CN117388960B - 模压硫系玻璃镜片及其镀近红外增透薄膜的制备方法 - Google Patents

模压硫系玻璃镜片及其镀近红外增透薄膜的制备方法 Download PDF

Info

Publication number
CN117388960B
CN117388960B CN202311230465.1A CN202311230465A CN117388960B CN 117388960 B CN117388960 B CN 117388960B CN 202311230465 A CN202311230465 A CN 202311230465A CN 117388960 B CN117388960 B CN 117388960B
Authority
CN
China
Prior art keywords
film layer
film
thickness
layer
mgf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311230465.1A
Other languages
English (en)
Other versions
CN117388960A (zh
Inventor
张辉
何文波
侯艳萍
聂建军
周宝藏
魏岩丽
唐磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Forecam Optics Co Ltd
Original Assignee
Fujian Forecam Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Forecam Optics Co Ltd filed Critical Fujian Forecam Optics Co Ltd
Priority to CN202311230465.1A priority Critical patent/CN117388960B/zh
Publication of CN117388960A publication Critical patent/CN117388960A/zh
Application granted granted Critical
Publication of CN117388960B publication Critical patent/CN117388960B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3447Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide
    • C03C17/3452Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide comprising a fluoride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3464Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a chalcogenide
    • C03C17/347Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a chalcogenide comprising a sulfide or oxysulfide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • C23C14/0629Sulfides, selenides or tellurides of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

本发明涉及一种模压硫系玻璃镜片及其镀近红外增透薄膜的制备方法,其中模压硫系玻璃镜片的表面由内至外依次设置有打底层、第一MgF2膜层、ZnS膜层、第二MgF2膜层和ZrO2膜层;其中打底层为SiO、MgO或Y2O3膜层,本发明使用不同膜料不同膜厚度搭配在蒸发式镀膜机里面进行蒸镀制备模压硫系玻璃镜片,不但实现了模压硫系玻璃镜片光学薄膜光谱透过规格要求,还可以满足中度摩擦的要求,并且每次蒸镀光学薄膜光谱透过率都有很好的再现性。

Description

模压硫系玻璃镜片及其镀近红外增透薄膜的制备方法
技术领域
本发明属于真空镀膜技术领域,具体涉及一种提高在900-1700nm波段透射率的模压硫系玻璃镜片及其镀近红外增透薄膜的制备方法。
背景技术
硫系玻璃是以Ge、As、Se、Sb为主要元素所形成的材料玻璃,在红外波段具有良好的透过率、极低的折射率温度热系数和色散性、易制备等优点,广泛应用在红外光学领域;红外探测系统在军民领域占据着越来越重要的地位,硫系玻璃在其中扮演着重要的角色;在光学系统中,采用非球面光学元件能减少系统的像散和像差,获得高质量的图像;因此,针对硫系玻璃基板的研究逐渐从平面结构发展到非球面构造。
国内外以平面硫系玻璃为基底的薄膜制备技术已经比较成熟,但在非球面硫系玻璃上镀膜还面临诸多问题,非球面硫系玻璃由于受到模压工艺的限制,往往存在车痕、表面粗糙、成形后残余应力大等问题,这些缺陷导致非球面硫系玻璃相较于平面硫系玻璃更容易出现膜-基结合性差、膜层脱落的问题;同时由于硫系玻璃材料具有较高的热膨胀系数,远高于常见镀膜材料的热膨胀系数,镀膜结束后在基底冷却过程由于膜层和基底膨胀系数的差异容易导致膜层热应力过大,导致硫系玻璃光学元件在镀制表面增透膜后中存在面形超差、甚至脱膜等问题;目前,公开发表的关于模压硫系玻璃的红外增透膜制备技术方面的研究还很少,而关于近红外(900-1700nm)波段增透膜更是未见报道。
发明内容
鉴于现有技术的不足,本发明的目的在于:提供一种提高在900-1700nm波段透射率的模压硫系玻璃镜片及其镀近红外增透薄膜的制备方法,提高模压硫系玻璃镜片在900-1700nm波段的透射率、膜层的环境稳定性和产品良率的目的。
本发明所采取的技术方案是:
本发明提高在900-1700nm波段透射率的模压硫系玻璃镜片,所述模压硫系玻璃镜片的一侧或两侧表面由内至外依次设置有打底层、第一MgF2膜层、ZnS膜层、第二MgF2膜层和ZrO2膜层;其中打底层为SiO、MgO或Y2O3膜层。
优选的,上述打底层的厚度为5-10nm,第一MgF2膜层的厚度为25-35nm,ZnS膜层的厚度为70-80nm,第二MgF2膜层的厚度为175-195nm,ZrO2膜层的厚度为10-30nm。
优选的,上述打底层为SiO膜层,厚度5 nm;第一MgF2膜层厚28.62nm;ZnS膜层厚74.63nm;第二MgF2膜层厚181.98nm;ZrO2膜层厚15nm。
优选的,上述打底层为MgO膜层,厚度5 nm;第一MgF2膜层厚27.86nm;ZnS膜层厚74.66nm;第二MgF2膜层厚182.03nm;ZrO2膜层厚15nm。
优选的,上述打底层为Y2O3膜层,厚度5 nm;第一MgF2膜层厚28.21nm;ZnS膜层厚74.65nm;第二MgF2膜层厚182.01nm;ZrO2膜层厚15nm。
本发明模压硫系玻璃镜片镀近红外增透薄膜的制备方法:将待镀膜的模压硫系玻璃镜片在真空环境下烘烤后,依次在镜片一侧或两侧表面蒸镀打底层、第一MgF2膜层、ZnS膜层、第二MgF2膜层和ZrO2膜层,打底层为SiO、MgO或Y2O3膜层,在真空冷却后取出镜片。
优选的,上述清洗采用离子源清洗,离子源包括考夫曼离子源、霍尔离子源或射频离子源;离子源清洗使用的气体为氩气。
优选的,上述离子源清洗的时间为8-15分钟。
优选的,蒸镀前烘烤的温度为70-140℃,烘烤的时间为30-120分钟;真空度小于8.0E-4Pa
优选的,上述打底层的厚度为5-10nm,第一MgF2膜层的厚度为25-35nm,ZnS膜层的厚度为70-80nm,第二MgF2膜层的厚度为175-195nm,ZrO2膜层的厚度为10-30nm。
本发明的有益效果是:
硫系玻璃基材热膨胀系数极大,而镀膜材料的热膨胀系数较小,高温镀膜会造成基材和膜层的热膨胀系数不匹配和热应力不匹配,造成膜层脱膜。为了解决此问题,需要膜系设计的时候,在保证要求的波段内反射率尽量低的前提下,膜系的层数尽量少,膜层厚度尽量薄,镀制过程中优化成膜速率和离子源参数来调整膜层的应力。其次,打底层膜料也很重要,需要和基板有较好的附着力,与后续的膜层也有较好的附着力,其热膨胀系数小于硫系玻璃,大于后续的膜层材料;镀制过程优化工艺参数,使得膜层的压应力或张应力较小,起到类似海绵那样可以热胀冷缩的缓冲层作用。ZnS膜层应力不稳定、MgF2膜层张应力巨大容易脱膜、ZrO2膜层热膨胀系数与晶体结构有关,不稳定。而SiO、MgO、Y2O3三种膜料,热膨胀系数适中,膜层应力较小,且这3种膜料与大部分介质膜材料有很好的附着力,适合做打底层。ZrO2膜层硬度大,适合作为表面层,提高膜层的耐摩擦特性。
本发明通过在模压硫系玻璃镜片的表面沉积多层增透膜的方法来实现基底的增透效果;打底层筛选以及成膜工艺优化等手段有效地控制膜层间的结合力、膜层的应力,从而增加膜层和镜片的结合力,镀多层增透膜后的镜片与镜片裸片、镀普通单层膜的镜片相比,透射率大为提高,膜层的耐摩擦性能好,蒸镀的光学薄膜的光谱透过率、膜层附着力都有很好的再现性。
附图说明
图1是本发明镀增透膜的模压硫系玻璃镜片的结构示意图;
图2是本发明对比例1的硫系玻璃基材单面绝对反射率光谱图;
图3是本发明对比例1的硫系玻璃基材裸片透射率光谱图;
图4是本发明对比例2的硫系玻璃镜片镀单层增透膜后单面绝对反射率光谱图;
图5是本发明对比例2的硫系玻璃镜片镀单层增透膜后透射率光谱图;
图6是本发明实施例1的单面镀增透膜的模压硫系玻璃镜片的单面绝对反射率光谱图;
图7是本发明实施例1的双面镀增透膜的模压硫系玻璃镜片的透射率光谱图;
图8是本发明实施例2的单面镀增透膜的模压硫系玻璃镜片的单面绝对反射率光谱图;
图9是本发明实施例2的双面镀增透膜的模压硫系玻璃镜片的透射率光谱图;
图10是本发明实施例3的单面镀增透膜的模压硫系玻璃镜片的单面绝对反射率光谱图;
图11是本发明实施例3的双面镀增透膜的模压硫系玻璃镜片的透射率光谱图;
图12是对比例4制备的玻璃镜片的胶带拉扯照片;
图13是实施例1制备的玻璃镜片的胶带拉扯照片;
图14是对比例3的硫系玻璃镜片镀多层增透膜后反射率光谱图;
图15是对比例3的硫系玻璃镜片镀多层增透膜后透射率光谱图;
图16是对比例4的硫系玻璃镜片镀多层增透膜后反射率光谱图;
图17是对比例4的硫系玻璃镜片镀多层增透膜后透射率光谱图;
图18是对比例3制备的玻璃镜片的中度摩擦实验后的照片。
具体实施方式
本发明提高在900-1700nm波段透射率的模压硫系玻璃镜片,该模压硫系玻璃镜片的一侧表面(见附图1所示)或两侧表面由内至外依次设置有打底层、第一MgF2膜层、ZnS膜层、第二MgF2膜层和ZrO2膜层;其中打底层为SiO、MgO或Y2O3膜层。
其中打底层的厚度为5-10nm,第一MgF2膜层的厚度为25-35nm,ZnS膜层的厚度为70-80nm,第二MgF2膜层的厚度为175-195nm,ZrO2膜层的厚度为10-30nm。
一种实施例,打底层的厚度为5nm,第一MgF2膜层的厚度为25nm,ZnS膜层的厚度为70nm,第二MgF2膜层的厚度为175nm,ZrO2膜层的厚度为10nm。
另一种实施例,打底层的厚度为10nm,第一MgF2膜层的厚度为35nm,ZnS膜层的厚度为80nm,第二MgF2膜层的厚度为195nm,ZrO2膜层的厚度为30nm。
本发明模压硫系玻璃镜片镀近红外增透薄膜的制备方法:将待镀膜的模压硫系玻璃镜片在真空环境下烘烤后,依次在镜片的一侧或两侧表面蒸镀打底层、第一MgF2膜层、ZnS膜层、第二MgF2膜层和ZrO2膜层,打底层为SiO、MgO或Y2O3膜层,在真空冷却后取出镜片。
其中述清洗采用离子源清洗,离子源包括考夫曼离子源、霍尔离子源或射频离子源;离子源清洗使用的气体为氩气;离子源清洗的时间为8-15分钟。
蒸镀前烘烤的温度为70-140℃,烘烤的时间为30-120分钟;真空度小于8.0E-4Pa。
实施例1:
将待镀膜的模压硫系玻璃镜片装载入蒸镀镀膜机的工件盘中,镀膜机加热、抽真空,温度达到110℃后烘烤120分钟,待真空度小于8.0E-4Pa后用通入氩气的离子源清扫镜片12分钟,然后依次在镜片表面蒸镀5 nm厚的打底层SiO膜层、28.62nm厚的第一MgF2膜层、74.63nm厚的ZnS膜层、181.98nm厚的第二MgF2膜层、15nm厚的ZrO2膜层;蒸镀完后加热系统关闭,镜片在镀膜机的真空环境下缓慢冷却到40℃,再在真空中取出镜片,制成实施例1的镀近红外增透膜的模压硫系玻璃镜片。
优选地,镀膜前用考夫曼离子源对待镀膜镜片进行清扫12分钟,离子源的屏极电压为300v,离子束流为150mA,离子源使用氩气,流量10-15sccm。
优选地,打底层SiO膜层采用电子枪蒸发镀膜,膜层速率1-3A/S,考夫曼离子源辅助镀膜,
离子源的屏极电压为150v,离子束流为50mA,离子源使用氩气,流量10-15sccm。
优选地,第一MgF2膜层膜层采用电子枪蒸发镀膜,膜层速率4-6A/S,考夫曼离子源辅助镀膜,离子源的屏极电压为150v,离子束流为50mA,离子源使用氩气,流量10-15sccm。
优选地,ZnS膜层膜层采用阻蒸热蒸发镀膜,膜层速率8-12A/S,考夫曼离子源辅助镀膜,离子源的屏极电压为400v,离子束流为150mA,离子源使用氩气,流量10-15sccm。
优选地,第二MgF2膜层膜层采用电子枪蒸发镀膜,膜层速率4-6A/S,考夫曼离子源辅助镀膜,离子源的屏极电压为150v,离子束流为50mA,离子源使用氩气,流量10-15sccm。
优选地,ZrO2膜层膜层采用阻蒸热蒸发镀膜,膜层速率8-12A/S,考夫曼离子源辅助镀膜,离子源的屏极电压为400v,离子束流为150mA,离子源使用氩气,流量10-15sccm。
实施例2:
将待镀膜的模压硫系玻璃镜片装载入蒸镀镀膜机的工件盘中,镀膜机加热、抽真空,温度达到130℃后烘烤60分钟,待真空度小于8.0E-4Pa后用通入氩气的离子源清扫镜片10分钟,然后依次在镜片表面蒸镀5 nm厚的打底层MgO膜层、27.86nm厚的第一MgF2膜层、74.66nm厚的ZnS膜层、182.03nm厚的第二MgF2膜层、15nm厚的ZrO2膜层,蒸镀完后加热系统关闭,镜片在镀膜机的真空环境下缓慢冷却到40℃,再在真空中取出镜片,制成实施例2的镀近红外增透膜的模压硫系玻璃镜片。
优选地,镀膜前用考夫曼离子源对待镀膜镜片进行清扫10分钟,离子源的屏极电压为300v,离子束流为150mA,离子源使用氩气,流量10-15sccm。
优选地,打底层MgO膜层采用电子枪蒸发镀膜,膜层速率1-3A/S,考夫曼离子源辅助镀膜,
离子源的屏极电压为150v,离子束流为50mA,离子源使用氩气,流量10-15sccm。
优选地,第一MgF2膜层膜层采用电子枪蒸发镀膜,膜层速率4-6A/S,考夫曼离子源辅助镀膜,离子源的屏极电压为150v,离子束流为50mA,离子源使用氩气,流量10-15sccm。
优选地,ZnS膜层膜层采用阻蒸热蒸发镀膜,膜层速率8-12A/S,考夫曼离子源辅助镀膜,离子源的屏极电压为400v,离子束流为150mA,离子源使用氩气,流量10-15sccm。
优选地,第二MgF2膜层膜层采用电子枪蒸发镀膜,膜层速率4-6A/S,考夫曼离子源辅助镀膜,离子源的屏极电压为150v,离子束流为50mA,离子源使用氩气,流量10-15sccm。
优选地,ZrO2膜层膜层采用阻蒸热蒸发镀膜,膜层速率8-12A/S,考夫曼离子源辅助镀膜,离子源的屏极电压为400v,离子束流为150mA,离子源使用氩气,流量10-15sccm。
实施例3:
将待镀膜的模压硫系玻璃镜片装载入蒸镀镀膜机的工件盘中,镀膜机加热、抽真空,温度达到90℃后烘烤100分钟,待真空度小于8.0E-4Pa后用通入氩气的离子源清扫镜片8分钟,然后依次在镜片表面蒸镀5 nm厚的打底层Y2O3膜层、28.21nm厚的第一MgF2膜层、74.65nm厚的ZnS膜层、182.01nm厚的第二MgF2膜层、15nm厚的ZrO2膜层;蒸镀完后加热系统关闭,镜片在镀膜机的真空环境下缓慢冷却到40℃,再在真空中取出镜片,制成实施例3的镀近红外增透膜的模压硫系玻璃镜片。
优选地,镀膜前用考夫曼离子源对待镀膜镜片进行清扫8分钟,离子源的屏极电压为300v,离子束流为150mA,离子源使用氩气,流量10-15sccm。
优选地,打底层Y2O3膜层采用电子枪蒸发镀膜,膜层速率1-2A/S,考夫曼离子源辅助镀膜,离子源的屏极电压为150v,离子束流为50mA,离子源使用氩气,流量10-15sccm。
优选地,第一MgF2膜层膜层采用电子枪蒸发镀膜,膜层速率4-6A/S,考夫曼离子源辅助镀膜,离子源的屏极电压为150v,离子束流为50mA,离子源使用氩气,流量10-15sccm。
优选地,ZnS膜层膜层采用阻蒸热蒸发镀膜,膜层速率8-12A/S,考夫曼离子源辅助镀膜,离子源的屏极电压为400v,离子束流为150mA,离子源使用氩气,流量10-15sccm。
优选地,第二MgF2膜层膜层采用电子枪蒸发镀膜,膜层速率4-6A/S,考夫曼离子源辅助镀膜,离子源的屏极电压为150v,离子束流为50mA,离子源使用氩气,流量10-15sccm。
优选地,ZrO2膜层膜层采用阻蒸热蒸发镀膜,膜层速率8-12A/S,考夫曼离子源辅助镀膜,离子源的屏极电压为400v,离子束流为150mA,离子源使用氩气,流量10-15sccm。
实施例1-3中蒸镀的膜层SiO、MgO、Y2O3、ZnS、MgF2、ZrO2所用的膜料为真空镀膜领域常见的光学膜料,可由市面购买得到。
为了突出本申请膜层的特殊设计,引起模压硫系玻璃镜片在900-1700nm波段良好的透射率和反射率,下面通过两组对比实验。
对比例1:
硫系玻璃镜片裸片,不镀膜,测试单面反射率,900-1700nm,Rave=18.7%;测试透射率,900-1700nm,Tave=68.4%。
对比例2:
将待镀膜的硫系玻璃镜片只蒸镀普通的单层增透膜,膜层为Al2O3(此处无设置打底层),厚度179.3nm,其余条件与实施例1相同。
对比例3:(仅改变ZnS膜层和ZrO2膜层的位置,其余条件同实施例1)
将待镀膜的模压硫系玻璃镜片装载入蒸镀镀膜机的工件盘中,镀膜机加热、抽真空,温度达到110℃后烘烤120分钟,待真空度小于8.0E-4Pa后用通入氩气的离子源清扫镜片12分钟,然后依次在镜片表面蒸镀5 nm厚的打底层SiO膜层、28.62nm厚的第一MgF2膜层、15nm厚的ZrO2膜层、181.98nm厚的第二MgF2膜层、74.63nm厚的ZnS膜层;蒸镀完后加热系统关闭,镜片在镀膜机的真空环境下缓慢冷却到40℃,再在真空中取出镜片,制成对比例3的镀近红外增透膜的模压硫系玻璃镜片。反射率和透射率如附图14、15所示。
对比例4:(仅改变膜层的设置位置,其余条件同实施例1)
将待镀膜的模压硫系玻璃镜片装载入蒸镀镀膜机的工件盘中,镀膜机加热、抽真空,温度
达到110℃后烘烤120分钟,待真空度小于8.0E-4Pa后用通入氩气的离子源清扫镜片12分钟,然后依次在镜片表面蒸镀5 nm厚的打底层SiO膜层、74.63nm厚的ZnS膜层、28.62nm厚的第一MgF2膜层、15nm厚的ZrO2膜层、181.98nm厚的第二MgF2膜层;蒸镀完后加热系统关闭,镜片在镀膜机的真空环境下缓慢冷却到40℃,再在真空中取出镜片,制成对比例4的镀近红外增透膜的模压硫系玻璃镜片。反射率和透射率如附图16、17所示。
附图2是对比例1的硫系玻璃基材单面绝对反射率光谱图,900-1700nm,Rave=18.7%;
附图3是对比例1的硫系玻璃基材裸片透射率光谱图,900-1700nm,Tave=68.4%。
附图4是对比例2的硫系玻璃镜片镀单层增透膜后反射率光谱图,900-1700nm,Rave=1.9%;
附图5是对比例2的硫系玻璃镜片镀单层增透膜后透射率光谱图,900-1700nm,Tave=96.2%。
附图6、8、10分别是实施例1、2、3的模压硫系玻璃镜片单面镀膜后的单面绝对反射率光谱图,900-1700nm波段范围内,其平均反射率都小于0.3%。
附图7、9、11分别是实施例1、2、3的模压硫系玻璃镜片双面镀膜后的透射率光谱图,900-1700nm波段范围内,其平均透射率都大于99.2%。
附图14是对比例3的硫系玻璃镜片镀多层增透膜后反射率光谱图,900-1700nm,Rave=35.7%;
附图15是对比例3的硫系玻璃镜片镀多层增透膜后透射率光谱图,900-1700nm,Tave=48.4%;
附图16是对比例4的硫系玻璃镜片镀多层增透膜后反射率光谱图,900-1700nm,Rave=1.2%;
附图17是对比例4的硫系玻璃镜片镀多层增透膜后透射率光谱图,900-1700nm,Tave=97.6%;
通过以上对比,在900-1700nm波段实施例1、2、3的镜片单面绝对反射率小于0.3%,大幅低于对比例1的18.7%和对比例3的35.7%、也低于对比例2的1.9%和对比例4的1.2%。在900-1700nm波段实施例1、2、3的镜片的透射率大于99.2%,大幅高于对比例1的68.4%和对比例3的48.4%,高于对比例2的96.2%和对比例4的97.6%。
为了突出本申请制备方法的优点,通过下面测试方法说明。
根据GJB 2485-1995对对比例2、对比例3和实施例1-3的镀近红外增透薄膜的模压硫系玻璃镜片分别进行各项环境测试。
1、附着力测试
测试工具:LP-24胶带
测试方法:用符合L-T-901型的1/2英寸宽胶带的粘性表面紧紧的贴在镀膜表面上,然后迅速从镀膜表面的一角垂直移开(重复5次)。
测试结果:11W台灯下反射目视检查镜片膜层表面质量,实施例1-3和对比例3的镜片各100片,镀膜面在测试后均无变化无脱膜,附着力测试合格,如附图13所示。对比例2和对比例4的镜片各100片,胶带拉扯后出现部分脱膜,胶带上有残留的膜层,如附图12所示,脱膜率的数据分别为17%和12%。对比例2和对比例4的镜片在第一项常规测试没有通过,再进行后续环测没有意义了。
2、温度储存测试
测试设备:冷热冲击试验机
测试方法:镜片在-62±2℃条件下保持2小时,然后升温至70±2℃,稳定后保持2小时(温度的变化速率不超过2℃/min)之后再存放在常温状态下,擦拭清洁后,确认膜层表面外观。
测试结果:11W台灯下反射目视检查镜片膜层表面质量,实施例1-3、对比例3的镜片在测试后表面膜层均无变化、无脱膜,外观合格。
3、耐溶性测试
测试设备:有机溶剂
测试方法:将镜片依次浸入三氯乙烯、丙酮和乙醇溶液,每种溶液中的浸泡时间为10分钟。镀膜片从一种溶液中取出后,让溶液自然挥发,至镀膜片变干之后,再放入下一个溶液中。从乙醇溶液中取出镀膜片,擦拭清洁后用胶带拉扯,镀膜表面不会出现膜层脱落和划痕。
测试结果:11W台灯下反射目视检查镜片膜层表面质量,实施例1-3、对比例3的镜片在测试后表面膜层均无变化、无脱膜,外观合格。
4、中度摩擦测试
测试设备:摩擦试验机
测试方法:用清洁干酪布包住摩擦头,干酪布板用弹性带捆扎,并且大致垂直于镜片膜层,干酪布板在零件膜层表面上从一个点到另一个点同一路径上摩擦25个循环(50次),对干酪布板连续施加0.45Kg的压力。
测试结果:11W台灯下反射目视检查镜片膜层表面质量,实施例1-3的镜片在测试后表面膜层均无变化、无摩擦痕迹、无脱膜,外观合格。对比例1、对比例2、对比例3和对比例4的镜片表面有摩擦的伤痕,如附图18所示。
5、湿热测试
测试设备:恒温恒湿试验机
测试方法:镜片在50℃/95%-100%条件下存放至少24小时,膜层不能脱落。
测试结果:11W台灯下反射目视检查镜片膜层表面质量,实施例1-3的镜片在测试后表面膜层均无变化、无脱膜,外观合格。
6、盐雾测试
测试设备:盐雾试验机
测试方法:零件或样品放在35±2℃,浓度为5%的盐雾中且尽量使结构件主要表面与喷出的盐雾方向平行,放置24小时外观不应有不良现象。
测试结果:11W台灯下反射目视检查镜片膜层表面质量,实施例1-3的镜片在测试后表面膜层均无变化、无脱膜,外观合格。
表1各实施例和对比例制备得到的玻璃镜片(双面镀膜)的性能数据
从上面的表1可以看出,对比例1的镜片不镀膜,反射率很高,所以透过率很低;对比例2只镀单层增透膜,因为Al2O3膜的折射率在1.65左右,而硫系玻璃IRG202的折射率2.5,单层膜折射率低于基板的折射率,可以起到一些减反射效果,反射率光谱图是V字型,而实施例1、2、3的多层减反膜的反射率光谱是W型,明显平均反射率更低;对比例3的多层增透膜的最外层是ZnS膜层,其膜料折射率为2.28左右,与IRG202基板折射率2.5接近,远大于MgF2的1.38、Al2O3的1.65、ZrO2的1.90,并且74.63nm的膜层较厚,所以减反射效果很差,甚至提高了反射率,多层膜的结构设计(膜层顺序和膜层厚度)不合理;对比例4的最外层是低折射率的MgF2层,所以减反射效果较好,但是耐摩擦效果不好,因为低温镀膜的MgF2膜层很软。
对比例2的单层Al2O3膜层的应力较大,因此镀膜后的脱膜率较高,达到17%;对比例3的多层膜的膜层应力与基板匹配较好,脱膜率为0%,但是透射率很低,而且最外层ZnS膜层较软不耐摩擦。对比例4的多层膜最外层是MgF2,即便有离子源辅助镀膜膜层的张应力还是较大,没有ZnS或ZrO2的压应力膜层在外面做保护层,脱膜率为12%,且软材质的MgF2膜层不耐摩擦。
综上,本发明使用不同膜料不同膜厚度搭配在蒸发式镀膜机里面进行蒸镀制备模压硫系玻璃镜片,所镀制的近红外增透薄膜满足光谱透射率规格要求900-1700nm平均透射率大于99%,远高于硫系玻璃裸片的透射率和只蒸镀普通单层增透膜的镜片的透射率,同时膜层具有良好的耐候性,提高了硫系玻璃镜片表面耐摩擦性。

Claims (8)

1.一种提高在900-1700nm波段透射率的模压硫系玻璃镜片,其特性在于:所述模压硫系玻璃镜片的一侧或两侧表面由内至外依次设置有打底层、第一MgF2膜层、ZnS膜层、第二MgF2膜层和ZrO2膜层;其中打底层为SiO、MgO或Y2O3膜层;
所述打底层的厚度为5-10nm,第一MgF2膜层的厚度为25-35nm,ZnS膜层的厚度为70-80nm,第二MgF2膜层的厚度为175-195nm,ZrO2膜层的厚度为10-30nm。
2.根据权利要求1所述提高在900-1700nm波段透射率的模压硫系玻璃镜片,其特征在于:所述打底层为SiO膜层,厚度5 nm;第一MgF2膜层厚28.62nm;ZnS膜层厚74.63nm;第二MgF2膜层厚181.98nm;ZrO2膜层厚15nm。
3.根据权利要求1所述提高在900-1700nm波段透射率的模压硫系玻璃镜片,其特征在于:所述打底层为MgO膜层,厚度5 nm;第一MgF2膜层厚27.86nm;ZnS膜层厚74.66nm;第二MgF2膜层厚182.03nm;ZrO2膜层厚15nm。
4.根据权利要求1所述提高在900-1700nm波段透射率的模压硫系玻璃镜片,其特征在于:所述打底层为Y2O3膜层,厚度5 nm;第一MgF2膜层厚28.21nm;ZnS膜层厚74.65nm;第二MgF2膜层厚182.01nm;ZrO2膜层厚15nm。
5.一种模压硫系玻璃镜片镀近红外增透薄膜的制备方法,其特征在于:将待镀膜的模压硫系玻璃镜片在真空环境下烘烤后,依次在镜片一侧或两侧表面蒸镀打底层、第一MgF2膜层、ZnS膜层、第二MgF2膜层和ZrO2膜层,打底层为SiO、MgO或Y2O3膜层,在真空冷却后取出镜片;
所述打底层的厚度为5-10nm,第一MgF2膜层的厚度为25-35nm,ZnS膜层的厚度为70-80nm,第二MgF2膜层的厚度为175-195nm,ZrO2膜层的厚度为10-30nm。
6.根据权利要求5所述模压硫系玻璃镜片镀近红外增透薄膜的制备方法,其特征在于:清洗采用离子源清洗,离子源包括考夫曼离子源、霍尔离子源或射频离子源;离子源清洗使用的气体为氩气。
7.根据权利要求6所述模压硫系玻璃镜片镀近红外增透薄膜的制备方法,其特征在于:所述离子源清洗的时间为8-15分钟。
8.根据权利要求5所述模压硫系玻璃镜片镀近红外增透薄膜的制备方法,其特征在于:蒸镀前烘烤的温度为70-140℃,烘烤的时间为30-120分钟,真空度小于8.0E-4Pa。
CN202311230465.1A 2023-09-22 2023-09-22 模压硫系玻璃镜片及其镀近红外增透薄膜的制备方法 Active CN117388960B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311230465.1A CN117388960B (zh) 2023-09-22 2023-09-22 模压硫系玻璃镜片及其镀近红外增透薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311230465.1A CN117388960B (zh) 2023-09-22 2023-09-22 模压硫系玻璃镜片及其镀近红外增透薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN117388960A CN117388960A (zh) 2024-01-12
CN117388960B true CN117388960B (zh) 2024-05-31

Family

ID=89436423

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311230465.1A Active CN117388960B (zh) 2023-09-22 2023-09-22 模压硫系玻璃镜片及其镀近红外增透薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN117388960B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08334603A (ja) * 1995-06-08 1996-12-17 Mitsubishi Electric Corp 赤外域用光学膜および光学素子
CN110794490A (zh) * 2019-11-25 2020-02-14 中国科学院上海光学精密机械研究所 一种中波红外增透膜设计及制备方法
CN110927963A (zh) * 2019-11-18 2020-03-27 中国科学院上海光学精密机械研究所 一种短波宽带截止中波透过膜设计及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08334603A (ja) * 1995-06-08 1996-12-17 Mitsubishi Electric Corp 赤外域用光学膜および光学素子
CN110927963A (zh) * 2019-11-18 2020-03-27 中国科学院上海光学精密机械研究所 一种短波宽带截止中波透过膜设计及制备方法
CN110794490A (zh) * 2019-11-25 2020-02-14 中国科学院上海光学精密机械研究所 一种中波红外增透膜设计及制备方法

Also Published As

Publication number Publication date
CN117388960A (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
CN104090312B (zh) 一种高附着力红外金属反射膜及其制备方法
CN110989053A (zh) 一种硫系玻璃基底低剩余反射率减反射薄膜及其制备方法
CN107746187B (zh) 一种镀dlc膜的红外硫系玻璃镜片及其制备方法
CN112458400B (zh) 一种抗砂尘防潮防霉窗口复合增透膜的制备方法
CN109136840B (zh) 一种真空紫外铝反射镜的制备方法
CN111552012A (zh) 一种便于返修的增透镜片及其制备方法
CN117388960B (zh) 模压硫系玻璃镜片及其镀近红外增透薄膜的制备方法
CN112501557B (zh) 一种蓝宝石基底1-5μm超宽带增透膜及其制备方法
CN101493534B (zh) 一种显示器减反射屏及其制备方法
CN102914807A (zh) 硫化锌基片多光谱增透保护薄膜
CN221056698U (zh) 模压硫系玻璃镜片
CN111286700B (zh) 基于混合物单层膜的光学镀膜元件面形补偿方法
CN112731570A (zh) 光学镜片及其制造方法
CN114249546B (zh) 一种镀类碳膜的红外硫系玻璃镜片及其制备方法和应用
US11204446B2 (en) Anti-reflection film and an optical component containing the anti-reflection film
CN112578481B (zh) 一种大角度中长波红外增透保护膜及其制备方法
JPH07104102A (ja) ガラス製光学部品の撥水製反射防止膜およびその製造 方法
CN205720741U (zh) 一种镀覆在红外玻璃上的增透膜
JPS63111167A (ja) 無機質薄膜で被覆されたプラスチツク物品の製法
CN110221368A (zh) 单元素多层红外高反膜及其制备方法
CN113913822A (zh) 一种镀加硬膜的硫系化合物玻璃镜片及其加工工艺
JP2928543B2 (ja) プラスチック部材のハードコート膜形成方法
CN111378934B (zh) 提升电子束蒸镀薄膜元件的光谱和应力时效稳定性的镀膜方法
CN113866852A (zh) BaF2基底3.7-4.8μm&7.7-9.5μm双波段减反射膜及其制备方法
JP2001108802A (ja) 反射防止膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant