CN117384394B - 一种新能源锂电池用的循环散热冷凝胶及其制备工艺 - Google Patents

一种新能源锂电池用的循环散热冷凝胶及其制备工艺 Download PDF

Info

Publication number
CN117384394B
CN117384394B CN202311710003.XA CN202311710003A CN117384394B CN 117384394 B CN117384394 B CN 117384394B CN 202311710003 A CN202311710003 A CN 202311710003A CN 117384394 B CN117384394 B CN 117384394B
Authority
CN
China
Prior art keywords
mass ratio
stirring
filler
modified filler
coupling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311710003.XA
Other languages
English (en)
Other versions
CN117384394A (zh
Inventor
李林
刘晓明
马博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuozhou Colin Electronic Products Co ltd
Original Assignee
Zhuozhou Colin Electronic Products Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuozhou Colin Electronic Products Co ltd filed Critical Zhuozhou Colin Electronic Products Co ltd
Priority to CN202311710003.XA priority Critical patent/CN117384394B/zh
Publication of CN117384394A publication Critical patent/CN117384394A/zh
Application granted granted Critical
Publication of CN117384394B publication Critical patent/CN117384394B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2339/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2339/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08J2339/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2439/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2439/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08J2439/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及动力电池技术领域,尤其涉及一种新能源锂电池用的循环散热冷凝胶及其制备工艺,所述冷凝胶的制备原料包括:改性填料、水凝胶基体、水。本发明通过将单壁碳纳米管、羟基化双壁碳纳米管、氧化镁、氮化铝和立方氮化硼以特定比例、特定粒径进行复配,可以明显改性其脆性和晶界的缺陷,提高改性填料的整体密度和韧性,而且通过填充加工表面之间的间隙,确保均匀接触和高传热效率,而且有利于提高凝胶的导热散热性能。

Description

一种新能源锂电池用的循环散热冷凝胶及其制备工艺
技术领域
本发明涉及动力电池技术领域,IPC分类号为C08L83/00,尤其涉及一种新能源锂电池用的循环散热冷凝胶及其制备工艺。
背景技术
锂电池是一种采用石墨或碳材料作为负极、含锂化合物作为正极的二次可充电电池,因其使用寿命长、额定电压高、质轻、环保等多种优势被广泛应用在新能源汽车、电子产品、家电等多个领域。锂电池在充放电的过程中伴随着一系列的化学反应,从而散发大量的热,而散热器件和锂电池之间往往不是紧密贴合,中间留有的缝隙灌入空气后,由于空气较低的导热系数使得锂电池的热量导出不理想,热量的积累一方面会加快电极降解和电解液分解,对锂电池的性能造成不可逆地损伤,降低使用寿命,另一方面也容易导致内部隔膜的熔化而短路,甚至引起冒烟起火、爆炸等严重安全事故。
针对这一技术问题,现有技术中通常在散热器件和锂电池之间设置导热材料来加速热量的导出,例如膨胀石墨/石蜡混合物、石蜡/石墨/环氧树脂/立方氮化硼混合物等等,但普遍存在导热系数较低、相容性不佳的问题。相比其它导热材料而言,导热凝胶具有较高的导热率、较低的应力以及可重复性好等优点,是近年来的研发热点。
例如CN114106566A 所公开的《一种高伸长率导热有机硅复合凝胶及其制备方法和应用》,具有高导热性、无需添加增塑剂即可具备高伸长率、强自粘性、抗振动效果好、低介电常数、对产品信号传输干扰性低等突出性能,导热系数为6.23~8.23 W/m·K,但仍然存在一个很严重的问题,双组分混合时极容易产生气泡,从而引入空气影响导热效果,很难满足日益发展的市场需求。
因此,亟需一种同时克服上述技术缺陷且导热系数高的散热凝胶。
发明内容
本发明的第一个方面提供了一种新能源锂电池用的循环散热冷凝胶,所述冷凝胶的制备原料包括:改性填料、水凝胶基体、水;
所述改性填料的制备方法包括以下步骤:
S1、将填料在30-80rpm的搅拌转速下搅拌5-30min,得到预混料;
S2、在预混料中加入改性剂,80-200rpm的搅拌转速下搅拌5-30min,得到改性料;
S3、将改性料在200-400rpm转速下搅拌5-30min,在80-120℃的烘箱内烘烤1-10h,烘烤后冷却,得到改性填料;
所述填料包括单壁碳纳米管、羟基化双壁碳纳米管、氧化镁、氮化铝和立方氮化硼,质量比为(3-10):(5-15):(3-10):(5-15):(30-50);
进一步地,所述单壁碳纳米管、羟基化双壁碳纳米管、氧化镁、氮化铝和立方氮化硼的质量比为(4-7):(6-12):(4-7):(6-12):(35-45)。
更进一步地,所述单壁碳纳米管、羟基化双壁碳纳米管、氧化镁、氮化铝和立方氮化硼的质量比为6:9:6:9:40。
立方氮化硼的耐热温度高达1400 ~1500℃,导热系数为79.54w/m.k,可以表现出温度越高、导热性越好的性能,现有技术中往往会在凝胶中添加立方氮化硼以提高导热性能。但是单晶立方氮化硼的晶粒尺寸小且各向异性,存在容易劈裂的解离面,脆性大,极容易发生解离破损。此外,立方氮化硼在常规单晶衬底上存在两个夹角为180°的优势取向,在晶畴拼接时会形成晶界缺陷,进一步导致其分散性能并不出众,双重缺陷导致其在水凝胶领域的应用仍存在一些问题。
在一些实施方式中,所述单壁碳纳米管的比表面积>1075 m2/g,羟基化双壁碳纳米管的直径为2-4nm,羟基化含量2.92wt%,氧化镁的粒径为0.5-5μm,氮化铝的粒径为10-60μm,立方氮化硼的粒径为5-200μm。
上述不同粒径和比表面积的单壁碳纳米管、羟基化双壁碳纳米管、氧化镁、氮化铝和立方氮化硼均可以来自市售,例如淄博宏豪晶体材料有限公司,先锋纳米的XFS30和XFD05。
申请人在实验中发现,使用特定的颗粒组分并限定特定的参数同立方氮化硼进行复配,可以明显改善其脆性和晶界的缺陷,尤其是同时添加单壁碳纳米管、羟基化双壁碳纳米管、氧化镁、氮化铝时,不仅可以提高改性填料的整体密度和韧性,而且通过填充加工表面之间的间隙,确保均匀接触和高传热效率,而且有利于提高凝胶的导热性能。申请人猜测,有可能是上述颗粒的定向掺杂改善了立方氮化硼在空间中的取向缺陷,梯度粒径之间的彼此作用使得容易劈裂的解离面收到多面力的夹持,综合作用后提升了立方氮化硼的整体性能。
在一些实施方式中,所述改性剂包括钛酸酯偶联剂、辛基三甲氧基硅烷、六甲基二硅氮烷、正辛基三乙氧基硅烷、乙烯基三甲氧基硅烷、三甲氧基甲硅烷基聚二甲基硅氧烷、羟基聚二甲基硅氧烷、二醇基聚二甲基硅氧烷中的至少一种。
进一步地,所述改性剂包括辛基三甲氧基硅烷、六甲基二硅氮烷、钛酸酯偶联剂,质量比为(1-5):(3-10):(3-10)。
进一步地,所述辛基三甲氧基硅烷、六甲基二硅氮烷、钛酸酯偶联剂的质量比为(2-4):(4-7):(5-9)。
进一步地,所述辛基三甲氧基硅烷、六甲基二硅氮烷、钛酸酯偶联剂的质量比为3:5:8。
申请人在研究中发现,在本申请中,仅使用一种偶联剂对填料的改性作用并不理想,无法满足在锂电池中对于填料高散热性的要求。
进一步地,所述钛酸酯偶联剂包括钛酸酯偶联剂TC-TTS、钛酸酯偶联剂TC-201,质量比为(1-3):1。
钛酸酯偶联剂TC-TTS是植物酸型单烷氧基类钛酸酯,结构式为,外观为浅红棕色液体,D25 ≥ 0.915 g/cm3;η25≥40mm2/s;
钛酸酯偶联剂TC-201是植物酸型单烷氧基类钛酸酯,外观为淡黄色澄清液体,D25≥ 1.050 g/cm3;η25 400±15% mm2/s;均购买自天长市天辰化工。在一些实施方式中,所述预混料和改性剂的质量比为100:(1-1.5)。
进一步地,将上述填料复配后用于制备水凝胶,却发现由于粒子结构复杂、化学稳定性强,造成了在凝胶体系中的均一性不佳,和水凝胶基体的相容性有待提高,当长期放置后会因填料局部团聚而产生水分析出。对此,申请人将复配填料进行改性,意外地发现,当改性剂为辛基三甲氧基硅烷、六甲基二硅氮烷、钛酸酯偶联剂时,其分子中的官能团和复配填料表面发生化学反应,形成一层致密的聚合物膜层,改性之后能够更好地在水中分散,不仅可以增强凝胶的稳定性,而且可以增强凝胶的导热系数。
在一些实施方式中,所述水凝胶基体包括聚乙烯吡咯烷酮、聚乙烯醇、聚丙烯酰胺、水解聚丙烯酰胺、羟甲基纤维素、海藻酸钠中的至少一种。
在一些实施方式中,所述水凝胶基体包括K值为12.75-17.25的聚乙烯吡咯烷酮、K值为15.3-18.36的聚乙烯吡咯烷酮、K值为27-32.4的聚乙烯吡咯烷酮。
在一些实施方式中,所述K值为12.75-17.25的聚乙烯吡咯烷酮、K值为15.3-18.36的聚乙烯吡咯烷酮、K值为27-32.4的聚乙烯吡咯烷酮的质量比为(5-10):(4-7):(1-5),优选质量比为7:5:2。
上述不同K值的聚乙烯吡咯烷酮均可以来自市售,例如宇昂科技的K15、K17和K30。
K值是与聚乙烯吡咯烷酮(PVP)水溶液的相对粘度有关的特征值,而粘度又是与高聚物分子量有关的物理量,因此可以用K值来表征PVP的平均分子量,通常K值越大,其粘度越大,粘接性越强。现有技术的水凝胶在使用时普遍存在容易产生气泡的问题,空气的夹带会降低凝胶的导热系数,还会导致冷凝胶的散热不均匀,对电池造成负面影响。为了解决易产生气泡的问题,申请人发现,使用特定K值的PVP并以特定比例进行复配共混,能够显著抑制气泡的产生,可能是通过不同粘度成分以特定的含量进行整体调和,一方面增强了PVP之间的相容性,另一方面增强了PVP同改性粒子之间的相容性,减少了不同相接触时的阻力,从源头抑制气泡的产生,进一步提升导热系数。
在一些实施方式中,所述冷凝胶的导热率为1.76-1.79W/mK。
本发明的第二个方面提供了一种新能源锂电池用的循环散热冷凝胶的制备工艺,所述制备工艺包括如下步骤:
S1.制备改性填料分散液:将改性填料与水混合并超声分散;
S2.制备冷凝胶:将水凝胶基体与水搅拌混合后,搅拌加入改性填料分散液,继续搅拌直至形成胶体。
在一些实施方式中,所述S1中改性填料与水的质量比为(1-5):100,和/或,所述S2中水凝胶基体与水的质量比为(5-15):100。
采用上述技术方案,本发明具有如下有益效果:
1.本发明通过将单壁碳纳米管、羟基化双壁碳纳米管、氧化镁、氮化铝和立方氮化硼以特定比例、特定粒径进行复配,可以明显改善其脆性和晶界的缺陷,提高改性填料的整体密度和韧性,而且通过填充加工表面之间的间隙,确保均匀接触和高传热效率,而且有利于提高凝胶的导热散热性能。
2. 本发明通过将复配填料进行改性,使得填料能够更好地在水中分散,不仅可以增强凝胶的稳定性,而且可以增强凝胶的导热系数。
3. 本发明通过特定K值的PVP复配,一方面增强了PVP之间的相容性,另一方面增强了PVP同改性粒子之间的相容性,减少了不同相接触时的阻力,从源头抑制气泡的产生,进一步提升导热系数。
具体实施方式
实施例1
一种新能源锂电池用的循环散热冷凝胶,所述冷凝胶的制备原料包括:改性填料、水凝胶基体、水;
所述改性填料的制备方法包括以下步骤:
S1、将填料在60rpm的搅拌转速下搅拌20min,得到预混料;
S2、在预混料中加入改性剂,100rpm的搅拌转速下搅拌20min,得到改性料;
S3、将改性料在300rpm转速下搅拌20min,在100℃的烘箱内烘烤5h,烘烤后冷却,得到改性填料;
所述填料为单壁碳纳米管、羟基化双壁碳纳米管、氧化镁、氮化铝和立方氮化硼,质量比为6:9:6:9:40。所述单壁碳纳米管的比表面积>1075 m2/g,羟基化双壁碳纳米管的直径为2-4nm,羟基化含量2.92wt%,氧化镁的粒径为0.5-5μm,氮化铝的粒径为10-60μm,立方氮化硼的粒径为5-200μm。
所述改性剂为辛基三甲氧基硅烷、六甲基二硅氮烷、钛酸酯偶联剂,质量比为3:5:8。
所述钛酸酯偶联剂为钛酸酯偶联剂TC-TTS、钛酸酯偶联剂TC-201以质量比2:1复配。
所述预混料和改性剂的质量比为100:1.3。
所述水凝胶基体为K值为12.75-17.25的聚乙烯吡咯烷酮、K值为15.3-18.36的聚乙烯吡咯烷酮、K值为27-32.4的聚乙烯吡咯烷酮,质量比为7:5:2。
一种新能源锂电池用的循环散热冷凝胶的制备工艺,按重量份,所述制备工艺包括如下步骤:
S1.制备改性填料分散液:将3份改性填料与100份水混合并超声分散;
S2.制备冷凝胶:将10份水凝胶基体与100份水搅拌混合后,搅拌加入100份改性填料分散液,继续搅拌直至形成胶体。
实施例2
本实施例的具体实施方式同实施例1,不同之处在于,所述填料为单壁碳纳米管、羟基化双壁碳纳米管、氧化镁、氮化铝和立方氮化硼,质量比为4:6:4:6:35。
所述改性剂为辛基三甲氧基硅烷、六甲基二硅氮烷、钛酸酯偶联剂,质量比为2:4:5。
所述钛酸酯偶联剂为钛酸酯偶联剂TC-TTS、钛酸酯偶联剂TC-201以质量比1:1复配。
所述预混料和改性剂的质量比为100:1。
所述水凝胶基体为K值为12.75-17.25的聚乙烯吡咯烷酮、K值为15.3-18.36的聚乙烯吡咯烷酮、K值为27-32.4的聚乙烯吡咯烷酮,质量比为5:4:1。
实施例3
本实施例的具体实施方式同实施例1,不同之处在于,所述填料为单壁碳纳米管、羟基化双壁碳纳米管、氧化镁、氮化铝和立方氮化硼,质量比为7:12:7:12:45。
所述改性剂为辛基三甲氧基硅烷、六甲基二硅氮烷、钛酸酯偶联剂,质量比为4:7:9。
所述钛酸酯偶联剂为钛酸酯偶联剂TC-TTS、钛酸酯偶联剂TC-201以质量比3:1复配。
所述预混料和改性剂的质量比为100:1.5。
所述水凝胶基体为K值为12.75-17.25的聚乙烯吡咯烷酮、K值为15.3-18.36的聚乙烯吡咯烷酮、K值为27-32.4的聚乙烯吡咯烷酮,质量比为10:7:5。
对比例1
本对比例的具体实施方式同实施例1,不同之处在于,所述填料为单壁碳纳米管、氮化铝和立方氮化硼,质量比为6:9:40。所述单壁碳纳米管的比表面积<600 m2/g,氮化铝的粒径为10-60μm,立方氮化硼的粒径为5-200μm。单壁碳纳米管购自先锋纳米,货号103959。
对比例2
本对比例的具体实施方式同实施例1,不同之处在于,所述填料为氢氧化铝、氢氧化镁、氢氧化锌和立方氮化硼,质量比为6:9:9:40。
对比例3
本对比例的具体实施方式同实施例1,不同之处在于,所述改性剂为辛基三甲氧基硅烷、六甲基二硅氮烷十二烷基三甲氧基硅烷,质量比为3:1:4。
对比例4
本对比例的具体实施方式同实施例1,不同之处在于,所述钛酸酯偶联剂为钛酸酯偶联剂TC-TTS。
对比例5
本对比例的具体实施方式同实施例1,不同之处在于,所述水凝胶基体为K值为12.75-17.25的聚乙烯吡咯烷酮、K值为15.3-18.36的聚乙烯吡咯烷酮、K值为27-32.4的聚乙烯吡咯烷酮,质量比为1:1:1。
对比例6
本对比例的具体实施方式同实施例1,不同之处在于,所述水凝胶基体为聚乙烯醇,购买自广州聚朗,型号为BP-24。
性能测试
将实施例和对比例制备的冷凝胶作为样品进行下列测试,结果见表1:
导热系数:参考标准ASTM D 5470-17,使用瑞领LW-9389 界面材料热阻及热传导系数量测装置(25℃环境下)测定。
稳定性:将样品分别置于常温(25℃)和50℃的环境下30d,观察是否有水分析出、结块等稳定性问题。
气泡数量:将50mL样品以同样的速度分别倒在透明容器(体积、形状均相同)中,静置10分钟后观察并记录气泡数量。
表1
导热系数(W/mK) 稳定性 气泡数量(个)
实施例1 1.79 无变化 6
实施例2 1.76 无变化 7
实施例3 1.77 无变化 6
对比例1 1.52 有少量水分析出 19
对比例2 1.46 有少量水分析出 24
对比例3 1.70 无变化 13
对比例4 1.66 无变化 16
对比例5 1.50 有明显水分析出,胶体有部分结块现象 57
对比例6 1.22 有大量水分析出,胶体有部分结块现象 大于100
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (4)

1.一种新能源锂电池用的循环散热冷凝胶,其特征在于,所述冷凝胶的制备原料包括:改性填料、水凝胶基体、水;
所述改性填料的制备方法包括以下步骤:
S1、将填料在30-80rpm的搅拌转速下搅拌5-30min,得到预混料;
S2、在预混料中加入改性剂,80-200rpm的搅拌转速下搅拌5-30min,得到改性料;
S3、将改性料在200-400rpm转速下搅拌5-30min,在80-120℃的烘箱内烘烤1-10h,烘烤后冷却,得到改性填料;
所述填料包括单壁碳纳米管、羟基化双壁碳纳米管、氧化镁、氮化铝和立方氮化硼,质量比为(3-10):(5-15):(3-10):(5-15):(30-50);
所述单壁碳纳米管的比表面积>1075 m2/g,羟基化双壁碳纳米管的直径为2-4nm,羟基化含量2.92wt%,氧化镁的粒径为0.5-5μm,氮化铝的粒径为10-60μm,立方氮化硼的粒径为5-200μm;
所述改性剂包括辛基三甲氧基硅烷、六甲基二硅氮烷、钛酸酯偶联剂,质量比为(1-5):(3-10):(3-10);
所述水凝胶基体包括K值为12.75-17.25的聚乙烯吡咯烷酮、K值为15.3-18.36的聚乙烯吡咯烷酮和K值为27-32.4的聚乙烯吡咯烷酮,质量比为(5-10):(4-7):(1-5);
所述预混料和改性剂的质量比为100:(1-1.5);
所述钛酸酯偶联剂包括钛酸酯偶联剂TC-TTS、钛酸酯偶联剂TC-201,质量比为(1-3):1。
2.根据权利要求1所述的循环散热冷凝胶,其特征在于,所述冷凝胶的导热系数为1.76-1.79W/mK。
3.一种权利要求1-2任一项所述的循环散热冷凝胶的制备工艺,其特征在于,所述制备工艺包括如下步骤:
S1.制备改性填料分散液:将改性填料与水混合并超声分散;
S2.制备冷凝胶:将水凝胶基体与水搅拌混合后,搅拌加入改性填料分散液,继续搅拌直至形成胶体。
4.根据权利要求3所述的制备工艺,其特征在于,所述S1中的改性填料与水的质量比为(1-5):100,和/或,所述S2中的水凝胶基体与水的质量比为(5-15):100。
CN202311710003.XA 2023-12-13 2023-12-13 一种新能源锂电池用的循环散热冷凝胶及其制备工艺 Active CN117384394B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311710003.XA CN117384394B (zh) 2023-12-13 2023-12-13 一种新能源锂电池用的循环散热冷凝胶及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311710003.XA CN117384394B (zh) 2023-12-13 2023-12-13 一种新能源锂电池用的循环散热冷凝胶及其制备工艺

Publications (2)

Publication Number Publication Date
CN117384394A CN117384394A (zh) 2024-01-12
CN117384394B true CN117384394B (zh) 2024-02-09

Family

ID=89441480

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311710003.XA Active CN117384394B (zh) 2023-12-13 2023-12-13 一种新能源锂电池用的循环散热冷凝胶及其制备工艺

Country Status (1)

Country Link
CN (1) CN117384394B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288416A (zh) * 2013-05-27 2013-09-11 东华大学 一种改性三维纤维基气凝胶材料及其制备方法
CN105000548A (zh) * 2014-04-22 2015-10-28 中国科学院苏州纳米技术与纳米仿生研究所 一种新型三维氮掺杂石墨烯复合材料体系的制备方法
CN111193066A (zh) * 2020-02-20 2020-05-22 青岛科技大学 固态电解质、固态锂离子电池及其制备方法
CN111615760A (zh) * 2018-01-22 2020-09-01 赛尔格有限责任公司 改善的涂覆的分隔件、锂电池及相关方法
CN112034644A (zh) * 2020-08-30 2020-12-04 南京优写智能科技有限公司 一种凝胶稳定液晶书写板薄膜及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288416A (zh) * 2013-05-27 2013-09-11 东华大学 一种改性三维纤维基气凝胶材料及其制备方法
CN105000548A (zh) * 2014-04-22 2015-10-28 中国科学院苏州纳米技术与纳米仿生研究所 一种新型三维氮掺杂石墨烯复合材料体系的制备方法
CN111615760A (zh) * 2018-01-22 2020-09-01 赛尔格有限责任公司 改善的涂覆的分隔件、锂电池及相关方法
CN111193066A (zh) * 2020-02-20 2020-05-22 青岛科技大学 固态电解质、固态锂离子电池及其制备方法
CN112034644A (zh) * 2020-08-30 2020-12-04 南京优写智能科技有限公司 一种凝胶稳定液晶书写板薄膜及制备方法

Also Published As

Publication number Publication date
CN117384394A (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
CN114015117B (zh) 一种导热填料及导热填料制备的耐老化有机硅导热凝胶
CN110016205B (zh) 一种环氧树脂导热绝缘材料及其制备方法
CN112521754A (zh) 一种MXene纳米片复合的具有热自修复性能的导热凝胶及其制备方法
CN110105926B (zh) 一种可点胶作业的高导热凝胶及其制备工艺
CN110804269B (zh) 一种基于液态金属的导热导电薄膜及其制备方法、应用
CN114163673B (zh) 一种低介电高导热界面膜及其制备方法
CN115058229B (zh) 动力电池灌封胶及其制备方法
CN114032063B (zh) 高导热低粘度双组分有机硅灌封胶及其制备方法
CN112322042A (zh) 一种高导热单组分导热凝胶及其制备方法
JP2014166930A (ja) 窒化ホウ素粉末、及びこれを含む樹脂組成物
CN108276612B (zh) 一种石墨烯/硅复合导热硅脂的制备及应用
CN115584129B (zh) 一种导热硅胶片及其制备方法
CN110938406A (zh) 一种双组分有机硅灌封胶及其制备方法
CN105419672A (zh) 一种高功率led用高散热性导电胶的制备方法
CN117384394B (zh) 一种新能源锂电池用的循环散热冷凝胶及其制备工艺
CN113308160A (zh) 一种用于铝合金散热器表面的高效散热涂层及其制备方法
CN113667309A (zh) 一种有机无机杂化交联的导热硅胶及其制备方法
CN115011100B (zh) 一种新型冷板
CN112538270B (zh) 一种压缩空间内的自组装轻质导热硅橡胶复合材料及其制备方法
CN111087817A (zh) 一种pdms基石墨烯导热复合材料及其制备方法和应用
CN115772329A (zh) 一种含片状石墨的导热凝胶、制备方法及其应用方法
CN115895269A (zh) 一种导热凝胶及其制备方法和应用
CN109777109A (zh) 一种高导热复合型硅胶垫片的制备方法
CN113004693B (zh) 一种导热硅脂组合物及其制备方法
CN114573867A (zh) 一种碳纳米管-氮化硼球型导热填料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PP01 Preservation of patent right

Effective date of registration: 20240815

Granted publication date: 20240209

PP01 Preservation of patent right