ産生菌及びβ−グルコシダーゼの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination