CN117602996A - 一种生物质基低粘度润滑油基础油的制备方法 - Google Patents

一种生物质基低粘度润滑油基础油的制备方法 Download PDF

Info

Publication number
CN117602996A
CN117602996A CN202311644266.5A CN202311644266A CN117602996A CN 117602996 A CN117602996 A CN 117602996A CN 202311644266 A CN202311644266 A CN 202311644266A CN 117602996 A CN117602996 A CN 117602996A
Authority
CN
China
Prior art keywords
lubricating oil
base oil
biomass
viscosity
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311644266.5A
Other languages
English (en)
Inventor
陈爽
周桂林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Technology and Business University
Original Assignee
Chongqing Technology and Business University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Technology and Business University filed Critical Chongqing Technology and Business University
Priority to CN202311644266.5A priority Critical patent/CN117602996A/zh
Publication of CN117602996A publication Critical patent/CN117602996A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/247Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by splitting of cyclic ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6567Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/22Aliphatic saturated hydrocarbons with more than fifteen carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/04Well-defined hydrocarbons aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/0206Well-defined aliphatic compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/022Well-defined aliphatic compounds saturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/64Environmental friendly compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Lubricants (AREA)

Abstract

本发明公开了一种生物质基低粘度润滑油基础油的制备方法,包括:步骤1:2,5,8‑壬三酮和糠醛经羟醛缩合反应制备润滑油中间体;步骤2:润滑油中间体加氢制备低粘度润滑油基础油;本发明采用绿色可再生的生物质2,5,8‑壬三酮和糠醛为原料,通过巧妙地设计反应步骤和调控润滑油基础油的结构,以制备高品质的低粘度的昆虫型全合成生物质基润滑油基础油;本发明通过羟醛缩合反应实现碳链增长得到长碳链支链化结构前驱体,再进一步加氢脱氧为高品质的低粘度全合成生物质基润滑油基础油;本发明所制备的低粘度润滑油基础油的支链化程度更高,所以本发明所制备的低粘度润滑油基础油的性质,特别是倾点、凝点和粘度等方面更好。

Description

一种生物质基低粘度润滑油基础油的制备方法
技术领域
本发明涉及润滑油技术领域,具体是一种生物质基低粘度润滑油基础油的制备方法。
背景技术
润滑油在相对运动的硬摩擦中发挥着重要的作用。所以国家润滑油的发展水平直接或间接反映这个国家的工业发展状况,甚至影响到这个国家的经济水平。目前,产业界和学术界开发新润滑油可节省的经济效益约占国内总生产值的1-1.55%。全合成润滑油主要采用α-癸烯齐聚的方法制备,公开号为CN108559012A的中国发明专利申请报道了采用茂金属催化聚合C8-C12α-烯烃制备全合成润滑油基础油。但是该申请所得润滑油基础的结构不可控,且价格昂贵,同时,石化原料的使用会造成严重的能源危机和环境污染问题。
发展碳中性的清洁能源来替代和弥补目前主流化石能源的不足,遏制全球性气候问题、资源问题、环境问题已成为当务之急。其中,可再生可持续的生物质资源丰富,以此为原料制备生物基润滑油具有巨大潜力。近期策略中Chen等采用油脂为原料(Chen S,Wu TT,Zhao C.Conversion of lipid into high-viscosity branched bio-lubricant baseoil[J].Green Chemistry,2020,22(21),7348-7354.),经四步合成了生物质基润滑油,但是该合成过程中使用了环境不友好的催化剂。Liu等以取代呋喃和脂肪醛在酸性离子交换树脂作用下碳碳偶联得到C30中间体(Liu S,Josephson T R,Athaley A,et al.Renewablelubricants with tailored molecular architecture[J].Science advances,2019,5,5487-5494),后再经加氢脱氧(IrRe/SiO2或IrMo/SiO2)制备支链化全烷烃型润滑油。但经测试该类润滑油产品的粘度指数较低,限制了其大规模使用。Chen等采用油酸为原料全碳链合成了蝴蝶型润滑油(Chen S,Wu T T,Zhao C.Synthesis of Branched BiolubricantBase Oil from Oleic Acid[J].ChemSusChem,2020,13(20),5516-5522.),但是该合成步骤太长,总收率较低,限制了工业化应用。
发明内容
本发明的目的在于提供一种生物质基低粘度润滑油基础油的制备方法,以解决现有技术中的问题。
本发明提供一种利用可再生生物质2,5,8-壬三酮和糠醛制备高值化全合成润滑油基础油,原料绿色环保且廉价易得,工艺简单灵活,使用球形中空有机硅纳米粒子的HPMOs作为加氢催化剂的载体,可实现2,5,8-壬三酮和糠醛高效转化为全合成润滑油,提高润滑油的收率。
2,5,8-壬三酮和糠醛转化为昆虫型低粘度生物基全合成润滑油基础油的路线如下:
2,5,8-壬三酮与糠醛进行羟醛缩合得到润滑油中间体(步骤1),缩合产物润滑油中间体进行加氢得到昆虫型低粘度全合成润滑油基础油(步骤2)。
为实现上述目的,本发明提供如下技术方案:
一种生物质基低粘度润滑油基础油的制备方法,包括如下步骤:
步骤1:2,5,8-壬三酮和糠醛经羟醛缩合反应制备润滑油中间体
将2,5,8-壬三酮、糠醛、溶剂和催化剂加入到圆底烧瓶中,所述2,5,8-壬三酮、糠醛和溶剂的摩尔比为1:6.5:2.5,将圆底烧瓶置于油浴锅中,并装上冷凝管,升温至50-150℃,反应1-24h,反应结束后,蒸馏分离出溶剂,得到润滑油中间体;
步骤2:润滑油中间体加氢制备低粘度润滑油基础油
将润滑油中间体、溶剂和加氢催化剂加入到高压反应釜中,所述润滑油中间体与溶剂的体积比为1:1-5,将反应釜密封,向反应釜中通入1.0-6.0MPa的H2置换反应釜中的空气,将反应釜的温度升至100-350℃,反应2-6h,反应结束后,待反应釜冷却后释放H2,蒸馏分离出溶剂,得到低粘度润滑油基础油。
本发明所制备的低粘度润滑油基础油的支链数达到了六条,与现有技术(申请号为CN202010118816.X的中国发明专利申请)所制备的具有四条支链的润滑油相比,本发明所制备的低粘度润滑油基础油的支链化程度更高,所以本发明所制备的低粘度润滑油基础油的性质,特别是倾点、凝点和粘度等方面更好。本发明利用简单的小分子单元通过碳碳偶联实现多位点多重碳链定向生长,构建新型润滑油结构;本发明制备低粘度润滑油基础油的路径更短,催化剂更加简单,同时构建的低粘度润滑油基础油的结构更加复杂,性质更优越。
进一步的,所述步骤2中加氢催化剂的活性中心为Ru、Au、Pt、Pd或Ni中的任意一种。
进一步的,所述步骤2中的加氢催化剂中活性中心负载量为0.05-10wt.%。
进一步的,所述步骤2中的加氢催化剂中载体为HPMOs。
本发明采用HPMOs作为加氢催化剂的载体,由于HPMOs(Hollow periodicmesoporous organosilicas)是一种球形中空有机硅纳米粒子,可以实现限域催化。HPMOs具有发达的孔道结构和大的比表面积可以提高反应物分子的吸附和活化,以及反应物分子的脱附,避免反应物分子的过度加氢导致C-O键断裂,从而使得环醚结构遭到破坏。经调节HPMOs载体的孔径结构,使得反应物分子可以进入HPMOs的中空结构,在酸性位点和金属中心的协同作用下实现选择性加氢,可实现2,5,8-壬三酮和糠醛高效转化为全合成润滑油,提高目标产物低粘度润滑油基础油的收率。HPMOs由于有机硅的使用,导致表面具有较多的巯基和烷基官能团,这些有机官能团的使用可以更好的吸附和活化有机物。
进一步的,所述步骤2中加氢催化剂的助催化剂为Ce、Co、Re、Sn或Ir的单质或者氧化物。
进一步的,所述步骤2中的加氢催化剂中助催化剂的添加量为0.05-5.0wt.%。
进一步的,所述步骤2中的溶剂为环己烷、十二烷和HMF中的一种或者多种组合。
进一步的,所述步骤1中的催化剂为KOH、CsCO3、Na2CO3、NaHCO3、NaOH、甲醇钠和叔丁醇钠的一种或者多种组合。
进一步的,所述步骤1中的溶剂为H2O、HMF、甲醇和乙醇中的一种或者多种组合。
与现有技术相比,本发明的有益效果是:
一、本发明采用绿色可再生的生物质2,5,8-壬三酮和糠醛为原料,通过巧妙地设计反应步骤和调控润滑油基础油的结构,以制备高品质的低粘度的昆虫型全合成生物质基润滑油基础油;本发明通过羟醛缩合反应实现碳链增长得到长碳链支链化结构前驱体,再进一步加氢脱氧为高品质的低粘度全合成生物质基润滑油基础油;
二、本发明避免了化石能源的使用,符合绿色可持续发展的理念;同时,选用廉价易得的2,5,8-壬三酮和糠醛类化合物,极大地降低原料成本和高端全合成润滑油基础油成本,且本发明的生物质基全合成润滑油基础油的结构可调控,使产品更具有市场竞争力。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种生物质基低粘度润滑油基础油的制备方法,包括如下步骤:
步骤1:2,5,8-壬三酮和糠醛经羟醛缩合反应制备润滑油中间体
将1g 2,5,8-壬三酮、1g糠醛、50mL乙醇和0.5g氢氧化钠加入到圆底烧瓶中,将圆底烧瓶置于油浴锅中,并装上冷凝管,油浴锅升温至50℃,反应1h,反应结束后,蒸馏分离出溶剂,得到润滑油中间体;将得到的润滑油中间体经色谱分析,结果显示:2,5,8-壬三酮的转化率为81%,润滑油中间体的选择性为73%;
步骤2:润滑油中间体加氢制备低粘度润滑油基础油
称取0.05g氯金酸和0.9837g氯化锡加入到40mL去离子水中,在25℃下搅拌3h后,加入1g HPMOs继续搅拌3h,然后升温至60℃,并搅拌直至水分完全蒸发,再在100℃的烘箱中过夜干燥,再于空气中450℃下煅烧4h后,使用高纯H2氛围450℃下还原4h,待完全冷却后,使用5:1的N2和空气老化备用,得到加氢催化剂;
将16mL润滑油中间体、80mL环己烷和0.1g加氢催化剂加入到高压反应釜中,将反应釜密封,向反应釜中通入1.0MPa的H2置换反应釜中的空气,将反应釜的温度升至100℃,反应2h,反应结束后,待反应釜冷却后释放H2,蒸馏分离出溶剂,得到低粘度润滑油基础油。
将得到的低粘度润滑油基础油经色谱分析,结果显示:低粘度润滑油基础油的收率为98%,并采用层析柱对低粘度润滑油基础油进行提纯。
实施例2
一种生物质基低粘度润滑油基础油的制备方法,包括如下步骤:
步骤1:2,5,8-壬三酮和糠醛经羟醛缩合反应制备润滑油中间体
将1g 2,5,8-壬三酮、1g糠醛、50mLTHF和0.5g叔丁醇钠加入到圆底烧瓶中,将圆底烧瓶置于油浴锅中,并装上冷凝管,油浴锅升温至100℃,反应12h,反应结束后,蒸馏分离出溶剂,得到润滑油中间体;将得到的润滑油中间体经色谱分析,结果显示:2,5,8-壬三酮的转化率为93%,润滑油中间体的选择性为71%;
步骤2:润滑油中间体加氢制备低粘度润滑油基础油
称取0.12g氯化钯和0.862g高铼酸铵加入到40mL去离子水中,在25℃下搅拌3h后,加入1g HPMOs继续搅拌3h,然后升温至60℃,并搅拌直至水分完全蒸发,再在100℃的烘箱中过夜干燥,再于空气中450℃下煅烧4h后,使用高纯H2氛围450℃下还原4h,待完全冷却后,使用5:1的N2和空气老化备用,得到加氢催化剂;
将50mL润滑油中间体、80mL正己烷和0.1g加氢催化剂加入到高压反应釜中,将反应釜密封,向反应釜中通入3.0MPa的H2置换反应釜中的空气,将反应釜的温度升至250℃,反应4h,反应结束后,待反应釜冷却后释放H2,蒸馏分离出溶剂,得到低粘度润滑油基础油。
将得到的低粘度润滑油基础油经色谱分析,结果显示:低粘度润滑油基础油的收率为100%,并采用层析柱对低粘度润滑油基础油进行提纯。
实施例3
一种生物质基低粘度润滑油基础油的制备方法,包括如下步骤:
步骤1:2,5,8-壬三酮和糠醛经羟醛缩合反应制备润滑油中间体
将1g 2,5,8-壬三酮、1g糠醛、50mL甲醇和水的混合溶液和0.5g NaHCO3加入到圆底烧瓶中,将圆底烧瓶置于油浴锅中,并装上冷凝管,油浴锅升温至150℃,反应24h,反应结束后,蒸馏分离出溶剂,得到润滑油中间体;将得到的润滑油中间体经色谱分析,结果显示:2,5,8-壬三酮的转化率为87%,润滑油中间体的选择性为67%;
步骤2:润滑油中间体加氢制备低粘度润滑油基础油
称取0.22g氯化铂和0.53g硝酸铈加入到40mL去离子水中,在25℃下搅拌3h后,加入1gHPMOs继续搅拌3h,然后升温至60℃,并搅拌直至水分完全蒸发,再在100℃的烘箱中过夜干燥,再于空气中450℃下煅烧4h后,使用高纯H2氛围450℃下还原4h,待完全冷却后,使用5:1的N2和空气老化备用,得到加氢催化剂;
将80mL润滑油中间体、80mL十二烷和0.1g加氢催化剂加入到高压反应釜中,将反应釜密封,向反应釜中通入6.0MPa的H2置换反应釜中的空气,将反应釜的温度升至350℃,反应6h,反应结束后,待反应釜冷却后释放H2,蒸馏分离出溶剂,得到低粘度润滑油基础油。
将得到的低粘度润滑油基础油经色谱分析,结果显示:低粘度润滑油基础油的收率为91%,并采用层析柱对低粘度润滑油基础油进行提纯。
对比例1
对比例1与实施例2所不同的是:对比例1步骤2当中加氢催化剂中的载体为SiO2,结果显示:对比例1所得到的低粘度润滑油基础油的收率为57%。
对比例2
对比例2与实施例3所不同的是:对比例2步骤2当中加氢催化剂中的载体为Al2O3,结果显示:对比例2所得到的低粘度润滑油基础油的收率为65%。
对实施例1至3以及对比例1和2所制得的低粘度润滑油基础油的性能进行测定,结果如表1所示。
表1实施例1-3及对比例1-2的低粘度润滑油基础油的性能
从表1中可以看出:实施例1至3所制得的低粘度润滑油基础油的40℃运动粘度均小于36.5mm2/s,100℃运动粘度均小于6.3mm2/s,凝点均小于-54℃,倾点均小于-46℃,粘度指数均大于158,而对比例1和2所制得的低粘度润滑油基础油的40℃运动粘度均大于44.2mm2/s,100℃运动粘度均大于15.8mm2/s,凝点均大于-35℃,倾点均大于-32℃,粘度指数均小于137,测试结果表明:本发明所制备的低粘度润滑油基础油的性质,特别是倾点、凝点和粘度等方面更好。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何标记视为限制所涉及的权利要求。

Claims (9)

1.一种生物质基低粘度润滑油基础油的制备方法,其特征在于,包括如下步骤:
步骤1:2,5,8-壬三酮和糠醛经羟醛缩合反应制备润滑油中间体
将2,5,8-壬三酮、糠醛、溶剂和催化剂加入到圆底烧瓶中,所述2,5,8-壬三酮、糠醛和溶剂的摩尔比为1:6.5:2.5,将圆底烧瓶置于油浴锅中,并装上冷凝管,升温至50-150℃,反应1-24h,反应结束后,蒸馏分离出溶剂,得到润滑油中间体;
步骤2:润滑油中间体加氢制备低粘度润滑油基础油
将润滑油中间体、溶剂和加氢催化剂加入到高压反应釜中,所述润滑油中间体与溶剂的体积比为1:1-5,将反应釜密封,向反应釜中通入1.0-6.0MPa的H2置换反应釜中的空气,将反应釜的温度升至100-350℃,反应2-6h,反应结束后,待反应釜冷却后释放H2,蒸馏分离出溶剂,得到低粘度润滑油基础油。
2.根据权利要求1所述的生物质基低粘度润滑油基础油的制备方法,其特征在于,所述步骤2中加氢催化剂的活性中心为Ru、Au、Pt、Pd或Ni中的任意一种。
3.根据权利要求2所述的生物质基低粘度润滑油基础油的制备方法,其特征在于,所述步骤2中的加氢催化剂中活性中心负载量为0.05-10wt.%。
4.根据权利要求1所述的生物质基低粘度润滑油基础油的制备方法,其特征在于,所述步骤2中的加氢催化剂中载体为HPMOs。
5.根据权利要求1所述的生物质基低粘度润滑油基础油的制备方法,其特征在于,所述步骤2中加氢催化剂的助催化剂为Ce、Co、Re、Sn或Ir的单质或者氧化物。
6.根据权利要求5所述的生物质基低粘度润滑油基础油的制备方法,其特征在于,所述步骤2中的加氢催化剂中助催化剂的添加量为0.05-5.0wt.%。
7.根据权利要求1所述的生物质基低粘度润滑油基础油的制备方法,其特征在于,所述步骤2中的溶剂为环己烷、十二烷和HMF中的一种或者多种组合。
8.根据权利要求1所述的生物质基低粘度润滑油基础油的制备方法,其特征在于,所述步骤1中的催化剂为KOH、CsCO3、Na2CO3、NaHCO3、NaOH、甲醇钠和叔丁醇钠的一种或者多种组合。
9.根据权利要求1所述的生物质基低粘度润滑油基础油的制备方法,其特征在于,所述步骤1中的溶剂为H2O、HMF、甲醇和乙醇中的一种或者多种组合。
CN202311644266.5A 2023-12-04 2023-12-04 一种生物质基低粘度润滑油基础油的制备方法 Pending CN117602996A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311644266.5A CN117602996A (zh) 2023-12-04 2023-12-04 一种生物质基低粘度润滑油基础油的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311644266.5A CN117602996A (zh) 2023-12-04 2023-12-04 一种生物质基低粘度润滑油基础油的制备方法

Publications (1)

Publication Number Publication Date
CN117602996A true CN117602996A (zh) 2024-02-27

Family

ID=89949682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311644266.5A Pending CN117602996A (zh) 2023-12-04 2023-12-04 一种生物质基低粘度润滑油基础油的制备方法

Country Status (1)

Country Link
CN (1) CN117602996A (zh)

Similar Documents

Publication Publication Date Title
CN108499564B (zh) 一种乙醇酸甲酯的合成过程中的催化剂及其制备方法、应用
CN109453815A (zh) 有机含膦聚合物载体负载的铑基催化剂及其制备和应用
CN108794434B (zh) 催化呋喃二甲醇醚化制备呋喃二甲醇二醚的方法
CN104722329A (zh) 一种生物油脂催化加氢制备烷烃的催化剂
CN104588011A (zh) 烷烃脱氢催化剂及其制备方法
CN107987868B (zh) 油脂分步脱氧制备液体燃料的方法
CN108623436B (zh) 一种一锅法转化纤维素为生物乙醇的方法
CN117602996A (zh) 一种生物质基低粘度润滑油基础油的制备方法
CN111229247B (zh) 一种用于草酸酯加氢制乙醇的催化剂及其制备方法和应用
CN117603748A (zh) 一种呋喃基低粘度润滑油基础油的制备方法
CN108014798B (zh) 加氢制备2-甲基四氢呋喃的催化剂及其使用方法
CN110845290B (zh) 一种生物质基t型低粘度全合成润滑油的制备方法
CN110078687B (zh) 一种2-甲基四氢呋喃的制备方法
CN107282041A (zh) 用于hmf转移加氢产生dmf的催化剂的制备方法
CN110804476B (zh) 一种生物质基低粘度全合成润滑油的制备方法
CN111302879A (zh) 一种生物质基低粘度润滑油的合成方法
CN113666890B (zh) 一种合成多环环醚生物质基润滑油的方法
Hou et al. Self‐Assembled Nickel Nanoparticles Supported on Mesoporous Aluminum Oxide for Selective Hydrogenation of Isophorone
CN111777578B (zh) 5-羟甲基糠醛加氢制备2,5-二羟甲基四氢呋喃的方法
CN113045392A (zh) 多级孔分子筛在制备环戊二烯及jp-10航空燃料工艺中的应用
CN114230443B (zh) 木质素磺酸钠基多孔碳负载金属镍催化木质素氢解的方法
CN114805020B (zh) 一种生物质基芳香醇的快速合成方法
CN115025785B (zh) 一种用于草酸二甲酯加氢制备醋酸甲酯过程中的催化剂及其制备方法和应用
CN110773237B (zh) 一种烷基吡咯-磷钨酸盐催化剂及其制备方法与应用
CN115504952A (zh) 一种6-甲基二氢-2h-吡喃-3(4h)-酮的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination