CN117510551A - 吡啶磺酰胺铱络合物、制备方法及对nadh高选择性催化再生 - Google Patents

吡啶磺酰胺铱络合物、制备方法及对nadh高选择性催化再生 Download PDF

Info

Publication number
CN117510551A
CN117510551A CN202311174172.6A CN202311174172A CN117510551A CN 117510551 A CN117510551 A CN 117510551A CN 202311174172 A CN202311174172 A CN 202311174172A CN 117510551 A CN117510551 A CN 117510551A
Authority
CN
China
Prior art keywords
iridium complex
nadh
pyridine
sulfonamide
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311174172.6A
Other languages
English (en)
Inventor
张立雨
赵立军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai University
Original Assignee
Yantai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai University filed Critical Yantai University
Priority to CN202311174172.6A priority Critical patent/CN117510551A/zh
Publication of CN117510551A publication Critical patent/CN117510551A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • C07H19/207Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids the phosphoric or polyphosphoric acids being esterified by a further hydroxylic compound, e.g. flavine adenine dinucleotide or nicotinamide-adenine dinucleotide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/646Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of aromatic or heteroaromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)

Abstract

本发明涉及有机金属络合物催化领域,具体公开了一种能够高效、高选择性催化辅酶NADH再生的有机金属铱络合物及其制备方法,其中有机金属铱络合物为一种新的五甲基环戊二烯基(Cp*)吡啶磺酰胺铱络合物。本发明的有益之处在于,该有机金属铱络合物能够高效、高选择性的催化氧化型辅酶NAD+低温加氢转化为还原型辅酶NADH,并展现出了良好的生物相容性。

Description

吡啶磺酰胺铱络合物、制备方法及对NADH高选择性催化再生
技术领域
本发明涉及有机金属络合物的制备及催化化学技术领域,具体地说,涉及有机金属铱络合物的设计及制备方法,涉及有机金属铱络合物在催化还原型辅酶烟酰胺腺嘌呤二核苷酸NADH再生合成中的应用。
背景技术
当前,生物相容性金属有机催化剂作为化学生物学的新兴前沿,在疾病治疗、生物成像与诊断、生化协同催化制备等方面都显示出了重要的应用价值。基于金属-有机催化剂和生物酶的生物化学级联催化系统是一种有潜力的、独特的合成方法,它可以将化学催化和生物催化的各种优点结合起来。然而,建立生化级联催化体系主要面临两个挑战:(1)开发辅酶烟酰胺腺嘌呤二核苷酸NAD+/NADH的高效化学催化再生催化剂;(2)解决化学催化剂与相应酶的不相容性问题。NAD+/NADH在生物代谢过程中起着至关重要的作用,与人体健康密切相关。因此,研究人员开发了各种方法来模拟NAD+与NADH的相互催化转化,包括电催化、光催化、化学催化、金属-有机催化等。其中,金属-有机催化因具有多样性、易修饰、耐水耐氧等优点,已成为一种重要的催化方式。对各种生物相容性金属-有机催化反应的广泛研究,也为NAD+/NADH的高效再生提供了保证。
在各种金属-有机催化剂中,铱-有机催化剂已被证明在复杂的生物环境中具有活性。以往的研究表明,吡啶酰胺型铱络合物对甲酸分解、醛还原具有突出的催化性能,这主要得益于N¯阴离子的强给电子效应。吡啶酰胺铱络合物已经被证明,在生理条件下对催化还原型辅酶烟酰胺腺嘌呤二核苷酸NADH再生表现出优异的催化活性,甚至超过了一些相关的生物酶(如甲酸脱氢酶)。但现有高活性辅酶NADH再生金属铱络合物催化剂,对于催化辅酶NADH的选择性仍然较低,因此极大的限制了高活性金属铱络合物催化剂在化学-生物协同催化中的应用。
基于此,本发明通过调节配体的电负性,合成了一种新的五甲基环戊二烯基(Cp*)吡啶磺酰胺铱络合物,该络合物不仅展现出了出色的辅酶NADH再生催化性能,但对其他酶催化底物(α-酮戊二酸、苯甲醛和三甲基对苯醌(TMBQ))的催化活性明显受限。如此,基于所发明的吡啶磺酰胺铱络合物对辅酶NADH出色的选择性催化再生性能,以及良好的生物相容性,能够被应用于构建更加优异的化学-酶协同催化体系,展现出了出色的化学-生物协同制备性能。
发明内容
为解决现有高活性辅酶NADH再生用金属铱络合物催化剂的低选择性问题以及在化学-生物协同催化应用中的局限性,本发明的第一个目的在于:提供一种结构稳定、生物相容性好、对催化辅酶NADH再生具有高效、高选择性特点的新型有机金属铱络合物;本发明的第二个目的在于:提供一种合成路线简单、产率高的制备上述金属铱络合物的方法。
为实现上述第一个目的,本发明采取了以下技术方案:
一种能够高选择性催化辅酶NADH再生的有机金属铱络合物,所述金属铱络合物能够高效的催化氧化型辅酶NAD+加氢再生还原型辅酶NADH,但对其他酶催化底物(α-酮戊二酸、苯甲醛和三甲基对苯醌(TMBQ))的催化活性明显较低,其特征在于, 所述铱络合物为一种新的五甲基环戊二烯基(Cp*)吡啶磺酰胺铱络合物,结构式如式1所示。
为实现上述第二个目的,本发明采取了以下技术方案:
一种制备式1所示能够高选择性催化辅酶NADH再生的有机金属铱络合物的方法,其特征在于,包括以下步骤:
步骤1: 将原料2-巯基吡啶溶于二氯甲烷溶剂中,冷却至零下10-5摄氏度下,加入混酸浓盐酸-次氯酸或浓硫酸-次氯酸进行磺酰化反应,反应结束后,混合液用二氯甲烷萃取、无水硫酸钠干燥后得到活化的中间体2-吡啶磺酰氯;
步骤2:将步骤1得到的中间体2-吡啶磺酰氯与各种不同取代的苯胺化合物混合,在干燥的二氯甲烷或乙腈或四氢呋喃溶剂中反应10到30小时;
步骤3:向步骤2的反应液中加入一定量二氯甲烷,依次用浓度为1.0摩尔/升的磷酸溶液冲洗三次、去离子水冲洗三次、无水硫酸钠干燥,加压蒸馏的到粗产品2-吡啶磺酰胺型配体;
步骤4:将步骤3得到的粗产品2-吡啶磺酰胺型配体采用硅胶正相色谱柱,以二氯甲烷/石油醚为流动相进行分离,得到纯的2-吡啶磺酰胺型配体,产率70%~90%;
步骤 5:将步骤4得到纯的2-吡啶磺酰胺型配体、五甲基环戊二烯二氯铱二聚体和六氟磷酸铵溶于无水乙醇中,氮气保护下,回流反应10到24小时;
步骤6:将步骤5的反应液冷却至室温,过滤、乙醇冲洗3次,收集固体即为纯的式1所示吡啶磺酰胺型铱络合物。
优选的,在步骤2中,所述中间体2-吡啶磺酰氯与各种不同取代的苯胺化合物的摩尔比为1:1~10。
优选的,在步骤4中,所述流动相二氯甲烷与石油醚的体积比为1:0.1~10。
优选的,在步骤5中,所述2-吡啶磺酰胺型配体与五甲基环戊二烯二氯化铱二聚体和六氟磷酸铵的摩尔比为0.5~5 : 1: 2~10。
本发明的有益之处在于:
本发明提供的有机金属铱络合物,结构稳定,有利于在室温、空气、潮湿环境中长期保存;
(2)本发明提供的有机金属铱络合物能够高效、高选择性的催化氧化型辅酶NAD+低温加氢转化为还原型辅酶NADH,但对其他酶催化底物(α-酮戊二酸、苯甲醛和三甲基对苯醌(TMBQ))的催化活性明显较低,有利于与相关的生物脱氢酶结合,构建出色的化学-酶协同催化体系,应用于特殊生物化学品L-谷氨酸、三甲基对苯二酚的制备。
附图说明
图1是式1所示铱络合物的合成路线图;
图2是式1所示铱络合物催化氧化型辅酶NAD+加氢制备还原型辅酶NADH的反应示意图,以及与2-吡啶苯酰胺铱络合物5催化再生辅酶NADH的产率比较示意图;
图3是式1所示铱络合物催化苯甲醛加氢制备苯甲醇、三甲基对苯醌加氢制备三甲基对苯二酚和α-酮戊二酸加氢制备L-谷氨酸的反应示意图,以及与2-吡啶苯酰胺铱络合物5催化加氢制备苯甲醇、三甲基对苯二酚以及L-谷氨酸的产率比较示意图;
图4是式1铱络合物1a在多种生物分子存在下,铱络合物1a对NAD+加氢制备还原型辅酶NADH的产率比较示意图;
图5是式1铱络合物1a-f与L-谷氨酸脱氢酶GLDH相结合,构建的化学-酶级联催化体系,生产L-谷氨酸的产率比较示意图。
实施方式
以下结合附图和具体实施例对本发明做具体介绍。
新型吡啶磺酰胺型铱络合物的结构
本发明提供的高效、高选择性催化辅酶NADH再生的铱络合物结构中,配体N-(4-取代苯基)吡啶-2-磺酰胺中的两个氮原子与金属铱进行配位,形成稳定的五元环结构,金属铱进一步与五甲基环戊二烯基(Cp*)和氯离子(Cl-)进行单配位形成稳定的夹心结构铱络合物,结构式具体如式1所示。
本发明提供的新型吡啶磺酰胺型铱络合物的制备方法
一种制备式1所示能够高选择性催化辅酶NADH再生的有机金属铱络合物的方法,其特征在于,包括以下步骤:
本发明提供的制备式1所示,高选择性催化辅酶NADH再生的有机金属铱络合物的方法,具体合成路线如附图1所示。
实施例1、制备N-苯基吡啶-2-磺酰胺五甲基环戊二烯(Cp*)氯代铱络合物1a的制备方法,具体包括如下步骤:
步骤1:将原料1.0 克 2-巯基吡啶溶于20毫升二氯甲烷溶剂中,冷却至零下10-5摄氏度下,加入20毫升体积比为1:1的浓盐酸-次氯酸进行磺酰化反应,反应10到30分钟后,混合液用100毫升二氯甲烷萃取、10克无水硫酸钠干燥后得到活化的中间体2-吡啶磺酰氯;
步骤2:将得到的中间体2-吡啶磺酰氯(约9.0 mmol)与苯胺(1.67g,18.0 mmol)混合,在干燥的二氯甲烷或乙腈或四氢呋喃溶剂中反应24小时;
步骤3:向反应液中加入100~200毫升二氯甲烷,依次用50毫升浓度为1.0摩尔/升的磷酸溶液冲洗三次、50毫升去离子水冲洗三次、50克无水硫酸钠干燥,加压蒸馏的到中间体粗产品N-苯基吡啶-2-磺酰胺;
步骤4:将步骤3所得到的中间体粗产品N-苯基吡啶-2-磺酰胺采用硅胶正相色谱柱,以二氯甲烷/石油醚= 1:5为流动相进行分离,得到纯的N-苯基吡啶-2-磺酰胺1.79 g(7.67 mmol),产率85.2 %;
步骤5:将步骤4所得到纯的配体N-苯基吡啶-2-磺酰胺(58.5 mg,0.25 mmol)、五甲基环戊二烯二氯铱二聚体Ir-dimer (100 mg,0.125 mmol)、六氟磷酸铵(81.5 mg,0.5mmol)溶于20毫升无水乙醇中,氮气保护下,80摄氏度回流反应24小时;
步骤6:将步骤5的反应液冷却至室温,过滤、20毫升乙醇冲洗3次,收集固体即为纯的铱络合物1a 56.322 mg(0.095 mmol),产率75.6 %。
经检测,步骤4得到的中间产物的核磁共振氢谱、碳谱和质谱数据分别如下:
1H NMR (400 MHz, CDCl3) δ 8.81 – 8.67 (m, 1H), 8.04 (s, 1H), 7.90 (d,J = 7.8 Hz, 1H), 7.81 (td, J = 7.7, 1.7 Hz, 1H), 7.46 (ddd, J = 7.5, 4.7, 1.0Hz, 1H), 7.21 (d, J = 4.0 Hz, 4H), 7.13 – 7.02 (m, 1H);
13C NMR (101 MHz, CDCl3) δ 156.18 (s), 150.10 (s), 138.05 (s), 136.10(s), 129.22 (s), 127.00 (s), 125.68 (s), 123.16 (s), 122.69 (s);
MS (ESI): m /z cacld for ([M+Na+]+) C11H10N2NaO2S 257.0361; found257.0362。
经检测,步骤6得到的铱络合物1a核磁共振氢谱、碳谱和质谱数据分别如下:
1H NMR (600 MHz, DMSO) δ 8.76 (d, J = 5.4 Hz, 1H), 8.27 (td, J = 7.8,1.1 Hz, 1H), 7.93 (d, J = 7.8 Hz, 1H), 7.85 – 7.78 (m, 1H), 7.56 (d, J = 7.8Hz, 2H), 7.17 (t, J = 7.8 Hz, 2H), 6.91 (t, J = 7.3 Hz, 1H), 1.37 (s, 15H);
13C NMR (151 MHz, DMSO) δ 157.25 (s), 153.81 (s), 145.69 (s), 142.08(s), 129.49 (s), 128.36 (s), 124.71 (s), 122.14 (s), 121.05 (s), 87.35 (s),8.55 (s);
MS (ESI): m/z cacld for ([M-Cl-]+) C21H24IrN2O2S 561.1188; found561.1206。
实施例2、制备N-(4-羧基苯基)吡啶-2-磺酰胺五甲基环戊二烯(Cp*)氯代铱络合物1b的制备方法,具体制备铱络合物1a的步骤基本一致,不同之处在于,
将步骤2所述的苯胺替换为4-羧基苯胺(2.47 g,18.0 mmol);
步骤3、4、5所述的N-苯基吡啶-2-磺酰胺配体分别替换为N-(4-羧基苯基)吡啶-2-磺酰胺;
步骤4所述的得到的纯的配体N-(4-羧基苯基)吡啶-2-磺酰胺产率为88.3 %;
步骤6所述的铱络合物1b的产率分别为80.2 %。
经检测,步骤6得到的铱络合物1b核磁共振氢谱、碳谱和质谱数据分别如下:
1H NMR (600 MHz, DMSO) δ 12.49 (s, 1H), 8.79 (d, J = 5.3 Hz, 1H),8.29 (td, J = 7.8, 1.3 Hz, 1H), 7.97 (d, J = 7.7 Hz, 1H), 7.86 – 7.83 (m,1H), 7.78 – 7.73 (m, 2H), 7.65 – 7.60 (m, 2H), 1.39 (s, 15H);
13C NMR (151 MHz, DMSO) δ 167.70 (s), 156.89 (s), 153.96 (s), 150.51(s), 142.27 (s), 129.99 (s), 129.83 (s), 123.68 (s), 123.57 (s), 121.40 (s),87.63 (s), 87.63 (s), 8.61 (s), 8.61 (s);
MS (ESI): m/z cacld for ([M-Cl-]+) C22H24IrN2O4S 605.1086; found605.1094。
实施例3、制备N-(4-羧基苯基)吡啶-2-磺酰胺五甲基环戊二烯(Cp*)氯代铱络合物1c的制备方法,具体制备铱络合物1a的步骤基本一致,不同之处在于,
将步骤2所述的苯胺替换为4-氰基苯胺(2.12 g,18.0 mmol);
步骤3、4、5所述的N-苯基吡啶-2-磺酰胺配体分别替换为N-(4-氰基苯基)吡啶-2-磺酰胺、;
步骤4所述的得到的纯的配体N-(4-氰基苯基)吡啶-2-磺酰胺、N-(4-甲氧基苯基)吡啶-2-磺酰胺的产率为84.6%;
步骤6所述的铱络合物1c的产率为73.6 %。
经检测,步骤6得到的铱络合物1c核磁共振氢谱、碳谱和质谱数据分别如下:
1H NMR (600 MHz, DMSO) δ 8.80 (d, J = 5.4 Hz, 1H), 8.30 (dd, J =11.3, 4.3 Hz, 1H), 7.99 (d, J = 7.8 Hz, 1H), 7.86 (dd, J = 9.6, 3.5 Hz, 1H),7.67 (d, J = 8.7 Hz, 2H), 7.63 (d, J = 8.7 Hz, 2H), 1.40 (s, 15H);
13C NMR (151 MHz, DMSO) δ 156.63 (s), 154.04 (s), 150.75 (s), 142.39(s), 132.74 (s), 130.04 (s), 124.34 (s), 121.57 (s), 120.09 (s), 102.93 (s),87.80 (s), 8.64 (s);
MS (ESI): m/z cacld for ([M-Cl-]+) C23H23IrN3O2S 586.1140; found586.1151。
实施例4、制备N-(4-羧基苯基)吡啶-2-磺酰胺五甲基环戊二烯(Cp*)氯代铱络合物1d的制备方法,具体制备铱络合物1a的步骤基本一致,不同之处在于,
将步骤2所述的苯胺替换为4-甲氧基苯胺(2.21 g,18.0 mmol);
步骤3、4、5所述的N-苯基吡啶-2-磺酰胺配体分别替换为N-(4-甲氧基苯基)吡啶-2-磺酰胺;
步骤4所述的得到的纯的配体N-(4-甲氧基苯基)吡啶-2-磺酰胺的产率为89.4%;
步骤6所述的铱络合物1d的产率为68.6 %。
经检测,步骤6得到的铱络合物1d核磁共振氢谱、碳谱和质谱数据分别如下:
1H NMR (600 MHz, DMSO) δ 8.74 (d, J = 5.4 Hz, 1H), 8.25 (td, J = 7.8,1.0 Hz, 1H), 7.90 (d, J = 7.8 Hz, 1H), 7.84 – 7.75 (m, 1H), 7.46 (d, J = 8.9Hz, 2H), 6.77 (d, J = 8.9 Hz, 2H), 3.70 (s, 3H), 1.38 (s, 15H);
13C NMR (151 MHz, DMSO) δ 157.26 (s), 155.04 (s), 153.74 (s), 141.99(s), 138.51 (s), 129.33 (s), 126.05 (s), 120.88 (s), 113.65 (s), 87.27 (s),55.59 (s), 8.57 (s);
MS (ESI): m/z cacld for ([M-Cl-]+) C22H26IrN2O3S 591.1293; found591.1312。
实施例5、制备N-(4-羧基苯基)吡啶-2-磺酰胺五甲基环戊二烯(Cp*)氯代铱络合物1e的制备方法,具体制备铱络合物1a的步骤基本一致,不同之处在于,
将步骤2所述的苯胺替换为4-甲基苯胺(1.93 18.0 mmol);
步骤3、4、5所述的N-苯基吡啶-2-磺酰胺配体替换为N-(4-甲基苯基)吡啶-2-磺酰胺;
步骤4所述的得到的纯的配体N-(4-甲基苯基)吡啶-2-磺酰胺的产率为90.1%;
步骤6所述的铱络合物1e的产率为70.4 %。
经检测,步骤6得到的铱络合物1e核磁共振氢谱、碳谱和质谱数据分别如下:
1H NMR (600 MHz, DMSO) δ 8.75 (d, J = 5.3 Hz, 1H), 8.26 (td, J = 7.8,1.2 Hz, 1H), 7.91 (d, J = 7.8 Hz, 1H), 7.82 – 7.78 (m, 1H), 7.44 (d, J = 8.3Hz, 2H), 6.98 (d, J = 8.2 Hz, 2H), 2.23 (s, 3H), 1.38 (s, 15H);
13C NMR (151 MHz, DMSO) δ 157.29 (s), 153.76 (s), 142.95 (s), 142.02(s), 130.93 (s), 129.40 (d, J = 3.9 Hz), 128.81 (s), 124.94 (s), 124.75 (s),120.95 (s), 87.28 (s), 20.87 (s), 8.57 (s);
MS (ESI): m/z cacld for ([M-Cl-]+)C22H26IrN2O2S 575.1344; found575.1366。
实施例6、制备N-(4-羧基苯基)吡啶-2-磺酰胺五甲基环戊二烯(Cp*)氯代铱络合物1f的制备方法,具体制备铱络合物1a的步骤基本一致,不同之处在于,
将步骤2所述的苯胺替换为4-氯苯胺(2.29 g,18.0 mmol);
步骤3、4、5所述的N-苯基吡啶-2-磺酰胺配体分别替换为N-(4-氯苯基)吡啶-2-磺酰胺;
步骤4所述的得到的纯的配体N-(4-氯苯基)吡啶-2-磺酰胺的产率为87.2 %;
步骤6所述的铱络合物1f的产率为78.4%。
经检测,步骤6得到的铱络合物1f核磁共振氢谱、碳谱和质谱数据分别如下:
1H NMR (600 MHz, DMSO) δ 8.77 (d, J = 5.4 Hz, 1H), 8.28 (td, J = 7.7,0.8 Hz, 1H), 7.94 (d, J = 7.8 Hz, 1H), 7.82 (t, J = 6.2 Hz, 1H), 7.55 (d, J =8.8 Hz, 2H), 7.23 (d, J = 8.8 Hz, 2H), 1.39 (s, 15H);
13C NMR (151 MHz, DMSO) δ 156.93 (s), 153.88 (s), 144.74 (s), 142.19(s), 129.66 (s), 128.24 (s), 126.09 (s), 125.84 (s), 121.18 (s), 87.49 (s),8.61 (s);
MS (ESI): m/z cacld for ([M-Cl-]+) C21H23ClIrN2O2S 595.0798; found595.0802。
由上述可知,本发明提供的制备铱络合物的方法,合成路线简单,产率高,易于大量获取铱络合物。
本发明提供的新型吡啶磺酰胺型铱络合物的用于催化辅酶NADH再生的特点及性能
实施例7、所提供铱络合物催化辅酶NADH再生活性
为了评价所制备络合物1a-f催化辅酶NADH的再生性能,并与已报到高活性2-吡啶苯酰胺铱络合物5进行了比较。在磷酸盐缓冲溶液中(0.2 M,pH = 7.4), NAD+ 浓度为8mmol/L,HCOONa 浓度为0.1 mol/L,铱络合物含量为0.1 mol%条件下,37摄氏度反应0.5 小时。如附图2所示,2-吡啶苯酰胺铱络合物5和式1所示络合物1a-f均表现出了出色的辅酶NADH再生性能,2-吡啶苯酰胺铱络合物5的NADH产率为68.2%,相同条件下1a-f的NADH产率分别达到了77.3 %、77.8 %、73.32 %、74.14 %、68.2 %、50.3 %,不同取代的铱络合物催化活性的差异可归因于络合物自身电负性的差异。
实施例8、所提供铱络合物对催化辅酶NADH再生的选择性
化学催化剂与酶之间的协同性能对于建立化学-酶级联催化体系至关重要。为了实现这一点,催化剂需要对底物保持较低的催化活性,但对NADH再生提供高度选择性的催化能力。因此,本发明考察了铱络合物1a-f对多种脱氢酶催化底物的直接催化加氢性能,包括苯甲醛、三甲基对苯醌和α-酮戊二酸,并与络合物5进行了比较。在磷酸盐缓冲溶液中(0.2 M,pH = 7.4), 加氢底物浓度为30 mmol/L,HCOONa 浓度为100 mmol/L,铱络合物含量为0.1 mol%条件下,37摄氏度反应1 小时。如附图3A所示,2-吡啶苯酰胺铱络合物5对三种不同底物的加氢性能均明显高于本发明所提供的铱络合物,2-吡啶苯酰胺铱络合物5对苯甲醛加氢制备苯甲醇的产率高达98.5%,而本发明提供的铱络合物对苯加氢加氢的最高苯甲醇产率仅为57.9 %,相同取代基时,本发明提供的铱络合物1a的苯甲醇产率仅为38.2%。在相同条件下,2-吡啶苯酰胺铱络合物5对三甲基对苯醌TMBQ加氢制备相应氢醌TMHQ的产率达到了61.5% (附图3B),而本发明提供的铱络合物1a-f,TMHQ的产率均低于30.0%。进一步,如图3C所示,2-吡啶苯酰胺铱络合物5催化α-酮戊二酸制备L-谷氨酸产率为1.0%,而本发明提供的铱络合物1a-f几乎不会产生L -谷氨酸。
这些结果表明,与2-吡啶苯酰胺铱络合物5相比,本发明提供的铱络合物对催化辅酶NADH再生具有更出色的选择性,更适合应用于高效化学-酶级联催化体系的构建。
实施例9、所提供铱络合物的生物相容性
建立一个强大的化学-酶级联催化体系,化学催化剂的生物相容性是至关重要,因此,本发明研究了所制备铱络合对各种生物分子的相容性。在多种生物分子(包括氨基酸、核碱基、蛋白质、葡萄糖和盐)存在下,考察了所发明铱络合物1a对NAD+加氢的催化性能。在磷酸盐缓冲溶液中(0.2 M,pH = 7.4),包含一定浓度的各种不同生物分子,NAD+ 浓度为8mmol/L,HCOONa 浓度为0.1 mol/L,铱络合物含量为0.1 mol%条件下,37摄氏度反应0.5 小时。如附图4所示,腺嘌呤Ade、葡萄糖GLu、醋酸钠AcONa、氧化谷胱甘肽GSSG、以及L-谷氨酸脱氢酶GLDH对铱络合物1a的催化NADH再生性能几乎没有影响,而含有游离巯基的生物分子还原型谷胱甘肽GSH、半胱氨酸Cys、卡托普利CAP、牛血清蛋白BSA和脱氢酶ADH则会导致铱络合物的活性明显降低。
这些结果与已报到铱络合物的研究结果相似,表明本发明所提供的铱络合物与大多数生物分子具有良好的相容性,但对巯基的抑制能力较差。
本发明提供的新型吡啶磺酰胺型铱络合物在化学-生物酶协同催化体系中的应用
实施例9、所提供铱络合物与L-谷氨酸脱氢酶GLDH协同催化制备L-谷氨酸脱
基于所提供的铱络合物对催化NADH再生的高活性以及高选择性,本发明将铱络合物1a-f与L-谷氨酸脱氢酶GLDH相结合,构建了一种高效的化学-酶级联催化体系,用于生产L-谷氨酸。在磷酸盐缓冲溶液中(0.2 M,pH = 7.4),包含10.0 U GLDH,1.0 mmol/L NAD+,0.1 mol/L HCOONa,50.0 mmol/L (NH4)2SO4, 铱络合物含量为0.1 mol%条件下,37摄氏度反应24 小时。如附图5所示,当仅使用铱络合物催化α-酮戊二酸加氢制备L-谷氨酸时,L-谷氨酸的产率均小于5.0 %;但相同条件下,采用铱络合和GLDH组成的级联催化体系,L-谷氨酸产率均明显提升到50.0%。其中,络合物1e组成的级联催化体系对L-谷氨酸的产率的提高最大,从0.66 %提高到62.8%。
上述结果表明,本发明提供的铱络合物具有良好的NADH再生活性、良好的生物相容性和α-酮戊二酸的高效加氢能力,同时能够与L-谷氨酸脱氢酶GLDH相结合,构建出色的化学-酶级联催化体系,用于L-谷氨酸的高效制备。

Claims (3)

1.“吡啶磺酰胺铱络合物、制备方法及对NADH高选择性催化再生”,其特征在于, 吡啶磺酰胺型铱络合物结构。
2.根据权利要求1所述的“吡啶磺酰胺铱络合物、制备方法及对NADH高选择性催化再生”中,其特征在于,吡啶苯磺酰胺型铱络合物的制备步骤如下:
将原料1.0 克 2-巯基吡啶(9.0 mmol)溶于10~50毫升二氯甲烷溶剂中,冷却至零下10-5摄氏度下,加入20~100毫升浓盐酸-次氯酸(1:1-10)或浓硫酸-次氯酸 (1:1-10)进行磺酰化反应,反应10到30分钟后,混合液用50~100毫升二氯甲烷萃取、10~20克无水硫酸钠干燥后得到活化的中间体2-吡啶磺酰氯;
将步骤(1)得到的中间体2-吡啶磺酰氯与各种不同取代的苯胺化合物混合,在干燥的二氯甲烷或乙腈或四氢呋喃溶剂中反应10到30小时;
向反应液中加入100~200毫升二氯甲烷,依次用50毫升浓度为1.0摩尔/升的磷酸溶液冲洗三次、50毫升去离子水冲洗三次、20~50克无水硫酸钠干燥,减压蒸馏的到粗产品2-吡啶磺酰胺型配体;
粗产品2-吡啶磺酰胺型配体采用硅胶正相色谱柱,以二氯甲烷/石油醚= 1-10:0.1-10为流动相进行分离,得到纯的2-吡啶磺酰胺型配体,产率70%~90%;
将纯的2-吡啶磺酰胺型配体(0.25mmol)、[Cp*IrCl2]2 Ir-dimer (0.125mmol)、六氟磷酸铵(0.5 mmol)溶于10~20毫升无水乙醇中,氮气保护下,80摄氏度回流反应10到24小时;
将步骤(5)的反应液冷却至室温,过滤、20毫升乙醇冲洗3次,收集固体即为纯的式1所示吡啶苯磺酰胺型铱络合物。
3.根据权利要求1所述的“吡啶磺酰胺铱络合物、制备方法及对NADH高选择性催化再生”中,其特征在于,所述铱络合物对辅酶NADH的再生条件如下:
(1)将氧化型辅酶烟酰胺腺嘌呤二核苷酸NAD+(1.5 mmol),溶于5.0~20.0 mL去离子水中,接着依次加入甲酸或甲酸钠或甲酸铵或甲酸钾或甲酸钙或甲酸锌(15 mmol)、 所述铱络合物(1.5~150 μmol),接着将混合液在0~50摄氏度反应1~20小时;
(2)反应结束后,向反应液中加入 5.0~20.0 mL 乙腈使产物沉淀出来,过滤后得到粗产品;
(3)将得到的粗产品重新溶解在 2.0~5.0 mL去离子水中,并进一步通过反相柱色谱进行分离、提纯(以含有0-30% 乙腈的0.05 M三乙基碳酸氢铵TEAB缓冲液作为洗脱剂) ,所收集的粗产品通过与甲醇共同减压蒸馏除去残留的 TEAB,进一步将所获得的产物溶解在超纯水中,冻干后得到纯的目标NADH,产率60~85%。
CN202311174172.6A 2023-09-12 2023-09-12 吡啶磺酰胺铱络合物、制备方法及对nadh高选择性催化再生 Pending CN117510551A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311174172.6A CN117510551A (zh) 2023-09-12 2023-09-12 吡啶磺酰胺铱络合物、制备方法及对nadh高选择性催化再生

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311174172.6A CN117510551A (zh) 2023-09-12 2023-09-12 吡啶磺酰胺铱络合物、制备方法及对nadh高选择性催化再生

Publications (1)

Publication Number Publication Date
CN117510551A true CN117510551A (zh) 2024-02-06

Family

ID=89753786

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311174172.6A Pending CN117510551A (zh) 2023-09-12 2023-09-12 吡啶磺酰胺铱络合物、制备方法及对nadh高选择性催化再生

Country Status (1)

Country Link
CN (1) CN117510551A (zh)

Similar Documents

Publication Publication Date Title
Fukuoka et al. A novel catalytic synthesis of carbamates by the oxidative alkoxycarbonylation of amines in the presence of platinum group metal and alkali metal halide or onium halide
Baiker Progress in asymmetric heterogeneous catalysis: Design of novel chirally modified platinum metal catalysts
Wirth Enantioselective alkylation of aldehydes catalyzed by new chiral diselenides
CN105457675A (zh) 一种6-羟基金鸡纳碱季铵盐不对称相转移催化剂、制备方法及其应用
CN110511259B (zh) 环二核苷酸人工金属酶及其制备和催化不对称Friedel-Crafts反应的应用
JP4015450B2 (ja) 光学活性アルコールの製造方法
EP3421455B1 (en) Improved process for the preparation of chiral 3-amino-piperidins, useful intermediates for the preparation of tofacitinib
RU2446154C2 (ru) Сульфонилированные дифенилэтилендиамины, способ их получения и применение в катализе гидрирования с переносом водорода
CN117510551A (zh) 吡啶磺酰胺铱络合物、制备方法及对nadh高选择性催化再生
JP2003502296A (ja) スルホニルアミド及びカルボキサミド並びに不斉触媒作用におけるそれらの使用
JP5001861B2 (ja) ケトンの不斉ヒドロシリル化法
CN116041253A (zh) 一种合成二苯基-2-吡啶基甲烷衍生物的方法
CN106748802B (zh) 一种制备含氟仲胺的方法
Diezi et al. Chemo and enantioselective hydrogenation of fluorinated ketones on platinum modified with (R)-1-(1-naphthyl) ethylamine derivatives
US6300509B1 (en) Amino-amide-ruthenium complexes
JPH0476996B2 (zh)
CN111450885B (zh) 金属有机框架UIO-66(Ce)负载的钌催化剂及其制备方法与应用
JP3159661B2 (ja) 光学活性アルコール類の製造方法
JP2003012575A (ja) アダマンタノール及びアダマンタノンの製造法
CN109970813B (zh) 一种有机金属催化剂及其制备方法与应用
CN110746428A (zh) 一种r型手性亚砜类化合物的制备方法
CN106345526B (zh) 一种用于不对称合成埃索美拉唑的负载型钒手性催化剂及其制备方法
CN118164838B (zh) 一种r-香茅醛的合成方法
JPH08151346A (ja) ケトマロン酸の製造方法
CN113929598A (zh) 一种(s)-2-叔丁氧羰基氨基-3-(4,4-二氟环己基)丙酸的合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination