CN117510212A - 一种高导热、高微波吸收氮化铝陶瓷材料及其制备方法 - Google Patents

一种高导热、高微波吸收氮化铝陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN117510212A
CN117510212A CN202311407268.2A CN202311407268A CN117510212A CN 117510212 A CN117510212 A CN 117510212A CN 202311407268 A CN202311407268 A CN 202311407268A CN 117510212 A CN117510212 A CN 117510212A
Authority
CN
China
Prior art keywords
aluminum nitride
microwave
ceramic material
nitride ceramic
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311407268.2A
Other languages
English (en)
Inventor
陈鹤拓
李佳恒
周国红
赵佳宝
凌亮
王正娟
薛振海
覃显鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202311407268.2A priority Critical patent/CN117510212A/zh
Publication of CN117510212A publication Critical patent/CN117510212A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种高导热、高微波吸收氮化铝陶瓷材料及其制备方法。所述氮化铝陶瓷材料的制备方法包括:(1)将含碳的亚微米级AlN粉体、稀土金属氧化物和碱土金属化合物混合,得到混合粉体;(2)将所得混合粉体压制成型后,再经热压烧结,得到高导热、高微波吸收氮化铝陶瓷材料。

Description

一种高导热、高微波吸收氮化铝陶瓷材料及其制备方法
技术领域
本发明涉及一种高导热、高微波吸收氮化铝(AlN)陶瓷材料及其制备方法,属于介质陶瓷领域。
背景技术
大功率微波电子真空器件要求微波吸收材料兼备优异的高导热和微波吸收性能。
AlN陶瓷兼备高导热、高介电强度、低介电常数、高机械强度、化学性能稳定及无毒等优异特性,然而,由于其过低的介电损耗(10-4量级),距离大功率微波电子真空器件的实际应用还有一定距离。
由于AlN是共价化合物,难以与其他物质发生化学反应,通常采用微波吸收性能高的第二相掺杂以调整AlN陶瓷的微波吸收性能。具体地,将一定含量高微波吸收的导体、半导体或介质第二相掺入AlN粉体中,例如钨、铜、石墨、玻璃碳、碳纳米管、碳化硅等,通过混料、成型和烧结,即可制备出高导热微波吸收氮化铝陶瓷。
发明内容
针对上述研究现状,本发明创新地通过在γ-Al2O3中引入过量的碳(C,炭黑、石墨、玻璃碳、碳纳米管等)经碳热还原氮化法(CTRN,carbothermal reduction andnitridation),先制备出含C的亚微米级AlN粉体,再结合少量的稀土金属氧化物和碱土金属化合物掺杂,经干压成型,热压烧结,最终得到高导热微波吸收氮化铝陶瓷。
本发明提供了一种高导热、高微波吸收氮化铝陶瓷材料及其制备方法,包括:
(1)将含碳的亚微米级AlN粉体、稀土金属氧化物和碱土金属化合物混合,得到混合粉体;
(2)将所得混合粉体压制成型后,再经热压烧结,得到高导热、高微波吸收氮化铝陶瓷材料。
在本领域中,通常采用微波吸收性能高的第二相直接掺入AlN粉体中,经成型及烧结工艺,实现对陶瓷微波吸收性能的调节。本发明采用γ-Al2O3和C按特定比例(确保C过量)配料混合,经CTRN过程制备出既含亚微米级AlN又含纳米级C的粉体,然后与稀土金属氧化物和碱土金属化合物烧结助剂混合,经干压成型及热压烧结,制得高导热微波吸收氮化铝陶瓷。在γ-Al2O3中引入过量的无定形C,一方面C作为反应原料利用CTRN制得亚微米级AlN粉体,确保γ-Al2O3充分转化为AlN;另一方面过量C作为微波吸收剂,改善AlN陶瓷的微波吸收性能;另外,过量的C以纳米颗粒的形式与亚微米级AlN均匀混合,提高素坯堆积密度,降低烧结温度。稀土金属氧化物和碱土金属化合物与AlN中的杂质氧(氧化铝)反应生成适量的低温液相,可以实现AlN陶瓷在低温条件下致密烧结,促进氮化铝陶瓷晶粒长大,维持AlN陶瓷的高热导率。
较佳的,所述含C的亚微米级AlN粉体中C的摩尔含量为10~31mol%;所述含碳的亚微米级AlN粉体的粒径为500~1500nm。
较佳的,所述含碳的亚微米级AlN粉体的制备方法,包括:按照γ-Al2O3:碳材料的摩尔比为1:3.2~3.6进行配料并混合后,经碳热还原氮化法,得到含碳的亚微米级AlN陶瓷粉体;所述碳热还原氮化法的参数包括:氮气气氛为0.005~0.05MPa,温度为1500~1800℃,时间为2~10小时。
较佳的,所述的γ-Al2O3为高纯纳米粉,纯度≥99.9%,粒度≤100nm;
所述碳材料为高纯纳米碳粉,优选所述碳材料选自炭黑、石墨、玻璃碳、碳纳米管中的至少一种,纯度≥99.9%,粒度≤100nm。
较佳的,所述稀土金属氧化物选自La2O3、Y2O3、Gd2O3、Yb2O3和Sc2O3中的至少一种;所述稀土金属氧化物的添加量为含碳的亚微米级AlN粉体的2~10wt%。
较佳的,所述碱土金属化合物选自碱土金属氧化物、碱土金属碳酸盐或碱土金属氟化物中至少一种,优选自MgO、CaO、SrO、BaO、MgCO3、CaCO3、SrCO3、BaCO3、MgF2、CaF2、BaF2中的至少一种;所述碱土金属化合物的添加量为含碳的亚微米级AlN粉体的100~500ppm。
较佳的,所述压制成型的方式为干压;所述干压的压力为2~20MPa,保压时间为30~300秒;所述热压烧结的参数包括:气氛为流动氮气气氛,压力为5~50MPa,温度为1700~1900℃,烧结时间2~10小时;所述流动氮气气氛的压强为0.005~0.05MPa、优选为0.003MPa,流量为0.5~2L/min、优选为1.0L/min。
本发明还提供了一种根据上述的制备方法得到的高导热、高微波吸收氮化铝陶瓷材料,所述高导热、高微波吸收氮化铝陶瓷材料的物相为纤锌矿型氮化铝相、石榴石相、无定形碳,相对密度≥99.5%。
较佳的,所述高导热、高微波吸收氮化铝陶瓷材料的晶粒尺寸为3~10μm,石榴石相分布在晶界处,无定形C的纳米颗粒聚集在氮化铝晶粒内部和晶界处。
较佳的,所述高导热、高微波吸收氮化铝陶瓷材料在室温条件下的热导率≥50W/m·K;
所述高导热、高微波吸收氮化铝陶瓷材料在2~18GHz之间的介电常数≥10,在2~18GHz之间的介电损耗≥0.2;
所述高导热、高微波吸收氮化铝陶瓷材料的弯曲强度≥350MPa;
所述高导热、高微波吸收氮化铝陶瓷材料的硬度≥8GPa;
所述高导热、高微波吸收氮化铝陶瓷材料的断裂韧性≥3MPa·m1/2
所述高导热、高微波吸收氮化铝陶瓷材料的热膨胀系数在4.0~5.5ppm/之间。
本发明的有益效果:
(1)不同于直接向AlN中引入微波吸收性能高的第二相,本发明创新地通过在原料粉体(γ-Al2O3)中引入过量的无定形C,一方面C作为反应原料利用CTRN制得亚微米级AlN粉体,确保γ-Al2O3充分转化为AlN;另一方面过量C作为微波吸收剂,改善AlN陶瓷的微波吸收性能;另外,过量的C以纳米颗粒的形式与亚微米级AlN均匀混合,提高素坯堆积密度,降低烧结温度,结合稀土金属氧化物和碱土金属化合物的掺杂,制备出高导热微波吸收氮化铝陶瓷。
(2)本发明提供的含C亚微米级AlN粉体材料,经热压烧结制备得到的陶瓷材料热导率高,微波吸收性能好,力学性能优异。
(3)本发明采用γ-Al2O3、纳米C,在国内市场供应充足、价格更低廉且更易国产化,使高性能陶瓷的低成本化制备成为可能。
(4)本发明所述的材料主要采用行星球磨机混料,陶瓷采用热压烧结,陶瓷材料性能稳定,适用于批量化生产。
附图说明
图1为实施例1制备得到的含C的AlN粉体SEM图;
图2为实施例1制备得到含C的AlN陶瓷XRD衍射图谱;
图3为实施例1制备得到的AlN陶瓷SEM断面形貌图;
图4为实施例1制备的高导热微波吸收氮化铝陶瓷在2-18GHz频率下的介电性能图,其中(a)为介电常数,(b)为介电损耗。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本发明通过在γ-Al2O3中掺杂过量的C,经CTRN过程制备出含C的亚微米级AlN粉体,结合稀土金属氧化物和碱土金属化合物掺杂,制备出高导热微波吸收氮化铝陶瓷材料。不同于现有报道在AlN中掺入微波吸收性能高的第二相,本发明在γ-Al2O3中引入过量的C,一方面C作为反应原料利用CTRN制得亚微米级AlN粉体,确保γ-Al2O3充分转化为AlN;另一方面过量C作为微波吸收剂,改善AlN陶瓷的微波吸收性能;另外,过量C以纳米颗粒的形式与亚微米级AlN均匀混合,提高素坯堆积密度,降低烧结温度。稀土金属氧化物和碱土金属化合物作为烧结助剂与AlN中的杂质氧(氧化铝)反应生成适量的低温液相,可以实现AlN陶瓷在低温条件下致密烧结,促进氮化铝陶瓷晶粒长大,提高AlN陶瓷的热导率。
以下示例性说明本发明所述高导热微波吸收氮化铝陶瓷材料的制备方法,所述制备方法主要包括:含C的亚微米级AlN粉体制备和高导热微波吸收氮化铝陶瓷制备两个部分。
配料。按照γ-Al2O3:C的摩尔比为1:(3.2~3.9)(优选1:(3.3~3.6))进行配料,得到粉料。其中,所述的γ-Al2O3为高纯纳米粉,纯度≥99.9%,粒度≤100nm;所述的C为高纯纳米粉,纯度≥99.9%,粒度≤100nm。C含量过多,会导致陶瓷难以烧结致密,进而导致力学性能下降、热导率显著下降、介电常数显著下降。C含量过低,氧化铝没有充分转化为氮化铝,导致陶瓷的热导率不高,没有足够的C吸收微波,导致陶瓷的微波吸收性能显著下降。
混合。将粉料:去离子水:高纯氧化铝球按照质量比为1:1:5混合,250~300转/分钟的条件下球磨12~30小时,得到混合均匀的球磨料。
干燥和过筛。将球磨料经60~100℃烘干24小时,并过100~150目筛,得到原料粉体。
碳热还原氮化。将原料粉体经1500~1800℃碳热还原氮化处理2~10小时,制备出含C的亚微米级AlN陶瓷粉体。所用容器为石墨坩埚,氮源是高纯氮气(纯度>99.99%),流动氮气气氛的压强约为0.05~0.1MPa,氮气流量为0.5~2.0L/min;所述生成的AlN为高纯亚微米粉,粒径为0.5~1.5μm,氧含量≤1.0wt%;无定形C以纳米颗粒的形式分布在AlN颗粒周围。
混合。将稀土金属氧化物、碱土金属化合物、含C的AlN粉体进行球磨混合,溶剂选择酒精,研磨球为高纯氧化铝球,250~300转/分钟的转速条件下球磨混合12~24小时,得到混合浆料,将混合浆料经60~120℃干燥24小时,过筛得到混合粉体。
在可选的实施方式中,所述稀土氧化物源选自La2O3、Y2O3、Gd2O3、Yb2O3和Sc2O3中的至少一种,纯度≥99.9%;所述碱土金属化合物源选自MgO、CaO、SrO、BaO、MgCO3、CaCO3、SrCO3、BaCO3、MgF2、CaF2、BaF2中的至少一种,纯度≥99.9%。
在可选的实施方式中,所述稀土金属氧化物的添加量为含C的AlN陶瓷粉体的2~10wt%。其过高或过低均会造成陶瓷热导率降低。稀土金属氧化物含量过低,生成的低温液相过少,可能导致AlN晶粒中仍有氧残留,以及无法实现低温致密化烧结,导致陶瓷的热导率降低;稀土金属氧化物含量过高,可能会生成未知的低热导率的第二相,导致热导率下降。在可选的实施方式中,所述碱土金属化合物的添加量为100~500ppm。碱土金属化合物含量过低,陶瓷中生成的液相过少,造成AlN颗粒表面的氧含量过高,导致氧缺陷在AlN晶格中形成,降低陶瓷的热导率;碱土金属化合物含量过高可能会导致生成其他低热导率的碱土金属第二相,包裹住AlN陶瓷晶粒,同样会导致陶瓷的热导率下降。
成型。将得到的混合粉体干压成型,制得陶瓷素坯。干压的压力为2~20MPa,保压时间为30~300秒。
热压烧结。在流动氮气气氛下,将陶瓷素坯经1700~1900℃热压烧结2~10小时,得到高导热微波吸收氮化铝陶瓷。其中,所述流动氮气气氛的压强为0.005~0.05MPa,流量为0.5~5L/min。热压烧结过程,在烧结助剂和氧化铝反应生成低温液相的基础上,施加外力,促进陶瓷在低温条件下实现致密化烧结,提高陶瓷的热导率。应注意,烧结温度过低,陶瓷的致密度较低,气孔含量较高,导致陶瓷的热导率下降;温度过高可能会导致陶瓷物相发生变化,或者部分低温液相析出过多,降低陶瓷的热导率。
不同于常规,采用微波吸收性能高的第二相直接掺入AlN粉体中,经成型及烧结,实现对陶瓷微波吸收性能的调节。本发明采用γ-Al2O3和C按特定比例(确保C过量)配料混合,经CTRN过程制备出既含亚微米级AlN又含纳米C的粉体。在γ-Al2O3中引入过量的C,一方面C作为反应原料利用CTRN制得亚微米级AlN粉体,确保γ-Al2O3充分转化为AlN;另一方面过量C作为微波吸收剂,改善AlN陶瓷的微波吸收性能;另外,过量的C以纳米颗粒的形式与亚微米级AlN均匀混合,提高素坯堆积密度,降低烧结温度。掺入适量的稀土金属氧化物和碱土金属化合物,经干压成型及热压烧结后,制得高导热微波吸收氮化铝陶瓷。烧结助剂与AlN中的杂质氧(氧化铝)反应生成适量的低温液相,结合热压烧结,既可以促进陶瓷在低温条件下致密烧结实现高导热,又可以实现较高的微波吸收性能。
通过本发明提供的上述方法制备得到的高导热、高微波吸收氮化铝陶瓷材料的物相为纤锌矿型氮化铝相、石榴石相、无定形碳。所述氮化铝陶瓷的晶粒尺寸为3~10μm,石榴石相分布在晶界处,无定形C的纳米颗粒聚集在氮化铝晶粒内部和晶界处。
性能测试:
所述高导热、高微波吸收氮化铝陶瓷材料的相对密度≥99.5%;室温条件下的热导率≥50W/m·K,介电常数≥10(@2-18GHz),介电损耗≥0.2(@2-18GHz);采用三点抗弯测试陶瓷材料的弯曲强度≥350MPa;采用压痕法测试高导热、高微波吸收氮化铝陶瓷材料的硬度≥8GPa;断裂韧性≥3MPa·m1/2;热膨胀系数在4.0-5.5ppm/℃之间。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
(1)配料。按照γ-Al2O3:C的质量比为1:3.3进行配料。其中,所述γ-Al2O3粉体的粒径约为30nm;所述C粉的粒径约为20nm;
(2)混合。将步骤(1)所得粉料:去离子水:高纯氧化铝球按照1:1:5的质量比混合,250转/分钟的条件下球磨20小时,得到混合均匀的球磨料;
(3)干燥和过筛。将步骤(2)所得球磨料经60℃烘干24小时,并过100目筛;
(4)碳热还原氮化。将步骤(3)所得粉体经1650℃碳热还原氮化处理4小时,制备出含C的亚微米级AlN陶瓷粉体;
(5)混合。将4.0g Y2O3、200ppm CaO掺入AlN粉体进行球磨混合,溶剂选择酒精,研磨球为高纯氧化铝球,270转/分钟的转速条件下球磨混合20小时,得到混合浆料,将混合浆料经60℃干燥24小时,过筛得到混合粉体;
(6)成型。将步骤(5)所得混合粉体干压成型,制得陶瓷素坯;
(7)热压烧结。在20MPa的压力条件下,将步骤(6)所得的陶瓷素坯在一定压强的流动氮气气氛下经1825℃热压烧结5小时,得到AlN陶瓷。所述流动氮气气氛的压强为0.02MPa,流量为2L/min。
实施例2
(1)配料。按照γ-Al2O3:C粉的质量比为1:3.4进行配料,得到粉料。其中,所述γ-Al2O3粉体的粒径约为30nm;所述碳粉的粒径约为20nm;
(2)混合。将步骤(1)所得粉料:去离子水:高纯氧化铝球按照1:1:5的质量比混合,270转/分钟的条件下球磨24小时,得到混合均匀的球磨料;
(3)干燥和过筛。将步骤(2)所得球磨料经60℃烘干24小时,并过120目筛;
(4)碳热还原氮化。将步骤(3)所得粉体经1600℃碳热还原氮化处理2小时,制备出含C的亚微米级AlN陶瓷粉体;
(5)混合。将4.1g Y2O3、180ppm CaF2掺入AlN粉体进行球磨混合,溶剂选择酒精,研磨球为高纯氧化铝球,270转/分钟的转速条件下球磨混合20小时,得到混合浆料,将混合浆料经60℃干燥24小时,过筛得到混合粉体;
(6)成型。将步骤(5)所得混合粉体干压成型,制得陶瓷素坯;
(7)热压烧结。在15MPa的压力条件下,将步骤(6)所得的陶瓷素坯在一定压强的流动氮气气氛下经1800℃热压烧结5小时,得到AlN陶瓷。所述流动氮气气氛的压强为0.03MPa,流量为1.0L/min。
实施例3
(1)配料。按照γ-Al2O3:C粉的质量比为1:3.5进行配料,得到粉料。其中,所述γ-Al2O3粉体的粒径为30nm;所述碳粉的粒径为20nm;
(2)混合。将步骤(1)所得粉料:去离子水:高纯氧化铝球按照1:1:5的质量比混合,270转/分钟的条件下球磨28小时,得到混合均匀的球磨料;
(3)干燥和过筛。将步骤(2)所得球磨料经60℃烘干24小时,并过100目筛;
(4)碳热还原氮化。将步骤(3)所得粉体经1600℃碳热还原氮化处理2小时,制备出含C的亚微米级AlN陶瓷粉体;
(5)混合。将4.2g Y2O3、150ppm CaO掺入AlN粉体进行球磨混合,溶剂选择酒精,研磨球为高纯氧化铝球,270转/分钟的转速条件下球磨混合20小时,得到混合浆料,将混合浆料经60℃干燥24小时,过筛得到混合粉体;
(6)成型。将步骤(7)所得混合粉体干压成型,制得陶瓷素坯;
(7)热压烧结。在25MPa的压力条件下,将步骤(6)所得的陶瓷素坯在一定压强的流动氮气气氛下经1750℃热压烧结5小时,得到AlN陶瓷。所述流动氮气气氛的压强为0.01MPa,流量为1.0L/min。
实施例4
本实施例4中高导热、高微波吸收氮化铝陶瓷材料的制备过程参见实施例1,区别仅在于:γ-Al2O3和C的摩尔比=1:3.401。
实施例5
本实施例5中高导热、高微波吸收氮化铝陶瓷材料的制备过程参见实施例1,区别仅在于:γ-Al2O3和C的摩尔比=1:3.554。
实施例6
本实施例6中高导热、高微波吸收氮化铝陶瓷材料的制备过程参见实施例1,区别仅在于:γ-Al2O3和C的摩尔比=1:3.800。
实施例7
本实施例7中高导热、高微波吸收氮化铝陶瓷材料的制备过程参见实施例1,区别仅在于:γ-Al2O3和C的摩尔比=1:3.900。
对比例1
本对比例1中高导热、高微波吸收氮化铝陶瓷材料的制备过程参见实施例1,区别仅在于:γ-Al2O3和C的摩尔比=1:3.000。
对比例2
本对比例2中高导热、高微波吸收氮化铝陶瓷材料的制备过程参见实施例1,区别仅在于:γ-Al2O3和C的摩尔比=1:4.000。
表1为实施例1-3中所采用的各种原料的质量比例和主要烧结工艺参数:
表2为实施例1-3中所得高导热微波吸收氮化铝陶瓷的主要性能参数:
从表2可以看出,采用稀土金属氧化物和碱土金属化合物掺杂含C的氮化铝陶瓷粉体,经热压烧结,得到的高导热微波吸收氮化铝陶瓷的物相为纤锌矿型氮化铝相、石榴石相、无定形碳,相对密度≥99.5%;所述氮化铝陶瓷样品在室温条件下的热导率≥50W/m·K,从图4可以看出,该高导热微波吸收氮化铝陶瓷在2-18GHz频率下的介电常数≥10,介电损耗≥0.2。
表3为实施例1-3中所得高导热微波吸收氮化铝陶瓷的主要性能参数
从表3可以看出,采用稀土金属氧化物和碱土金属化合物掺杂含C的亚微米级氮化铝陶瓷粉体,经热压烧结,得到的高导热微波吸收氮化铝陶瓷在室温条件下的弯曲强度≥350MPa,硬度≥8GPa,断裂韧性≥3MPa·m1/2,热膨胀系数在4.0~5.5ppm/之间。
图1为实施例1制备得到的含C的AlN粉体SEM图,从图中可看出C以纳米颗粒的形式均匀地分布在AlN晶粒的周围,AlN晶粒尺寸D50=0.75±0.01μm;
图2为实施例1制备得到含C的AlN陶瓷XRD衍射图谱,由AlN、YAG(Y3Al5O12)、无定形C组成,与之对应的标准卡片分别是AlN(PDF#75-1620)、Y3Al5O12(PDF#09-0310)。同时,未发现其他物相存在;
图3为实施例1制备得到的AlN陶瓷SEM断面形貌图,由图可见,AlN陶瓷整体形貌致密,AlN陶瓷的晶粒尺寸约为5μm,其中,YAG以第二相的形式分布在晶界处,C在晶界和晶粒处均有分布,并且仍以纳米C颗粒的形式存在。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (10)

1.一种高导热、高微波吸收氮化铝陶瓷材料的制备方法,其特征在于,包括:
(1)将含碳的亚微米级AlN粉体、稀土金属氧化物和碱土金属化合物混合,得到混合粉体;
(2)将所得混合粉体压制成型后,再经热压烧结,得到高导热、高微波吸收氮化铝陶瓷材料。
2.根据权利要求1所述的制备方法,其特征在于,所述含C的亚微米级AlN粉体中C的摩尔含量为10~31mol%;所述含碳的亚微米级AlN粉体的粒径为500~1500nm。
3.根据权利要求1所述的制备方法,其特征在于,所述含碳的亚微米级AlN粉体的制备方法,包括:按照γ-Al2O3:碳材料的摩尔比为1:(3.2~3.9)进行配料并混合后,经碳热还原氮化法,得到含碳的亚微米级AlN陶瓷粉体;所述碳热还原氮化法的参数包括:氮气气氛为0.005~0.05MPa,温度为1500~1800℃,时间为2~10小时。
4.根据权利要求3所述的制备方法,其特征在于,所述的γ-Al2O3为高纯纳米粉,纯度≥99.9%,粒度≤100nm;
所述碳材料为高纯纳米碳粉,优选所述碳材料选自炭黑、石墨、玻璃碳、碳纳米管中的至少一种,纯度≥99.9%,粒度≤100nm。
5.根据权利要求1-4中任一项所述的制备方法,其特征在于,所述稀土金属氧化物选自La2O3、Y2O3、Gd2O3、Yb2O3和Sc2O3中的至少一种;所述稀土金属氧化物的添加量为含碳的亚微米级AlN粉体的2~10wt%。
6.根据权利要求1-5中任一项所述的制备方法,其特征在于,所述碱土金属化合物选自碱土金属氧化物、碱土金属碳酸盐或碱土金属氟化物中至少一种,优选自MgO、CaO、SrO、BaO、MgCO3、CaCO3、SrCO3、BaCO3、MgF2、CaF2、BaF2中的至少一种;所述碱土金属化合物的添加量为含碳的亚微米级AlN粉体的100~500ppm。
7.根据权利要求1-6中任一项所述的制备方法,其特征在于,所述压制成型的方式为干压;所述干压的压力为2~20MPa,保压时间为30~300秒;
所述热压烧结的参数包括:气氛为流动氮气气氛,压力为5~50MPa,温度为1700~1900℃,烧结时间2~10小时;所述流动氮气气氛的压强为0.005~0.05MPa、优选为0.003MPa,流量为0.5~2L/min、优选为1.0L/min。
8.一种根据权利要求1-7中任一项所述的制备方法得到的高导热、高微波吸收氮化铝陶瓷材料,其特征在于,所述高导热、高微波吸收氮化铝陶瓷材料的物相为纤锌矿型氮化铝相、石榴石相、无定形碳,相对密度≥99.5%。
9.根据权利要求8所述的高导热、高微波吸收氮化铝陶瓷材料,其特征在于,所述高导热、高微波吸收氮化铝陶瓷材料的晶粒尺寸为3~10μm,石榴石相分布在晶界处,无定形C的纳米颗粒聚集在氮化铝晶粒内部和晶界处。
10.根据权利要求8所述的高导热、高微波吸收氮化铝陶瓷材料,其特征在于,所述高导热、高微波吸收氮化铝陶瓷材料在室温条件下的热导率≥50W/m·K;
所述高导热、高微波吸收氮化铝陶瓷材料在2~18GHz之间的介电常数≥10,在2~18GHz之间的介电损耗≥0.2;
所述高导热、高微波吸收氮化铝陶瓷材料的弯曲强度≥350MPa;
所述高导热、高微波吸收氮化铝陶瓷材料的硬度≥8GPa;
所述高导热、高微波吸收氮化铝陶瓷材料的断裂韧性≥3MPa·m1/2
所述高导热、高微波吸收氮化铝陶瓷材料的热膨胀系数在4.0~5.5ppm/℃之间。
CN202311407268.2A 2023-10-26 2023-10-26 一种高导热、高微波吸收氮化铝陶瓷材料及其制备方法 Pending CN117510212A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311407268.2A CN117510212A (zh) 2023-10-26 2023-10-26 一种高导热、高微波吸收氮化铝陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311407268.2A CN117510212A (zh) 2023-10-26 2023-10-26 一种高导热、高微波吸收氮化铝陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN117510212A true CN117510212A (zh) 2024-02-06

Family

ID=89757608

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311407268.2A Pending CN117510212A (zh) 2023-10-26 2023-10-26 一种高导热、高微波吸收氮化铝陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN117510212A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118684500A (zh) * 2024-08-22 2024-09-24 西安稀有金属材料研究院有限公司 氮化铝陶瓷及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1421418A (zh) * 2003-01-10 2003-06-04 清华大学 高热导率氮化铝陶瓷
CN102515773A (zh) * 2011-12-26 2012-06-27 中国电子科技集团公司第十二研究所 一种微波体衰减陶瓷材料及其制备方法
CN108439993A (zh) * 2018-05-31 2018-08-24 华南理工大学 一种以AlN/C为埋烧粉的高热导率AlN陶瓷及其制备方法
CN116496091A (zh) * 2023-04-28 2023-07-28 中国科学院上海硅酸盐研究所 一种氮氧化铝透明陶瓷材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1421418A (zh) * 2003-01-10 2003-06-04 清华大学 高热导率氮化铝陶瓷
CN102515773A (zh) * 2011-12-26 2012-06-27 中国电子科技集团公司第十二研究所 一种微波体衰减陶瓷材料及其制备方法
CN108439993A (zh) * 2018-05-31 2018-08-24 华南理工大学 一种以AlN/C为埋烧粉的高热导率AlN陶瓷及其制备方法
CN116496091A (zh) * 2023-04-28 2023-07-28 中国科学院上海硅酸盐研究所 一种氮氧化铝透明陶瓷材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118684500A (zh) * 2024-08-22 2024-09-24 西安稀有金属材料研究院有限公司 氮化铝陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
US4701427A (en) Sintered silicon carbide ceramic body of high electrical resistivity
CN112159237B (zh) 一种高导热氮化硅陶瓷材料及其制备方法
US5077245A (en) Aluminum nitride-based sintered body and process for the production thereof
WO2001083395A1 (en) Low temperature sinterable and low loss dielectric ceramic compositions and method thereof
CN117510212A (zh) 一种高导热、高微波吸收氮化铝陶瓷材料及其制备方法
KR960006248B1 (ko) 질화알루미늄소결체와 그의 제조방법
US5154863A (en) Aluminum nitride-based sintered body and process for the production thereof
CN114621014A (zh) 一种高强度高热导氮化硅陶瓷材料及其制备方法
CN116496091A (zh) 一种氮氧化铝透明陶瓷材料及其制备方法
CN110937903B (zh) 一种高强度、高导热性的氮化硅陶瓷材料及其制备方法
JP3481779B2 (ja) 高周波用低損失誘電体材料
JP2752227B2 (ja) AlN―BN系複合焼結体およびその製造方法
CN112608144A (zh) 一种锂基微波介质陶瓷材料、其制备方法和锂基微波介质陶瓷
KR960001429B1 (ko) 고열전도성 질화알루미늄 소결체 및 이의 제조방법
JP3034100B2 (ja) 窒化珪素質焼結体およびその製造方法
JPS63277573A (ja) 高熱伝導性窒化アルミニウム焼結体の製造方法
CN116003879B (zh) 一种球形氮化硅粉体的快速制备方法
CN115925401B (zh) 一种低介硅酸盐微波介质陶瓷材料及其制备方法
JPH0825799B2 (ja) 高熱伝導性窒化アルミニウム焼結体の製造方法
CN114605155B (zh) 一种氮化硅镁超长纳米线和纳米带的制备方法
Groen et al. New covalent ceramics: MgSiN2
JP2684728B2 (ja) 窒化アルミニウム焼結体の製造方法
CN115477540A (zh) 一种高导热氮化硅陶瓷材料及其制备方法和应用
JP2684729B2 (ja) 窒化アルミニウム焼結体の製造法
JP2777076B2 (ja) 高周波用低損失誘電体材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination