CN117488267A - 一种在石英玻璃表面沉积碳化硅涂层的方法 - Google Patents

一种在石英玻璃表面沉积碳化硅涂层的方法 Download PDF

Info

Publication number
CN117488267A
CN117488267A CN202311358178.9A CN202311358178A CN117488267A CN 117488267 A CN117488267 A CN 117488267A CN 202311358178 A CN202311358178 A CN 202311358178A CN 117488267 A CN117488267 A CN 117488267A
Authority
CN
China
Prior art keywords
quartz glass
silicon carbide
laser
carbide coating
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311358178.9A
Other languages
English (en)
Inventor
章嵩
徐青芳
杨梅君
涂溶
张联盟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202311358178.9A priority Critical patent/CN117488267A/zh
Publication of CN117488267A publication Critical patent/CN117488267A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • C23C16/0263Irradiation with laser or particle beam
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本发明涉及一种在石英玻璃表面沉积碳化硅涂层的方法,具体步骤如下:1)抽真空使沉积腔内压强降到10Pa以下;2)向沉积腔内通入氢气,调节沉积腔内压强为200~2000Pa,加载激光对石英玻璃表面进行刻蚀;3)将沉积腔内抽真空至10Pa以下,再通入六甲基二硅烷和氢气,调节反应腔内压强为1000~4000Pa,加载激光在石英玻璃表面沉积碳化硅涂层。本发明提供的在石英玻璃表面沉积碳化硅涂层的方法工艺较为简单,在石英玻璃表面所制备的碳化硅涂层无裂纹,且涂层与衬底结合力显著增加,因而显著提升了石英玻璃坩埚使用寿命与稳定性,有利于大尺寸、高纯单晶硅晶圆的生产。

Description

一种在石英玻璃表面沉积碳化硅涂层的方法
技术领域
本发明属于通过化学气相沉积工艺沉积碳化物技术领域,具体涉及一种在石英玻璃表面沉积碳化硅涂层的方法。
背景技术
单晶硅作为微电子产业的基本材料,被广泛应用于集成电路和电力电子器件的制造,是当今社会信息化技术发展革新的关键基础材料。直拉法工艺成熟稳定,生产成本较低,所制备的单晶力学性能佳,且更易制作大直径单晶圆,因此成为了制备单晶硅的主流技术,市场占比超90%。直拉法工艺是将多晶硅通过热场加热,融化成熔融状态,控制热场将液面温度控制在结晶的临界点,通过液面上方的单晶籽晶从液面向上提拉,熔融液态硅则随着籽晶的提拉上升按照籽晶的晶向生长出单晶硅棒。坩埚作为直拉法生长过程中熔融液态硅的载体容器,要求能够在超过1500℃的温度条件下持续工作超过50小时。在长时间的高温工作条件下,坩埚表面化学元素易渗入熔融硅中,进而导致单晶硅缺陷密度和杂质含量增加。因此,坩埚材质和结构成为了影响单晶硅品质与良品率的重要因素。
石英坩埚凭借自身成本低、稳定性与纯度高、杂质含量低,且易加工的优势,成为直拉法制备单晶硅首选容器。尽管石英坩埚的熔点(1750℃)比熔融液态硅温度(1500℃)更高,但在1500℃的服役温度下,石英玻璃坩埚表面仍然会有少量的氧溶入液态硅。
为了避免石英玻璃坩埚与熔融硅发生反应或粘连,同时减少坩埚中其他杂质的入侵,在坩埚内壁制备一定厚度、耐热系数高,化学性质稳定,且不会对硅的品质产生任何影响的涂层,作为石英玻璃坩埚与熔融硅的隔离层,是保证单晶硅的高纯度最行之有效的手段。在当前的工业化生产中,碳化硅具有高熔点、高硬度、高稳定性、抗热震、抗氧化性等优异特性,成为了新一代石英坩埚内壁涂层的首选材料。然而由于石英与碳化硅热膨胀系数和晶格常数存在明显差异,导致在石英玻璃衬底表面所生长的碳化硅涂层易发生开裂或脱落,导致涂层损坏。
发明内容
本发明所要解决的技术问题是针对现有技术中存在的上述不足,提供一种在石英玻璃表面沉积碳化硅涂层的方法,采用特定的工艺条件刻蚀石英玻璃表面,使其具有适当的粗糙度,与后续沉积的碳化硅薄膜结合紧密,而且使沉积的碳化硅薄膜具有一定的孔隙率,能够缓解受热过程中因热膨胀失配而引起的应力集中,避免了碳化硅涂层开裂与脱落,因而显著提升使用寿命与稳定性。
为解决上述技术问题,本发明提供的技术方案是:
提供一种在石英玻璃表面沉积碳化硅涂层的方法,具体步骤如下:
1)将石英玻璃基板放置于激光化学气相沉积设备沉积腔内的基座上,抽真空使沉积腔内压强降到10Pa以下;
2)向沉积腔内通入氢气,调节沉积腔内压强为200~2000Pa,打开连续激光器,通过沉积腔上玻璃窗口向石英玻璃基板表面加载激光对石英玻璃表面进行刻蚀,刻蚀结束后关闭激光器和氢气;
3)将沉积腔内抽真空至10Pa以下,再通入六甲基二硅烷和氢气,调节反应腔内压强为1000~4000Pa,再次打开连续激光器,通过沉积腔上玻璃窗口向石英玻璃基板表面加载激光在石英玻璃表面沉积碳化硅涂层,沉积结束后关闭激光器,关闭六甲基二硅烷和氢气,再将沉积腔内真空降至10Pa以下,待基板自然冷却至室温,打开激光化学气相沉积设备,取出样品。
按上述方案,步骤2)氢气流速为50~1000sccm。
按上述方案,步骤2)激光波长为808~1060nm。
按上述方案,步骤2)对石英玻璃表面进行刻蚀的工艺条件为:待石英玻璃基板表面温度达到1100~1300℃后持续激光照射2~30min。
按上述方案,步骤3)六甲基二硅烷流速为2~30sccm,氢气流速为200~2000sccm。
按上述方案,步骤3)在石英玻璃表面沉积碳化硅涂层的工艺条件为:待石英玻璃基板表面温度升温至1000~1250℃后保温5~60min。通过电脑程序控制激光功率来保持温度恒定。
本发明还包括采用上述方法制备得到的覆有碳化硅涂层的石英玻璃坩埚。
以及上述覆有碳化硅涂层的石英玻璃坩埚在晶圆生产领域的应用。
本发明采用激光照射石英玻璃,通过适当工艺促使石英玻璃表面被氢气高效刻蚀,并在石英玻璃表面形成大量微纳尺度凹凸结构,上述凹凸结构有利于后续生长的碳化硅涂层孔隙率升高,且空隙分布均匀,并显著提升碳化硅涂层与石英玻璃基板之间咬合力,从而避免由于涂层与基板之间的热膨胀失配而引起涂层开裂的问题。
本发明的有益效果在于:本发明提供的在石英玻璃表面沉积碳化硅涂层的方法工艺较为简单,在石英玻璃表面所制备的碳化硅涂层无裂纹,且涂层与衬底结合力显著增加,因而显著提升了石英玻璃坩埚使用寿命与稳定性,有利于大尺寸、高纯单晶硅晶圆的生产。
附图说明
图1为本发明对比例1采用未经刻蚀的石英玻璃为衬底所沉积的碳化硅涂层(a)表面与断面(b)的SEM图;
图2为实施例1采用的石英玻璃基板在经过激光刻蚀处理前(a,b)和刻蚀处理后(c,d)的SEM图;
图3为实施例1石英玻璃基板在激光刻蚀处理前(a)和刻蚀处理后(b)的表面原子力显微镜图及粗糙度对比图;
图4为实施例1在经过刻蚀的石英玻璃表面所生长的碳化硅涂层的表面(a)
与断面(b)的SEM图;
图5为以未经激光刻蚀处理和经过刻蚀处理的石英玻璃基板为衬底,分别在1000℃、1025℃、1050℃、1075℃沉积碳化硅涂层时,石英玻璃基板与碳化硅涂层的结合力对比图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图对本发明作进一步详细描述。
对比例1
一种在石英玻璃表面沉积碳化硅涂层的方法,具体步骤如下:
1)将石英玻璃基板(12mm×15mm)放置于激光化学气相沉积设备沉积腔内的基座上,抽真空使沉积腔内压强降到10Pa以下;
2)不经过刻蚀过程,直接将沉积腔内抽真空至10Pa以下,再通入六甲基二硅烷和氢气,六甲基二硅烷流速为5sccm,氢气流速为500sccm,调节反应腔内压强为2500Pa,打开连续激光器,通过沉积腔上玻璃窗口向石英玻璃基板表面加载激光在石英玻璃表面沉积碳化硅涂层,待基板表面温度升温至设定温度1075℃后保温10min,沉积结束后关闭激光器,关闭六甲基二硅烷和氢气,再将沉积腔内真空降至10Pa以下,待基板自然冷却至室温,打开激光化学气相沉积设备,取出样品。
图1为本对比例样品涂层(a)表面与(b)断面SEM图,显示石英玻璃基板未经激光照射刻蚀时,后续生长的碳化硅涂层较为密实,但表面出现较多裂纹,涂层厚度约27.8μm。
实施例1
一种在石英玻璃表面沉积碳化硅涂层的方法,具体步骤如下:
1)将石英玻璃基板(12mm×15mm)放置于激光化学气相沉积设备沉积腔内的基座上,抽真空使沉积腔内压强降到10Pa以下;
2)向沉积腔内通入氢气,设定氢气流速为500sccm,调节沉积腔内压强为500Pa,打开连续激光器,激光波长为1000nm,通过沉积腔上玻璃窗口向石英玻璃基板表面加载激光对石英玻璃表面进行刻蚀,待基板表面温度达到设定温度1200℃后持续激光照射20min,结束后关闭激光器和氢气;
3)将沉积腔内抽真空至10Pa以下,再通入六甲基二硅烷和氢气,六甲基二硅烷流速为5sccm,氢气流速为500sccm,调节反应腔内压强为2500Pa,再次打开连续激光器,通过沉积腔上玻璃窗口向石英玻璃基板表面加载激光在石英玻璃表面沉积碳化硅涂层,待基板表面温度升温至设定温度1075℃后保温10min,沉积结束后关闭激光器,关闭六甲基二硅烷和氢气,再将沉积腔内真空降至10Pa以下,待基板自然冷却至室温,打开激光化学气相沉积设备,取出样品。
图2为本实施例石英玻璃基板在经过激光刻蚀处理前后的SEM图,其中a和b为刻蚀处理前,c和d为刻蚀处理后,显示经过刻蚀后基板表面形成大量微纳尺寸的凹陷与凸起,且分布均匀。
图3为本实施例石英玻璃基板在激光刻蚀处理前(a)和刻蚀处理后(b)的表面原子力显微镜(AFM)图及粗糙度对比图,刻蚀处理前粗糙度参数Sa为0.0429μm,刻蚀处理后Sa为3.34μm,显示经过刻蚀后基板表面粗糙度显著增加。
图4为本实施例样品涂层的表面(a)与断面(b)SEM图。表面SEM图显示涂层表面存在大量半球形颗粒状碳化硅晶簇;断面SEM图显示碳化硅密集生长于凹凸不平的石英玻璃表面,且碳化硅晶簇由棒状纳米尺寸的晶粒构成,晶簇之间存在孔隙,碳化硅涂层总厚度约47.3μm。图中显示石英玻璃基板经激光照射刻蚀后,采用与对比例1相同的沉积参数生长碳化硅涂层,涂层表面未见裂纹,说明刻蚀处理可增加碳化硅涂层孔隙率,有效消除因热膨胀失配而引起的裂纹。
分别以未经激光刻蚀处理的石英玻璃基板和经本实施例步骤2)激光刻蚀处理的石英玻璃基板为衬底,采用本实施例步骤3)的方法分别在1000℃、1025℃、1050℃沉积碳化硅涂层,其余条件与本实施例步骤3)相同,测试所得样品与对比例1及本实施例样品中石英玻璃基板与碳化硅涂层的结合力,测试结果如图5所示,显示经过激光照射刻蚀后涂层与衬底之间的结合力显著增强。
实施例2
一种在石英玻璃表面沉积碳化硅涂层的方法,具体步骤如下:
1)将石英玻璃基板放置于激光化学气相沉积设备沉积腔内的基座上,抽真空使沉积腔内压强降到10Pa以下;
2)向沉积腔内通入氢气,设定氢气流速为50sccm,调节沉积腔内压强为2000Pa,打开连续激光器,激光波长为808nm,通过沉积腔上玻璃窗口向石英玻璃基板表面加载激光对石英玻璃表面进行刻蚀,待基板表面温度达到设定温度1100℃后持续激光照射30min,结束后关闭激光器和氢气;
3)将沉积腔内抽真空至10Pa以下,再通入六甲基二硅烷和氢气,六甲基二硅烷流速为2sccm,氢气流速为200sccm,调节反应腔内压强为1000Pa,再次打开连续激光器,通过沉积腔上玻璃窗口向石英玻璃基板表面加载激光在石英玻璃表面沉积碳化硅涂层,待基板表面温度升温至设定温度1000℃后保温60min,沉积结束后关闭激光器,关闭六甲基二硅烷和氢气,再将沉积腔内真空降至10Pa以下,待基板自然冷却至室温,打开激光化学气相沉积设备,取出样品。
实施例3
一种在石英玻璃表面沉积碳化硅涂层的方法,具体步骤如下:
1)将石英玻璃基板放置于激光化学气相沉积设备沉积腔内的基座上,抽真空使沉积腔内压强降到10Pa以下;
2)向沉积腔内通入氢气,设定氢气流速为1000sccm,调节沉积腔内压强为200Pa,打开连续激光器,激光波长为1060nm,通过沉积腔上玻璃窗口向石英玻璃基板表面加载激光对石英玻璃表面进行刻蚀,待基板表面温度达到设定温度1300℃后持续激光照射2min,结束后关闭激光器和氢气;
3)将沉积腔内抽真空至10Pa以下,再通入六甲基二硅烷和氢气,六甲基二硅烷流速为30sccm,氢气流速为2000sccm,调节反应腔内压强为4000Pa,再次打开连续激光器,通过沉积腔上玻璃窗口向石英玻璃基板表面加载激光在石英玻璃表面沉积碳化硅涂层,待基板表面温度升温至设定温度1250℃后保温5min,沉积结束后关闭激光器,关闭六甲基二硅烷和氢气,再将沉积腔内真空降至10Pa以下,待基板自然冷却至室温,打开激光化学气相沉积设备,取出样品。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细的说明。对本领域的技术人员来说,本发明可以有各种修改和变化,凡在本发明精神和原则内所做的任何修改,等同替换,改进等,均应在本发明的保护范围内。

Claims (8)

1.一种在石英玻璃表面沉积碳化硅涂层的方法,其特征在于,具体步骤如下:
1)将石英玻璃基板放置于激光化学气相沉积设备沉积腔内的基座上,抽真空使沉积腔内压强降到10Pa以下;
2)向沉积腔内通入氢气,调节沉积腔内压强为200~2000Pa,打开连续激光器,通过沉积腔上玻璃窗口向石英玻璃基板表面加载激光对石英玻璃表面进行刻蚀,刻蚀结束后关闭激光器和氢气;
3)将沉积腔内抽真空至10Pa以下,再通入六甲基二硅烷和氢气,调节反应腔内压强为1000~4000Pa,再次打开连续激光器,通过沉积腔上玻璃窗口向石英玻璃基板表面加载激光在石英玻璃表面沉积碳化硅涂层,沉积结束后关闭激光器,关闭六甲基二硅烷和氢气,再将沉积腔内真空降至10Pa以下,待基板自然冷却至室温,打开激光化学气相沉积设备,取出样品。
2.根据权利要求1所述的在石英玻璃表面沉积碳化硅涂层的方法,其特征在于,步骤2)氢气流速为50~1000sccm。
3.根据权利要求1所述的在石英玻璃表面沉积碳化硅涂层的方法,其特征在于,步骤2)激光波长为808~1060nm。
4.根据权利要求1所述的在石英玻璃表面沉积碳化硅涂层的方法,其特征在于,步骤2)对石英玻璃表面进行刻蚀的工艺条件为:待石英玻璃基板表面温度达到1100~1300℃后持续激光照射2~30min。
5.根据权利要求1所述的在石英玻璃表面沉积碳化硅涂层的方法,其特征在于,步骤3)六甲基二硅烷流速为2~30sccm,氢气流速为200~2000sccm。
6.根据权利要求1所述的在石英玻璃表面沉积碳化硅涂层的方法,其特征在于,步骤3)在石英玻璃表面沉积碳化硅涂层的工艺条件为:待石英玻璃基板表面温度升温至1000~1250℃后保温5~60min。通过电脑程序控制激光功率来保持温度恒定。
7.根据权利要求1-6任一项所述的方法制备得到的覆有碳化硅涂层的石英玻璃坩埚。
8.权利要求7所述的石英玻璃坩埚在晶圆生产领域的应用。
CN202311358178.9A 2023-10-19 2023-10-19 一种在石英玻璃表面沉积碳化硅涂层的方法 Pending CN117488267A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311358178.9A CN117488267A (zh) 2023-10-19 2023-10-19 一种在石英玻璃表面沉积碳化硅涂层的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311358178.9A CN117488267A (zh) 2023-10-19 2023-10-19 一种在石英玻璃表面沉积碳化硅涂层的方法

Publications (1)

Publication Number Publication Date
CN117488267A true CN117488267A (zh) 2024-02-02

Family

ID=89679123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311358178.9A Pending CN117488267A (zh) 2023-10-19 2023-10-19 一种在石英玻璃表面沉积碳化硅涂层的方法

Country Status (1)

Country Link
CN (1) CN117488267A (zh)

Similar Documents

Publication Publication Date Title
CN100433257C (zh) 制造单晶薄膜的方法
US6623801B2 (en) Method of producing high-purity polycrystalline silicon
JP2006117512A (ja) 炭化珪素単結晶の製造方法とその方法によって成長した炭化珪素単結晶、単結晶インゴットおよび炭化珪素単結晶ウエーハ
JP4830073B2 (ja) 炭化珪素単結晶の成長方法
WO2007032598A1 (en) Methods for fabricating zno nanostructure and devices thereof
US4515755A (en) Apparatus for producing a silicon single crystal from a silicon melt
US20060216514A1 (en) Diamond film-forming silicon and its manufacturing method
CN111690982A (zh) 一种利用任意指数面的单晶铜箔生长单晶石墨烯的方法
US3341361A (en) Process for providing a silicon sheet
CN114606568A (zh) 低维碲晶体的制备方法
JP2000302577A (ja) 炭化珪素被覆黒鉛部材
JP2010275181A (ja) ゲルマニウム単結晶の製造方法
JPH0556851B2 (zh)
CN117488267A (zh) 一种在石英玻璃表面沉积碳化硅涂层的方法
WO1992022689A1 (en) Process for making large-area single crystal diamond films
CN114292129B (zh) 利用溶液法在石墨件表面沉积碳化硅涂层的方法
JP3657036B2 (ja) 炭化ケイ素薄膜および炭化ケイ素薄膜積層基板の製造方法
WO2018047844A1 (ja) 窒化ガリウム積層体の製造方法
JP4894780B2 (ja) 半導体基板の製造方法
CN111211041B (zh) 一种制备大面积β相硒化铟单晶薄膜的方法
KR101267424B1 (ko) 기판 표면처리 공정을 이용한 자립형 실리콘 필름의 제조방법
US4550014A (en) Method for production of free-standing polycrystalline boron phosphide film
JPH0660401B2 (ja) シリコン薄膜製造方法
CN114684813B (zh) 一种大面积均匀单层石墨烯薄膜的制备方法
CN115058700B (zh) 一种二硫化钼薄膜的制备方法及二硫化钼薄膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination