CN117447197A - 一种高熵假板钛矿钛酸盐陶瓷的制备方法 - Google Patents

一种高熵假板钛矿钛酸盐陶瓷的制备方法 Download PDF

Info

Publication number
CN117447197A
CN117447197A CN202311785213.5A CN202311785213A CN117447197A CN 117447197 A CN117447197 A CN 117447197A CN 202311785213 A CN202311785213 A CN 202311785213A CN 117447197 A CN117447197 A CN 117447197A
Authority
CN
China
Prior art keywords
pseudobrookite
entropy
mixed powder
powder
titanate ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311785213.5A
Other languages
English (en)
Other versions
CN117447197B (zh
Inventor
刘礼龙
刘津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Nanjixing High Tech Co ltd
Original Assignee
Shanghai Nanjixing High Tech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Nanjixing High Tech Co ltd filed Critical Shanghai Nanjixing High Tech Co ltd
Priority to CN202311785213.5A priority Critical patent/CN117447197B/zh
Publication of CN117447197A publication Critical patent/CN117447197A/zh
Application granted granted Critical
Publication of CN117447197B publication Critical patent/CN117447197B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于假板钛矿钛酸盐陶瓷制备技术领域,公开了一种高熵假板钛矿钛酸盐陶瓷的制备方法,包括:按照化学式(α0.75β0.5)Ti1.75O5称取相应的二价金属氧化物粉体αO、三价金属氧化物粉体β2O3和TiO2粉末,球磨混合均匀得到初始混合粉末;在初始混合粉末中加入PVA溶液作为粘结剂进行造粒,得二次混合粉末;将二次混合粉末进行干压成型,得到坯体,高温烧结,获得高熵假板钛矿钛酸盐陶瓷。本发明将二价和三价金属阳离子同时在八面体Wyckoff‑4c位和Wyckff‑8f位的混乱分布,极大地增加了假板钛矿钛酸盐陶瓷的构型熵,提高了假板钛矿钛酸盐陶瓷的高温热稳定性。

Description

一种高熵假板钛矿钛酸盐陶瓷的制备方法
技术领域
本发明属于假板钛矿钛酸盐陶瓷制备技术领域,尤其是涉及一种具有优异热稳定性的高熵假板钛矿钛酸盐陶瓷的制备方法。
背景技术
钛酸盐陶瓷主要可以分为两种:具有钙钛矿晶体结构的钛酸盐陶瓷和具有假板钛矿晶体结构的钛酸盐陶瓷。与钙钛矿钛酸盐陶瓷相比,假板钛矿钛酸盐陶瓷,例如钛酸镁、钛酸铁、钛酸铝等具有较低的热导率和热膨胀系数,以及较高的熔点和优异的抗热震性,是一种优良的高温隔热材料和高温过滤材料。假板钛矿钛酸盐陶瓷的优异性能在很大程度上归因于其特殊的晶体结构,其晶体结构由两种不同的畸变八面体组成,阳离子分别位于两种八面体的Wyckoff-4c位和Wyckff-8f位。然而假板钛矿钛酸盐最大的缺点是其热稳定性较差,在400~1200℃容易分解,这严重限制了其进一步的应用。
高熵材料的概念首先出现在合金领域。随后,科研人员将高熵材料的概念以及高构型熵、严重的晶格畸变、缓慢扩散、鸡尾酒效应四大效应进一步拓展至陶瓷领域,陆续开发出具有各种优异性能的高熵陶瓷。一般来说,高熵陶瓷内部的一个阳离子晶格点位由多个阳离子主元所共享,这个混乱分布赋予了高熵陶瓷较高的构型熵。这一高构型熵赋予了材料各类优良的特性,例如高强度、高硬度、低热导率以及优良的结构稳定性。
因此,如能将高熵概念引入到钛酸盐陶瓷中,则可大幅度提高钛酸盐陶瓷的结构稳定性,解决其中高温度段易分解的问题。一般来说只是单一阳离子位点的掺杂提供的构型熵有限,而阴离子的尺寸较大,一般难以形成高熵位点,所以为了大幅度增加钛酸盐陶瓷的构型熵,就需提出一种新的高熵陶瓷设计理念,从而提高其结构稳定性。此外,由于材料的热导率与其晶体结构的复杂程度成反比,因此,所设计的具有高构型熵的钛酸盐陶瓷也将具有极低的本征热导率。
发明内容
本发明的目的在于克服现有技术的不足,提供一种高熵假板钛矿钛酸盐陶瓷的制备方法,将高熵概念引入到假板钛矿钛酸盐陶瓷中来提高假板钛矿钛酸盐陶瓷的高温稳定性,克服了现有假板钛矿钛酸盐陶瓷高温易分解的问题。
本发明是通过如下技术方案予以实现:
一种高熵假板钛矿钛酸盐陶瓷的制备方法,包括下述步骤:
(1)按照化学式(α0.75β0.5)Ti1.75O5称取相应的二价金属氧化物混合粉体αO、三价金属氧化物混合粉体β2O3和TiO2粉末,随后球磨混合均匀得到初始混合粉末;所述的二价金属氧化物混合粉体αO是MgO、CoO、NiO、CuO、ZnO中的任意三种,且称取的三者粉体的摩尔数相同;所述的三价金属氧化物混合粉体β2O3是Al2O3、Fe2O3、Ga2O3中的任意两种,且称取的两者粉体的摩尔数相同;
(2)在初始混合粉末中,加入质量浓度4wt%~10wt%的PVA溶液作为粘结剂进行造粒,获得二次混合粉末;所述初始混合粉末、加入的PVA溶液的质量比为15:(1~4);
(3)将二次混合粉末进行干压成型,得到坯体;
(4)将坯体进行烧结,获得高熵假板钛矿钛酸盐陶瓷。
进一步地,所述初始混合粉末、加入的PVA溶液的质量比为15:(1~2)。
进一步地,所述的PVA溶液的质量浓度为6wt%~8wt%。
进一步地,所述的干压成型的压力为100~200MPa。
进一步地,所述的烧结具体为:先以1~2℃/min的速度升温至650℃并保温1~4h,而后以5~10℃/min的速度升温至1300~1400℃,保温2~6h。
中高温相稳定性差是限制假板钛矿钛酸盐陶瓷广泛应用的一个重要原因。假板钛矿钛酸盐陶瓷是一个典型的熵稳定陶瓷,由于单相陶瓷的构型熵不高,所以其在400~1200℃极易分解。为此,本发明拟将高熵概念引入到假板钛矿钛酸盐陶瓷中,通过增加其构型熵来提高其相稳定性。但传统的高熵都是在同一阳离子位点引入不同元素,其熵增效果有限,难以满足假板钛矿钛酸盐高温热稳定的需求。假板钛矿钛酸盐的晶体结构由两种不同的畸变八面体组成,阳离子分别位于两种八面体的Wyckoff-4c位和Wyckff-8f位。研究发现,对于二价金属假板钛矿钛酸盐来说(如钛酸镁、钛酸钴等),二价金属离子处于在八面体的Wyckoff-4c位,钛离子处于八面体的Wyckff-8f位,引入高熵概念后大量的二价金属离子依然混乱分布在Wyckoff-4c位中;对于三价金属假板钛矿钛酸盐来说(如钛酸铝、钛酸铁等),三价金属离子处于八面体的Wyckff-8f位,而钛离子处于八面体的Wyckoff-4c位,引入高熵概念后大量的三价金属离子会混乱分布在Wyckff-8f位中。因此,如果在假板钛矿钛酸盐中同时引入二价和三价过渡金属离子,则可以使二价和三价过渡金属离子同时在Wyckoff-4c位和Wyckff-8f位中混乱分布,从而获得极高的构型熵。
本发明的优点和积极效果是:
本发明首次提出基于双异价阳离子的高熵假板钛矿钛酸盐的制备工艺,二价和三价金属阳离子在八面体的Wyckoff-4c位和Wyckff-8f位的同时混乱分布,极大地增加了假板钛矿钛酸盐陶瓷的构型熵,从而进一步提高假板钛矿钛酸盐陶瓷的高温热稳定性。
附图说明
图1为实施例1制备的高熵假板钛矿钛酸盐陶瓷(Mg0.25Co0.25Ni0.25Al0.25Ga0.25)Ti1.75O5放大1000倍的SEM图;
图2为实施例1制备的高熵假板钛矿钛酸盐陶瓷(Mg0.25Co0.25Ni0.25Al0.25Ga0.25)Ti1.75O5的XRD谱图以及其在1200℃下热处理50h后的XRD谱图;
图3为实施例2制备的高熵假板钛矿钛酸盐陶瓷(Mg0.25Cu0.25Zn0.25Al0.25Fe0.25)Ti1.75O5放大1000倍的SEM图;
图4为实施例2制备的高熵假板钛矿钛酸盐陶瓷(Mg0.25Cu0.25Zn0.25Al0.25Fe0.25)Ti1.75O5的XRD谱图以及其在1200℃下热处理50h后的XRD谱图;
图5为对比例1制备的高熵假板钛矿钛酸盐陶瓷(Mg0.25Cu0.25Zn0.25Co0.25Ni0.25)Ti1.75O55的XRD谱图以及其在1200℃下热处理50h后的XRD谱图;
图6为对比例2制备的高熵假板钛矿钛酸盐陶瓷(Mg0.55Co0.1Ni0.1Al0.4Ga0.1)Ti1.75O5的XRD谱图以及其在1200℃下热处理50h后的XRD谱图。
具体实施方式
为了更好的理解本发明,下面结合附图对本发明进行进一步详述。在不冲突的情况下,案例中的特征可以相互组合。以下实施例中所使用的原料均为市售的分析纯原料。
实施例1
一种具有优异热稳定性的高熵假板钛矿钛酸盐陶瓷的制备方法,包括下述步骤:
(1)按照化学式(Mg0.25Co0.25Ni0.25Al0.25Ga0.25)Ti1.75O5分别称取4.03g的MgO粉末、7.49g的 CoO粉末、7.47g的NiO粉末、5.10g的 Al2O3粉末、9.37g的 Ga2O3粉末和55.93g 的TiO2粉末,并用球磨机混合均匀,得到初始混合粉末;
(2)称取1.50g的初始混合粉末,并加入0.1g质量浓度为6wt%的PVA溶液作为粘结剂,进行造粒,得到二次混合粉末;
(3)将获得的二次混合粉末置于模具中,在120MPa的压力下干压成型,得到坯体;
(4)将坯体置于高温炉中,以1℃/min的速度升至650℃并保温1h,而后以5℃/min的速度升温至1400℃,保温4h,高温烧结后即得高熵假板钛矿钛酸盐陶瓷(Mg0.25Co0.25Ni0.25Al0.25Ga0.25)Ti1.75O5
实施例1制备的高熵假板钛矿钛酸盐陶瓷(Mg0.25Co0.25Ni0.25Al0.25Ga0.25)Ti1.75O5的扫描电镜图如图1所示。实施例1制备的高熵假板钛矿钛酸盐陶瓷(Mg0.25Co0.25Ni0.25Al0.25Ga0.25)Ti1.75O5的XRD谱图以及其在1200℃下热处理50h后的XRD谱图如图2所示。
实施例2
一种具有优异热稳定性的高熵假板钛矿钛酸盐陶瓷的制备方法,包括下述步骤:
(1)按照化学式(Mg0.25Cu0.25Zn0.25Al0.25Fe0.25)Ti1.75O5分别称取4.03g的 MgO粉末、7.95g的 CuO粉末、8.14g的ZnO粉末、5.10g的 Al2O3粉末、7.98g的 Fe2O3粉末和55.93g 的TiO2粉末,并用球磨机混合均匀,得到初始混合粉末;
(2)称取1.50g的初始混合粉末,并加入0.15g质量浓度为8wt%的PVA溶液作为粘结剂,进行造粒,得到二次混合粉末;
(3)将获得的二次混合粉末置于模具中,在140MPa的压力下干压成型,得到坯体;
(4)将坯体置于高温炉中,以2℃/min的速度升至650℃并保温3h,而后以8℃/min的速度升温至1300℃,保温6h,高温烧结后即得高熵假板钛矿钛酸盐陶瓷(Mg0.25Cu0.25Zn0.25Al0.25Fe0.25)Ti1.75O5
实施例2制备的高熵假板钛矿钛酸盐陶瓷(Mg0.25Cu0.25Zn0.25Al0.25Fe0.25)Ti1.75O5的扫描电镜图如图3所示。实施例2制备的高熵假板钛矿钛酸盐陶瓷(Mg0.25Cu0.25Zn0.25Al0.25Fe0.25)Ti1.75O5的XRD谱图以及其在1200℃下热处理50h后的XRD谱图如图4所示。
对比例1
一种具有优异热稳定性的高熵假板钛矿钛酸盐陶瓷的制备方法,制备方法同实施例1,区别仅在于步骤(1):按照化学式(Mg0.25Cu0.25Zn0.25Co0.25Ni0.25)Ti1.75O5分别称取4.03g的 MgO粉末、7.95g的 CuO粉末、8.14g的ZnO粉末、7.49g的 CoO粉末、7.47g的 NiO粉末和79.9g 的TiO2粉末,并用球磨机混合均匀,得到初始混合粉末。
对比例1制备的高熵假板钛矿钛酸盐陶瓷(Mg0.25Cu0.25Zn0.25Co0.25Ni0.25)Ti1.75O5的XRD谱图以及其在1200℃下热处理50h后的XRD谱图如图5所示。
对比例2
一种具有优异热稳定性的高熵假板钛矿钛酸盐陶瓷的制备方法,制备方法同实施例1,区别仅在于步骤(1):按照化学式(Mg0.55Co0.1Ni0.1Al0.4Ga0.1)Ti1.75O5分别称取8.87g的MgO粉末、3.00g的 CoO粉末、2.99g的NiO粉末、8.16g的 Al2O3粉末、3.75g的 Ga2O3粉末和55.93g 的TiO2粉末,并用球磨机混合均匀,得到初始混合粉末。
对比例2制备的高熵假板钛矿钛酸盐陶瓷(Mg0.55Co0.1Ni0.1Al0.4Ga0.1)Ti1.75O5的XRD谱图以及其在1200℃下热处理50h后的XRD谱图如图6所示。
评价与表征
图1和图3分别为实施例1和实施例2制备的高熵假板钛矿钛酸盐陶瓷放大1000倍的SEM图,可以看出,本发明制备出的高熵假板钛矿钛酸盐陶瓷具有均匀的显微结构及较高的致密度。图2和图4分别为实施例1和实施例2制备的高熵假板钛矿钛酸盐陶瓷的XRD谱图以及其在1200℃下热处理50h后的XRD谱图,可以看出,本发明制备出的高熵假板钛矿钛酸盐陶瓷呈现出单一物相,且衍射峰与单相假板钛矿钛酸钴(PDF73-1631)的衍射峰重合,这证明了制备出的产物为高熵假板钛矿钛酸盐陶瓷。此外,还可以看出,实施例1和实施例2制备的两种产物在1200℃下热处理50h后未发生分解,进而证明制备的高熵假板钛矿钛酸盐具有优良的热稳定性。经测试,高熵假板钛矿钛酸盐还具有较低的室温热导率,其中实施例1制备的(Mg0.25Co0.25Ni0.25Al0.25Ga0.25)Ti1.75O5的室温热导率为1.25W·m-1·K-1,实施例2制备的(Mg0.25Cu0.25Zn0.25Al0.25Fe0.25)Ti1.75O5的室温热导率为1.23 W·m-1·K-1
图5为对比例1制备的高熵假板钛矿钛酸盐陶瓷(Mg0.25Cu0.25Zn0.25Co0.25Ni0.25)Ti1.75O55的XRD谱图以及其在1200℃下热处理50h后的XRD谱图。可以看出,1200℃下50h处理后,高熵假板钛矿钛酸盐陶瓷(Mg0.25Cu0.25Zn0.25Co0.25Ni0.25)Ti1.75O55发生了分解,生成了杂质相。此外,还可以发现与未处理样品的XRD谱图相比,热处理50h后样品的XRD谱图发生了偏移,这是因为高熵假板钛矿钛酸盐陶瓷分解导致了部分元素析出,剩下的高熵陶瓷的晶格常数发生了变化,从而导致其XRD衍射峰的峰位发生了偏移。对比例1选的五种金属元素均为二价金属离子(Mg、Co、Ni、Cu、Zn),所以其形成的高熵假板钛矿钛酸盐陶瓷的构型熵要远低于实施例1和实施例2制备的高熵假板钛矿钛酸盐陶瓷。这就导致其热稳定性较差,高温热处理后会发生分解。此外,(Mg0.25Cu0.25Zn0.25Co0.25Ni0.25)Ti1.75O55陶瓷的热导率为1.56W·m-1·K-1,远高于实施例1和实施例2制备的高熵假板钛矿钛酸盐陶瓷的热导率。
图6为对比例2制备的高熵假板钛矿钛酸盐陶瓷(Mg0.55Co0.1Ni0.1Al0.4Ga0.1)Ti1.75O5的XRD谱图以及其在1200℃下热处理50h后的XRD谱图,可以看出,1200℃下50h处理后,高熵假板钛矿钛酸盐陶瓷(Mg0.55Co0.1Ni0.1Al0.4Ga0.1)Ti1.75O5发生了分解,生成了杂质相,同时高熵陶瓷的XRD衍射峰的峰位也发生了偏移。对比例2选择的二价元素和三价元素的种类与实施例1中相同,但是Mg、Co、Ni、Al、Ga之间的摩尔比变为5.5:1:1:4:1,不是等摩尔元素配比,这就导致高熵假板钛矿钛酸盐陶瓷(Mg0.55Co0.1Ni0.1Al0.4Ga0.1)Ti1.75O5的构型熵也不够高,高温热处理后制备的高熵假板钛矿钛酸盐会发生分解。此外,对比例2制备的(Mg0.55Co0.1Ni0.1Al0.4Ga0.1)Ti1.75O5的热导率为1.72 W·m-1·K-1,远高于实施例1和实施例2制备出的高熵假板钛矿钛酸盐陶瓷的热导率。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (5)

1.一种假板钛矿钛酸盐陶瓷的制备方法,其特征在于,包括下述步骤:
(1)按照化学式(α0.75β0.5)Ti1.75O5称取相应的二价金属氧化物混合粉体αO、三价金属氧化物混合粉体β2O3和TiO2粉末,随后球磨混合均匀得到初始混合粉末;所述的二价金属氧化物混合粉体αO是MgO、CoO、NiO、CuO、ZnO中的任意三种,且称取的三者粉体的摩尔数相同;所述的三价金属氧化物混合粉体β2O3是Al2O3、Fe2O3、Ga2O3中的任意两种,且称取的两者粉体的摩尔数相同;
(2)在初始混合粉末中,加入质量浓度4wt%~10wt%的PVA溶液作为粘结剂进行造粒,获得二次混合粉末;所述初始混合粉末、加入的PVA溶液的质量比为15:(1~4);
(3)将二次混合粉末进行干压成型,得到坯体;
(4)将坯体进行烧结,获得假板钛矿钛酸盐陶瓷。
2.根据权利要求1所述的制备方法,其特征在于,所述初始混合粉末、加入的PVA溶液的质量比为15:(1~2)。
3.根据权利要求1所述的制备方法,其特征在于,所述PVA溶液的质量浓度为6wt%~8wt%。
4.根据权利要求1所述的制备方法,其特征在于,所述的干压成型的压力为100~200MPa。
5.根据权利要求1所述的制备方法,其特征在于,所述的烧结具体为:先以1~2℃/min的速度升温至650℃并保温1~4h,而后以5~10℃/min的速度升温至1300~1400℃,保温2~6h。
CN202311785213.5A 2023-12-25 2023-12-25 一种高熵假板钛矿钛酸盐陶瓷的制备方法 Active CN117447197B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311785213.5A CN117447197B (zh) 2023-12-25 2023-12-25 一种高熵假板钛矿钛酸盐陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311785213.5A CN117447197B (zh) 2023-12-25 2023-12-25 一种高熵假板钛矿钛酸盐陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN117447197A true CN117447197A (zh) 2024-01-26
CN117447197B CN117447197B (zh) 2024-02-27

Family

ID=89584064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311785213.5A Active CN117447197B (zh) 2023-12-25 2023-12-25 一种高熵假板钛矿钛酸盐陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN117447197B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372088A (zh) * 2021-07-23 2021-09-10 中国科学院兰州化学物理研究所 一种以高熵氧化物为功能颜料制备水性陶瓷功能涂料的方法
CN114573345A (zh) * 2022-03-24 2022-06-03 郑州大学 一种钙钛矿型高熵高发射率陶瓷涂层镀膜液的制备方法及应用
CN115991599A (zh) * 2021-10-20 2023-04-21 深圳先进电子材料国际创新研究院 一种高熵钙钛矿氧化物掺杂陶瓷、制备方法及其应用
CN116495701A (zh) * 2023-04-26 2023-07-28 中国科学技术大学 一种由光热驱动甲烷干重整制备合成气的方法
CN116805684A (zh) * 2023-06-30 2023-09-26 中国科学技术大学 一种Al、Zn、Ti和Fe共掺杂双相层状氧化物钠离子电池高熵正极材料
CN116986902A (zh) * 2023-08-21 2023-11-03 陕西科技大学 一种亚微米细晶结构的高熵钙钛矿陶瓷材料及制备方法
CN117229056A (zh) * 2023-09-12 2023-12-15 太原理工大学 一种高介电铝掺杂型钙钛矿结构高熵微波介质陶瓷及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372088A (zh) * 2021-07-23 2021-09-10 中国科学院兰州化学物理研究所 一种以高熵氧化物为功能颜料制备水性陶瓷功能涂料的方法
CN115991599A (zh) * 2021-10-20 2023-04-21 深圳先进电子材料国际创新研究院 一种高熵钙钛矿氧化物掺杂陶瓷、制备方法及其应用
CN114573345A (zh) * 2022-03-24 2022-06-03 郑州大学 一种钙钛矿型高熵高发射率陶瓷涂层镀膜液的制备方法及应用
CN116495701A (zh) * 2023-04-26 2023-07-28 中国科学技术大学 一种由光热驱动甲烷干重整制备合成气的方法
CN116805684A (zh) * 2023-06-30 2023-09-26 中国科学技术大学 一种Al、Zn、Ti和Fe共掺杂双相层状氧化物钠离子电池高熵正极材料
CN116986902A (zh) * 2023-08-21 2023-11-03 陕西科技大学 一种亚微米细晶结构的高熵钙钛矿陶瓷材料及制备方法
CN117229056A (zh) * 2023-09-12 2023-12-15 太原理工大学 一种高介电铝掺杂型钙钛矿结构高熵微波介质陶瓷及其制备方法

Also Published As

Publication number Publication date
CN117447197B (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
US20070270304A1 (en) Powder for black zirconia sintered body, production method thereof, and sintered body thereof
DE1933331A1 (de) Verfahren zur Herstellung homogener Oxide mehrerer Elemente in feinverteilter Form und erhaltene Produkte
DE2353093B2 (de) Verfahren zur herstellung gesinterter formkoerper auf siliziumnitridbasis
CN106946566B (zh) 一种片状钛酸锶钡粉体材料的制备方法
CN115594497B (zh) 一种具有尖晶石结构的高熵陶瓷及其制备方法和应用
CN115386777A (zh) 一种过渡金属碳氮化物基高熵金属陶瓷及其制备方法
CN117447197B (zh) 一种高熵假板钛矿钛酸盐陶瓷的制备方法
US4473542A (en) Production of microcrystalline ferrimagnetic spinels
KR20210153705A (ko) 나노 티탄산바륨 미세 결정 및 그 제조 방법과 티탄산바륨 파우더 및 그 제조 방법
US4703023A (en) Process for the production of low-thermal-expansive (ZrO)2 P2 O7 ceramic
Guillemet-Fritsch et al. Mechanical properties of nickel manganites-based ceramics used as negative temperature coefficient thermistors (NTC)
CN100554144C (zh) 金属氧化物的制造方法
DE19740262C1 (de) Sinterkeramik für hochstabile Thermistoren und Verfahren zur Herstellung
CN102010200A (zh) 一种镍、铜内电极抗还原陶瓷介质材料及其制备方法
JPH02225367A (ja) 誘電体磁器の製造方法
Nikzad et al. Synthesis of MgTiO3 Powder Via Co-Precipitation Method and Investigation of Sintering Behavior
CN111499380B (zh) 一种锆铝基多相复合陶瓷及其制备方法
JP4654558B2 (ja) 誘電体材料および誘電体材料の製造方法
Das et al. Preparation, characterization and property of fine PZT powders from the poly vinyl alcohol evaporation route
Bhattacharya et al. Low-temperature synthesis and characterisation of crystalline zirconium titanate powder
CN117486609B (zh) 单相复合钙钛矿陶瓷粉体、微波介质陶瓷材料及其制备方法
Zouari et al. Effect of iron substitution on the physico-chemical properties of Pr 0.6 La 0.1 Ba 0.3 Mn 1− x Fe x O 3 manganites (with 0≤ x≤ 0.3
MacLaren et al. TEM investigation of hydrothermally synthesised Ba (Mg1/3Ta2/3) O3, powders
JPH04220905A (ja) 高周波誘電体用焼結体の製造方法
JPS60161338A (ja) BaTiO▲下3▼とBaSn(OH)▲下6▼より成る混合微粒子の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant