CN117511987A - 利用p450基因n-z1为筛选标记、啶嘧磺隆为筛选剂的玉米遗传转化方法 - Google Patents

利用p450基因n-z1为筛选标记、啶嘧磺隆为筛选剂的玉米遗传转化方法 Download PDF

Info

Publication number
CN117511987A
CN117511987A CN202311241476.XA CN202311241476A CN117511987A CN 117511987 A CN117511987 A CN 117511987A CN 202311241476 A CN202311241476 A CN 202311241476A CN 117511987 A CN117511987 A CN 117511987A
Authority
CN
China
Prior art keywords
gene
screening
flazasulfuron
culture
corn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311241476.XA
Other languages
English (en)
Inventor
于小星
林海燕
赵宇
沈志成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongyuan Research Institute Of Zhejiang University
Zhejiang University ZJU
Original Assignee
Zhongyuan Research Institute Of Zhejiang University
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongyuan Research Institute Of Zhejiang University, Zhejiang University ZJU filed Critical Zhongyuan Research Institute Of Zhejiang University
Priority to CN202311241476.XA priority Critical patent/CN117511987A/zh
Publication of CN117511987A publication Critical patent/CN117511987A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8209Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
    • C12N15/821Non-antibiotic resistance markers, e.g. morphogenetic, metabolic markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明提供一种利用P450基因N‑Z1为筛选标记、啶嘧磺隆为筛选剂的玉米遗传转化方法,将含有细胞色素P450基因N‑Z1的转化载体转化农杆菌,再用农杆菌菌液侵染玉米幼胚,以啶嘧磺隆为筛选剂,筛选阳性转化体。本发明首次提出在玉米转化过程中将植物来源的抗啶嘧磺隆基因N‑Z1作为筛选标记、啶嘧磺隆作为筛选剂加入筛选培养基和生根培养基中,成功进行玉米遗传转化,转化效率达到4.4%,转化效率和以草甘膦为筛选剂的转化效率相当,是一种安全高效的玉米转化筛选体系。

Description

利用P450基因N-Z1为筛选标记、啶嘧磺隆为筛选剂的玉米遗 传转化方法
(一)技术领域
本发明属于生物工程技术领域,具体涉及一种利用细胞色素P450基因N-Z1为筛选标记、啶嘧磺隆为筛选剂的玉米遗传转化方法。
(二)背景技术
玉米(Zea mays L.)是一种重要的粮食作物、饲料作物和经济作物,是世界上很多地区的主要食物来源。从近几年玉米行业发展趋势来看,2016-2030年中国玉米产量的增长速度会有所下降,而玉米总消费量的增长速度将会明显超出产量的增长速度,国内供需缺口将会进一步扩大。若在保持种植面积不变的情况下,玉米生产方式的不断优化升级才能应对玉米供需缺口不断扩大的趋势。近100年来,玉米育种工作以自然种的杂交选育为主,虽然获得了一些优质的玉米品种,但是其育种工作量大、周期长、育种效率低。同时,种质资源匮乏、部分材料间杂交不亲和、生物间的生殖隔离等因素的存在,造成当前玉米品种同质化严重,影响了当代玉米育种工作的发展。以分子遗传学为基础的现代生物技术的发展与应用,尤其是转基因技术的应用,成功克服了远缘杂交不亲和的困难,将优良的基因导入到受体物种中,实现了育种性状的定向改变,有效地打破了物种间生殖隔离的障碍,丰富了材料的多样性。
自上世纪90年代以来,针对玉米的遗传转化研究快速发展。在玉米转化中,最常用的方法是根癌农杆菌介导的遗传转化。目前,玉米遗传转化筛选标记主要为抗生素抗性基因,如nptII、hpt等,以及抗草甘膦基因cp4 epsps、g2-epsps和g10-epsps,抗草铵膦基因bar和pat。然而,这些细菌来源的标记基因可能会影响环境中的菌群平衡,进而影响人类的健康,阻碍转基因玉米的实际应用。为了解决这一问题,从植物中分离可选择标记基因为玉米遗传转化提供了一种新的方法。
狗牙根是一种草坪草,可以耐受啶嘧磺隆除草剂。因其草茎内蛋白质含量较多,草质柔软、味淡、微甜,叶量丰富,适口性好,是马、牛、羊、兔、猪、家禽、草食性鱼类的优质青饲料。此外,狗牙根也是一种中药材,被认为具有解热利尿、舒筋活血的功能。因此,无论是动物还是人类,都与狗牙根经历了漫长的接触,未对人类健康造成影响。目前尚未有以从狗牙根中克隆的基因为筛选标记进行玉米遗传转化的报道。本发明创造性地将从狗牙根中克隆的抗啶嘧磺隆基因N-Z1作为筛选标记,建立了一种基于啶嘧磺隆为筛选剂的玉米遗传转化体系。
(三)发明内容
本发明的目的是克服现有技术中存在的缺陷,提供一种利用植物来源的细胞色素P450基因N-Z1为筛选标记、啶嘧磺隆为筛选剂的玉米遗传转化方法,解决了细菌来源的标记基因可能会对环境中的菌群平衡造成影响,进而影响人类健康的问题。
本发明采用的技术方案是:
本发明提供一种利用细胞色素P450基因N-Z1为筛选标记、啶嘧磺隆为筛选剂的玉米遗传转化方法,所述方法为:将含有细胞色素P450基因N-Z1的转化载体转化农杆菌,再用农杆菌菌液侵染玉米幼胚,以啶嘧磺隆为筛选剂,筛选阳性转化体。所述以啶嘧磺隆为筛选剂是指用含N-Z1基因的农杆菌菌液侵染玉米幼胚,侵染后的幼胚与农杆菌共培养,将共培养后的幼胚进行恢复培养,然后用含啶嘧磺隆的筛选培养基筛选恢复培养后的幼胚,得到抗性愈伤,抗性愈伤再生成幼苗,幼苗在含嘧啶磺隆的生根培养基中生根后得到转基因植株。
进一步,所述P450基因N-Z1核苷酸序列如SEQ ID NO.1所示。
进一步,含有P450基因N-Z1转化载体按如下方法构建:利用限制性内切酶Xho I将原始pCambia1300载体的hygromycin基因去除,转入表达N-Z1蛋白表达框和表达G10 EPSPS蛋白表达框,构建转化载体pNG。
进一步,表达N-Z1蛋白表达框是将来源于水稻的Actin1启动子、N-Z1基因和终止子功能性连接,人工合成pActin1-N-Z1-t35S片段;所述Actin1启动子核苷酸序列如SEQ IDNO.2所示;所述终止子核苷酸序列如SEQ ID NO.3所示。
进一步,表达G10 EPSPS蛋白表达框是将来源于玉米polyubiquitin-1基因启动子ZmUbi-1、G10 EPSPS基因和终止子功能性连接,人工合成pZmUbi-G10 EPSPS-t35S片段;所述启动子ZmUbi-1核苷酸序列如SEQ ID NO.5所示,G10 EPSPS基因核苷酸序列如SEQ IDNO.4所示;所述终止子核苷酸序列如SEQ ID NO.3所示。
本发明所述利用细胞色素P450基因N-Z1为筛选标记、啶嘧磺隆为筛选剂的玉米遗传转化方法,包括以下步骤:
(1)构建含N-Z1基因的表达载体,转化农杆菌;
(2)将步骤(1)得到的农杆菌在YEP培养基上进行活化培养,得到活化后的农杆菌;
(3)将步骤(2)活化后的农杆菌在侵染液中悬浮混匀,得到农杆菌重悬液;
(4)将玉米幼胚浸泡在步骤(3)的农杆菌重悬液中,得到侵染后幼胚;
(5)将步骤(4)侵染后的幼胚接种于共培养培养基上,21-22℃暗培养3~5天,得到共培养后幼胚;
(6)将步骤(5)共培养后的幼胚转移到恢复培养基上,26-28℃暗培养10~14天,得到恢复培养后幼胚;
(7)将步骤(6)恢复培养后的幼胚转移到含啶嘧磺隆的筛选培养基上,26-28℃暗培养2~3周,得到抗性愈伤;
(8)将步骤(7)成活的抗性愈伤转移到再生培养基上,26-28℃暗培养10-14天,然后转移到新鲜的再生培养基中,25-26℃光照培养10-14天,得到幼苗;
(9)将步骤(8)再生的幼苗转移到含嘧啶磺隆的生根培养基上,25-26℃光照培养直到根发育完全,将生根后的再生苗移植到温室中生长繁种。
进一步,步骤(7)中啶嘧磺隆使用浓度为0.025-1mg/L,优选0.1mg/L和0.2mg/L,更优选0.1mg/L。
进一步,步骤(9)中,啶嘧磺隆使用浓度为0.025-0.08mg/L,优选0.025mg/L。
进一步,步骤(2)中,YEP培养基组成:酵母提取物10g/L、蛋白胨10g/L、氯化钠5g/L、琼脂15g/L、卡那霉素50mg/L、利福平25mg/L,溶剂为蒸馏水。
进一步,步骤(3)中,侵染液组成:MS基础盐4-5g/L、1000X N6维生素溶液0.5-1.5ml/L、水解酪蛋白0.5-1.5g/L、蔗糖60.5-76.5g/L、麦草畏3-7mg/L、葡糖糖30-42g/L、乙酰丁香酮30-50mg/L,溶剂为蒸馏水,pH5.2;更优选侵染液组成:MS基础盐4.33g/L、1000XN6维生素溶液1ml/L、水解酪蛋白1g/L、蔗糖68.5g/L、麦草畏5mg/L、葡糖糖36g/L、乙酰丁香酮40mg/L,溶剂为蒸馏水,pH5.2。
进一步,步骤(4)所述农杆菌重悬液的OD660为0.4-0.6;所述幼胚为从幼穗上剥离获得的幼胚,所述幼穗为人工授粉8-10天(春、夏季)或10-13天(秋季)且幼胚最大直径为1.0-1.5mm时采摘的幼穗;所述浸泡时间为4-6min。
进一步,步骤(5)共培养培养基组成:MS基础盐4-5g/L、1000X N6维生素溶液0.5-1.5ml/L、MES(2-吗啉乙磺酸)0.3-0.7g/L、蔗糖15-25g/L、葡糖糖5-15g/L、半胱氨酸30-70mg/L、麦草畏2-4mg/L、乙酰丁香酮30-50mg/L、琼脂10-15g/L,溶剂为蒸馏水,pH5.8;更优选共培养培养基组成:MS基础盐4.33g/L、1000X N6维生素溶液1ml/L、MES(2-吗啉乙磺酸)0.5g/L、蔗糖20g/L、葡糖糖10g/L、半胱氨酸50mg/L、麦草畏3mg/L、乙酰丁香酮40mg/L、琼脂12g/L,溶剂为蒸馏水,pH5.8。
进一步,步骤(6)恢复培养基组成:MS基础盐4-5g/L、1000X N6维生素溶液0.5-1.5ml/L、MES(2-吗啉乙磺酸)0.5-1.5g/L、水解酪蛋白0.3-0.7g/L、脯氨酸1-1.76g/L、蔗糖25-35g/L、2,4-D 0.5-1.5mg/L、麦草畏1-3mg/L、酸水解酪蛋白50-150mg/L、特美汀150-250mg/L、硝酸银3-7mg/L、植物凝胶3-4g/L,溶剂为蒸馏水,pH5.8;更优选,恢复培养基组成:MS基础盐4.33g/L、1000X N6维生素溶液1ml/L、MES 1g/L、水解酪蛋白0.5g/L、脯氨酸1.38g/L、蔗糖30g/L、2,4-D 1mg/L、麦草畏1mg/L、酸水解酪蛋白100mg/L、特美汀200mg/L、硝酸银5mg/L、植物凝胶3.21g/L,溶剂为蒸馏水,pH5.8。
进一步,步骤(7)筛选培养基组成:MS基础盐4-5g/L、1000X N6维生素溶液0.5-1.5ml/L、MES(2-吗啉乙磺酸)0.3-0.7g/L、肌醇0.05-0.15g/L、蔗糖20-30g/L、麦草畏2-4mg/L、酸水解酪蛋白50-150mg/L、特美汀150-250mg/L、硝酸银3-7mg/L、啶嘧磺隆0.025-1mg/L、植物凝胶3-4g/L,溶剂为蒸馏水,pH5.8;更优选,筛选培养基组成:MS基础盐4.33g/L、1000X N6维生素溶液1ml/L、MES 0.5g/L、肌醇0.1g/L、蔗糖25g/L、麦草畏3mg/L、酸水解酪蛋白100mg/L、特美汀200mg/L、硝酸银5mg/L、啶嘧磺隆0.1mg/L、植物凝胶3.21g/L,溶剂为蒸馏水,pH5.8。
进一步,步骤(8)再生培养基组成:MS基础盐4-5g/L、1000X MS维生素溶液0.5-1.5ml/L、MES(2-吗啉乙磺酸)0.5-1.5g/L、肌醇0.05-0.15g/L、激动素0.3-0.7mg/L、嘧啶醇0.2-0.3mg/L、蔗糖20-30g/L、特美汀150-250mg/L、植物凝胶3-4g/L,溶剂为蒸馏水,pH5.8;更优选,再生培养基组成:MS基础盐4.33g/L、1000X MS维生素溶液1ml/L、MES1g/L、肌醇0.1g/L、激动素0.5mg/L、嘧啶醇0.25mg/L、蔗糖25g/L、特美汀200mg/L、植物凝胶3.21g/L,溶剂为蒸馏水,pH5.8。
进一步,步骤(9)生根培养基组成:MS基础盐1.8-2.5g/L、1000X MS维生素溶液0.5-1.5ml/L、肌醇0.05-0.15g/L、蔗糖15-25g/L、特美汀50-150mg/L、啶嘧磺隆0.025-0.08mg/L、植物凝胶3-4g/L,溶剂为蒸馏水,pH5.8;更优选,生根培养基组成:MS基础盐2.17g/L、1000X MS维生素溶液1ml/L、肌醇0.1g/L、蔗糖20g/L、特美汀100mg/L、啶嘧磺隆0.025mg/L、植物凝胶3.21g/L,溶剂为蒸馏水,pH5.8。
本发明采用G10 EPSPS速测试纸检测玉米阳性转化体。
与现有技术相比,本发明有益效果主要体现在:
1、本发明首次提出在玉米转化过程中将植物来源的抗啶嘧磺隆基因N-Z1作为筛选标记、啶嘧磺隆作为筛选剂加入筛选培养基和生根培养基中,成功进行玉米遗传转化,转化效率达到4.4%,转化效率和以草甘膦为筛选剂的转化效率相当,是一种安全高效的玉米转化筛选体系。
2、相较于细菌来源的传统抗生素抗性基因(nptII基因和hpt基因等)和除草剂抗性基因(bar基因、pat基因和EPSPS基因等),本发明利用来源于植物的抗啶嘧磺隆基因N-Z1为筛选标记,成功进行玉米遗传转化,拓宽了玉米遗传转化筛选标记基因范围,解决了细菌来源的筛选标记基因可能会对环境中的菌群平衡造成影响,进而影响人类健康的问题。
3、啶嘧磺隆为内吸型除草剂,本发明获得的转基因植株对啶嘧磺隆的耐受性较高,且其后代能稳定遗传,可直接开发成耐受啶嘧磺隆作物用于产品的开发。抗啶嘧磺隆性状不仅可在遗传转化阶段发挥作用,后续可用于田间杂草防治。同时,啶嘧磺隆与草甘膦轮换使用,可缓解草甘膦抗性杂草越来越多的问题。
(四)附图说明
图1为pNG转化载体图谱。
图2为实施例1试纸条检测图。
(五)具体实施方式
以下的实施例便于更好地理解本发明,但不限定于本发明。下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的实验材料,如无特殊说明,均为常规生化试剂商店购买得到的。
下述实施例中所涉及的试剂及来源如下:MS基础盐(PhytoTech,M524),MES(Sigma,M3671),1000X MS维生素溶液(PhytoTech,M553),1000X N6维生素溶液(PhytoTech,C149),2,4-D(PhytoTech,D295),麦草畏(PhytoTech,D159),琼脂(Sigma,A7921),植物凝胶(PhytoTech,G3251),脯氨酸(Gentihold,P1025),肌醇(沪试,63007738),蔗糖(沪试,10021418),葡萄糖(沪试,63007738),乙酰丁香酮(PhytoTech,A104),半胱氨酸(PhytoTech,C248),酸水解酪蛋白(Sigma,C7290),水解酪蛋白(Sigma,22090),嘧啶醇(PhytoTech,A123),激动素(Sigma,K0753),特美汀(Yeasen,T6315180),硝酸银(Sigma,22090),啶嘧磺隆(ISK,PD390),氯化钠(沪试,10019308),酵母提取物(Sigma,Y1625),蛋白胨(Sigma,P5905),卡那霉素(PhytoTech,K378),利福平(PhytoTech,R501)。
本发明涉及的培养基组成如下:
农杆菌活化培养基(YEP培养基):将10g酵母提取物、10g蛋白胨、5g氯化钠和15g琼脂溶于1L蒸馏水,121℃高压灭菌15min,冷却至50℃添加卡那霉素和利福平,使其终浓度分别为50mg/L和25mg/L。
侵染液:将4.33g MS基础盐粉末、1ml 1000X N6维生素溶液、1g水解酪蛋白、68.5g蔗糖、36g葡萄糖和5mg麦草畏溶于1L蒸馏水,KOH调节pH为5.2,真空过滤灭菌,使用之前加入乙酰丁香酮至终浓度为40mg/L。
共培养培养基:将4.33g MS基础盐粉末、0.5g MES粉末、20g蔗糖、10g葡萄糖、3mg麦草畏和12g琼脂溶于1L蒸馏水,KOH调节pH为5.8,121℃高压灭菌15min,冷却至50℃添加1ml 1000X N6维生素溶液、终浓度为40mg/L乙酰丁香酮、终浓度为50mg/L半胱氨酸。
恢复培养基:将4.33g MS基础盐粉末、1g MES粉末、1.38g脯氨酸、0.5g水解酪蛋白、30g蔗糖、3mg麦草畏、1mg 2,4-D和3.21g植物凝胶溶于1L蒸馏水,KOH调节pH为5.8,121℃高压灭菌15min,冷却至50℃添加1ml 1000X N6维生素溶液、终浓度为100mg/L酸水解酪蛋白、终浓度为200mg/L特美汀、终浓度为5mg/L硝酸银。
筛选培养基:将4.33g MS基础盐粉末、0.5g MES粉末、0.1g肌醇、25g蔗糖、3mg麦草畏和3.21g植物凝胶溶于1L蒸馏水,KOH调节pH为5.8,121℃高压灭菌15min,冷却至50℃添加1ml 1000X N6维生素溶液、终浓度为100mg/L酸水解酪蛋白、终浓度为200mg/L特美汀、终浓度为5mg/L硝酸银、终浓度为0.1mg/L啶嘧磺隆。
再生培养基:将4.33g MS基础盐粉末、1g MES粉末、1ml 1000X MS维生素溶液、0.1g肌醇、25g蔗糖、0.5mg激动素、0.25mg嘧啶醇和3.21g植物凝胶溶于1L蒸馏水,KOH调节pH为5.8,121℃高压灭菌15min,冷却至50℃添加特美汀,使其终浓度为200mg/L。
生根培养基:将2.17g MS基础盐粉末、1ml 1000X MS维生素溶液、0.1g肌醇、20g蔗糖和3.21g植物凝胶溶于1L蒸馏水,KOH调节pH为5.8,121℃高压灭菌15min,冷却至50℃添加特美汀和啶嘧磺隆,使其终浓度分别为100mg/L和0.025mg/L。
实施例1:利用抗啶嘧磺隆基因N-Z1作为筛选标记、啶嘧磺隆为筛选剂的玉米遗传转化方法
1.转化载体pNG的构建
本发明用于玉米转化的pNG载体图谱如图1所示,双元载体pCambia1300(GenBank:AF234296.1)作为转化的基础载体构建表达载体,利用限制性内切酶Xho I将原始pCambia1300载体的hygromycin基因去除,转入表达N-Z1蛋白表达框和表达G10 EPSPS蛋白表达框,构建转化载体pNG。
表达N-Z1蛋白表达框:N-Z1基因(核苷酸序列如SEQ ID NO.1所示),驱动N-Z1的启动子为来源于水稻的Actin1启动子(Actin1,核苷酸序列如SEQ ID NO.2所示),终止子是CaMV的35S基因终止子(核苷酸序列如SEQ ID NO.3所示);人工合成pActin1-N-Z1-t35S片段。
表达G10 EPSPS蛋白表达框(用作筛选对照):G10 EPSPS(核苷酸序列如SEQ IDNO.4所示),驱动G10 EPSPS的启动子为来源于玉米polyubiquitin-1基因启动子(ZmUbi-1,核苷酸序列如SEQ ID NO.5所示),终止子是CaMV的35S基因终止子(核苷酸序列如SEQ IDNO.3所示)。人工合成pZmUbi-G10 EPSPS-t35S片段。
2.农杆菌的制备
将上述转化载体pNG利用电击法导入农杆菌LBA4404中,获得含有转化载体pNG的农杆菌。将含有载体pNG的农杆菌菌液涂布在YEP培养基上,28℃暗培养24-36小时。
3.农杆菌重悬液的制备
将步骤2平板上的农杆菌刮到侵染液中,震荡混匀,利用分光光度计检测OD660,用侵染液调整OD660为0.5,随后加入终浓度为40mg/L的乙酰丁香酮,得到农杆菌重悬液。
4.幼胚的获得及侵染
在田间播种玉米自交系Hi-II,播种50-55天后进行人工授粉。采摘人工授粉后8-10天(春、夏季)或10-13天(秋季)且玉米幼胚最大直径为1.0-1.5mm时的幼穗。将苞叶去除,用镊子串着玉米,放到20%的次氯酸钠溶液中消毒20min,将20%次氯酸钠溶液倒掉,用灭菌水冲洗3次。用手术刀将玉米未成熟籽粒切掉三分之一,再用专用勺将1.0-1.5mm的幼胚挖出,放入装有侵染液的2ml离心管中,时间控制在1h之内,收集完幼胚后,用新的侵染液将幼胚清洗一次,然后加入步骤3制备好的农杆菌重悬液,涡旋仪震荡30s,室温静置5min。
5.共培养及恢复
将步骤4中沉浸在农杆菌重悬液中的幼胚收集至共培养培养基上,并用灭菌滤纸将幼胚表面的农杆菌残液吸干净,然后用灭菌手术刀将幼胚以盾片朝上的方式彼此分散平铺在共培养培养基上,放置在22℃暗室内培养3-5天。暗培养结束后,利用灭菌手术刀将幼胚转移至恢复培养基上,其幼胚平铺方式同共培养阶段,然后在28℃暗室内培养10-14天。
6.筛选培养
经恢复培养后,幼胚表面有愈伤突起时转移至含嘧啶磺隆的筛选培养基上继续在28℃条件下暗培养2-3周,获得抗性愈伤。
7.再生苗诱导
将步骤6获得的抗性愈伤接种至再生培养基上,每皿4-7块,28℃暗培养10-14天,然后转移到新鲜的再生培养基中,26℃光照培养10-14天,光照周期为白光16h/黑暗8h,得到幼苗。
8.生根诱导
将步骤7获得的幼苗用镊子转移至装有含嘧啶磺隆的生根培养基的生根罐中,置于26℃,光照周期为白光16h/黑暗8h的光照培养间培养直到根发育完全,得到转基因玉米植株。
9.转化率与阳性率
按照步骤1-步骤8的方法进行5次实验,每次实验处理300个幼胚。统计5次实验的转化率,然后取平均值。转化率=转化体数/幼胚总数*100%。
结果表明,平均转化率为4.4%。
对所有T0代转化体进行单克隆抗体试纸条检测,所用G10 EPSPS速测试纸为上海佑隆生物科技有限公司的产品,货号:AA1132-LSGB。取温室萌发的受体材料非转基因玉米(Hi-II)叶片组织及所有T0代转化体叶片组织,分别置于一次性离心管中,用杵旋转碾碎叶片,按压20~30s,加入0.2ml的提取缓冲液,将试纸条按照说明书放入离心管中,5~8分钟内读取结果。
结果表明(图2),非转基因玉米速测试纸只出现C线,阳性T0代转化体的速测试纸均出现C线与T线,阳性率高达97.6%。
对照例1:
按照上述实施例1方法,将筛选培养基和生根培养基中的啶嘧磺隆替换成草甘膦,草甘膦在筛选培养基和生根培养基中的终浓度分别为300mg/L和20mg/L,其他步骤不变,重复5次,每次实验处理300个幼胚。
结果表明,平均转化率为5.8%,阳性率为98.3%。
上述结果表明,本发明建立的以细胞色素P450基因N-Z1为筛选标记、啶嘧磺隆为筛选剂的玉米遗传转化方法,可以获得转基因玉米植株,且转化效率和以草甘膦为筛选剂的转化效率相当。
由此可见,本发明建立的以N-Z1基因为筛选标记、啶嘧磺隆为筛选剂的玉米遗传转化方法是一种有效可行的遗传转化方法,拓宽了玉米遗传转化筛选标记基因范围。

Claims (10)

1.一种利用P450基因N-Z1为筛选标记、啶嘧磺隆为筛选剂的玉米遗传转化方法,其特征在于,所述方法为:将含有P450基因N-Z1的转化载体转化农杆菌,再用农杆菌菌液侵染玉米幼胚,以啶嘧磺隆为筛选剂,筛选阳性转化体。
2.如权利要求1所述的方法,其特征在于,所述P450基因N-Z1核苷酸序列如SEQ IDNO.1所示。
3.如权利要求1所述的方法,其特征在于,含有P450基因N-Z1转化载体按如下方法构建:利用限制性内切酶Xho I将原始pCambia1300载体的hygromycin基因去除,转入表达N-Z1蛋白表达框和表达G10 EPSPS蛋白表达框,构建转化载体pNG。
4.如权利要求3所述的方法,其特征在于,表达N-Z1蛋白表达框是将来源于水稻的Actin1启动子、N-Z1基因和终止子功能性连接,人工合成pActin1-N-Z1-t35S片段;所述Actin1启动子核苷酸序列如SEQ ID NO.2所示;所述终止子核苷酸序列如SEQ ID NO.3所示。
5.如权利要求3所述的方法,其特征在于,表达G10 EPSPS蛋白表达框是将来源于玉米polyubiquitin-1基因启动子ZmUbi-1、G10 EPSPS基因和终止子功能性连接,人工合成pZmUbi-G10 EPSPS-t35S片段;所述启动子ZmUbi-1核苷酸序列如SEQ ID NO.5所示,G10EPSPS基因核苷酸序列如SEQ ID NO.4所示;所述终止子核苷酸序列如SEQ ID NO.3所示。
6.如权利要求1所述的方法,其特征在于,所述方法包括以下步骤:
(1)构建含N-Z1基因的表达载体,转化农杆菌;
(2)将步骤(1)得到的农杆菌在YEP培养基上进行活化培养,得到活化后的农杆菌;
(3)将步骤(2)活化后的农杆菌在侵染液中悬浮混匀,得到农杆菌重悬液;
(4)将玉米幼胚浸泡在步骤(3)的农杆菌重悬液中,得到侵染后幼胚;
(5)将步骤(4)侵染后的幼胚接种于共培养培养基上,21-22℃暗培养3~5天,得到共培养后幼胚;
(6)将步骤(5)共培养后的幼胚转移到恢复培养基上,26-28℃暗培养10~14天,得到恢复培养后幼胚;
(7)将步骤(6)恢复培养后的幼胚转移到含啶嘧磺隆的筛选培养基上,26-28℃暗培养2~3周,得到抗性愈伤;
(8)将步骤(7)成活的抗性愈伤转移到再生培养基上,26-28℃暗培养10-14天,然后转移到新鲜的再生培养基中,25-26℃光照培养10-14天,得到幼苗;
(9)将步骤(8)再生的幼苗转移到含嘧啶磺隆的生根培养基上,25-26℃光照培养直到根发育完全,将生根后的再生苗移植到温室中生长繁种。
7.如权利要求6所述的方法,其特征在于,步骤(7)中啶嘧磺隆使用浓度为0.025-1mg/L。
8.如权利要求6所述的方法,其特征在于,步骤(9)中,啶嘧磺隆使用浓度为0.025-0.08mg/L。
9.如权利要求6所述的方法,其特征在于,步骤(4)所述农杆菌重悬液的OD660为0.4-0.6;所述浸泡时间为4-6min。
10.如权利要求6所述的方法,其特征在于,步骤(4)所述幼胚为从幼穗上剥离获得的幼胚,所述幼穗为人工授粉后春夏季8-10天或秋季10-13天且幼胚最大直径为1.0-1.5mm时采摘的幼穗。
CN202311241476.XA 2023-09-25 2023-09-25 利用p450基因n-z1为筛选标记、啶嘧磺隆为筛选剂的玉米遗传转化方法 Pending CN117511987A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311241476.XA CN117511987A (zh) 2023-09-25 2023-09-25 利用p450基因n-z1为筛选标记、啶嘧磺隆为筛选剂的玉米遗传转化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311241476.XA CN117511987A (zh) 2023-09-25 2023-09-25 利用p450基因n-z1为筛选标记、啶嘧磺隆为筛选剂的玉米遗传转化方法

Publications (1)

Publication Number Publication Date
CN117511987A true CN117511987A (zh) 2024-02-06

Family

ID=89765205

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311241476.XA Pending CN117511987A (zh) 2023-09-25 2023-09-25 利用p450基因n-z1为筛选标记、啶嘧磺隆为筛选剂的玉米遗传转化方法

Country Status (1)

Country Link
CN (1) CN117511987A (zh)

Similar Documents

Publication Publication Date Title
US7910803B2 (en) Transformation in Camelina sativa
US5480789A (en) Genetically transformed rose plants and methods for their production
CN87107233A (zh) 棉株及其株系的遗传工程
US5286635A (en) Genetically transformed pea plants and methods for their production
EP3591058B1 (en) Method of producing transgenic taraxacum plant
CN107022561B (zh) 用于培育转基因玉米的培养基及培养方法
Tee et al. Evaluation of different promoters driving the GFP reporter gene and selected target tissues for particle bombardment of Dendrobium Sonia 17
CN112481276B (zh) 玉米基因ZmSCL14在调控植物开花期中的应用
CN114836464B (zh) 一种根癌农杆菌介导的羊草遗传转化方法
CN109593778A (zh) 一种植物人工智能雄性不育系及应用
EP0536327A4 (zh)
CN102250943A (zh) 一种农杆菌介导的大豆离体组织培养方法
CN116769792B (zh) 一种毛竹茎秆伸长相关基因PheLBD12及其应用
US7897838B2 (en) Methods for high efficiency transformation and regeneration of plant suspension cultures
AU777365B2 (en) Agrobacterium-mediated transformation of cotton with novel explants
CN108588002B (zh) 获得谷子用于遗传转化的胚性愈伤组织和遗传转化的方法
US20030046733A1 (en) Transformation of soybeans
JP4228044B2 (ja) シバ属植物の再分化植物体及び形質転換植物体
US20010007157A1 (en) Genetically transformed rose plants and methods for their production
CN117511987A (zh) 利用p450基因n-z1为筛选标记、啶嘧磺隆为筛选剂的玉米遗传转化方法
CN117143907A (zh) 一种糜子遗传转化方法
Kose et al. Agrobacterium-Mediated) Transformation of Cucumber (Cucumis Sativus L.) and Plant Regeneration
CN114134159A (zh) 水稻基因OsWOX3B在调控根系形态中的应用
US20040210958A1 (en) A Novel Culture Method for Corn Transformation
KR100375674B1 (ko) 배추의 배축을 이용한 재생방법 및 유용한 외래유전자로형질전환된 배추의 생산방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination