CN117342871A - 一种原位双相共生高熵陶瓷及其制备方法 - Google Patents

一种原位双相共生高熵陶瓷及其制备方法 Download PDF

Info

Publication number
CN117342871A
CN117342871A CN202311662879.1A CN202311662879A CN117342871A CN 117342871 A CN117342871 A CN 117342871A CN 202311662879 A CN202311662879 A CN 202311662879A CN 117342871 A CN117342871 A CN 117342871A
Authority
CN
China
Prior art keywords
situ
ceramic
biphase
symbiotic
entropy ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311662879.1A
Other languages
English (en)
Other versions
CN117342871B (zh
Inventor
任路超
邵鹏超
吕欣原
陈志浩
郎兆丁
张明伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN202311662879.1A priority Critical patent/CN117342871B/zh
Publication of CN117342871A publication Critical patent/CN117342871A/zh
Application granted granted Critical
Publication of CN117342871B publication Critical patent/CN117342871B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本申请提供了一种原位双相共生高熵陶瓷及其制备方法,所述原位双相共生高熵陶瓷的化学式为(Na0.2Bi0.2Ca0.2Sr0.2Ba0.2)WO4,以Bi2O3、Na2CO3、CaCO3、SrCO3、BaCO3、WO3为原料,原位生成BaWO4与Na0.5Bi0.5WO4双相共生的白钨矿陶瓷。由于离子半径差异较大,离子扩散产生晶格畸变提升烧结活性,进而实现AWO4型白钨矿陶瓷的低温烧结(<1000℃)以满足低温共烧陶瓷技术的应用。所述原位双相共生高熵陶瓷的介电常数为11.5~14.4,Q×f值为28600~33110GHz,频率温度系数为‑48~‑32ppm/℃,有望成为射频元器件及半导体封装技术的关键基础材料。

Description

一种原位双相共生高熵陶瓷及其制备方法
技术领域
本发明涉及电子信息功能材料及集成电路封装领域,特别是涉及一种原位双相共生高熵陶瓷及其制备方法。
背景技术
微波通讯系统中的电子元器件与功能模块,如谐振器、滤波器、介质天线和介质波导等是通讯系统的重要组成部分,使得电子元器件用微波介质陶瓷材料得到较为广泛的应用。近年来,随着新一代无线通讯、人工智能、万物互联的快速发展,对电子元器件的高性能化、小型化、集成模块化提出了更高的要求。
低温共烧陶瓷(LTCC)是目前实现电子器件小型化、集成化及多功能化的理想技术手段。目前LTCC材料多使用微晶玻璃或玻璃复合陶瓷材料,由于玻璃的介电损耗较高,严重恶化了传统LTCC材料的介电性能,难以满足新一代无线通讯的技术要求,因此寻找固有烧结温度低的高性能微波介质陶瓷材料成为解决这一问题的关键。
AWO4白钨矿陶瓷具有较好的微波介电性能,但其较大的负频率温度系数和较高的烧结温度不利于 LTCC 的应用。因此,寻找一种既能改善 AWO4 陶瓷的频率温度系数又能降低其烧结温度的方法迫在眉睫。目前双相高熵陶瓷因具有高熵效应、晶格畸变效应、迟滞扩散效应和“鸡尾酒”效应,相比于传统材料有着更多性能上的优势。因此,本发明拟通过设计双相高熵陶瓷以改善 AWO4陶瓷的介电性能并降低其烧结温度。
发明内容
本申请提供一种原位双相共生高熵陶瓷及其制备方法,通过固相反应法烧结合成双相高熵陶瓷,提供一种工艺简单、成本低廉、可重复性高并且有明显降低烧结温度和改善频率温度系数的双相高熵陶瓷。
一方面,本申请提供一种原位双相共生高熵陶瓷,化学式为(Na0.2Bi0.2Ca0.2Sr0.2Ba0.2)WO4,原位生成BaWO4与Na0.5Bi0.5WO4两相共生的白钨矿陶瓷;其介电常数为11.5 ~ 14.4,Q×f值为28600 ~ 33110GHz,频率温度系数为-48 ~ -32ppm/℃。
另一方面,本申请提供一种原位双相共生高熵陶瓷的制备方法,包括如下步骤:
(1)根据原位双相共生高熵陶瓷的化学计量比,称取0.01mol Na2CO3、0.01molBi2O3、0.02mol CaCO3、0.02mol SrCO3、0.02mol BaCO3、0.1mol WO3 原料,进行湿法球磨并烘干,得到混合均匀的干燥原料;
(2)将步骤(1)得到的干燥粉体,研磨、过筛后进行预烧,预烧温度为700~900℃,保温时间4~8h,升温速率为3~5℃/min;
(3)将步骤(2)中预烧后的块体进行湿法球磨后,进行干燥得到预烧粉料;
(4)向步骤(3)得到的预烧粉料中加入聚乙烯醇粘结剂,在玛瑙研钵中进行造粒,得到流动性较好的预制粉料;
(5)将步骤(4)得到的预制粉料进行干压成型得到陶瓷生坯,并在500~600℃保温4~8h对生坯进行排胶;
(6)对步骤(5)排胶后的陶瓷生坯进行高温烧结得到所述原位双相共生高熵陶瓷,烧结温度为900~1050℃,升温速率为3~5℃/min,保温时间为4~8h。
优选地,步骤(1)(3)中所述的湿法球磨介质为无水乙醇及氧化锆球,氧化锆球与粉料的质量比为(4~6):1,球磨时间为8~10h;混合料干燥时烘箱温度为50~80℃,时间为12~20h;所述过筛处理使用筛的目数为100。
优选地,步骤(4)中聚乙烯醇与预烧粉料质量比为1:(15~20)。
优选地,步骤(5)中所述的干压成型压力为100~200MPa,保压时间为1~2min。
有益效果
本发明提出一种原位双相共生高熵陶瓷及其制备方法,成功将白钨矿型AWO4陶瓷材料的烧结温度由1150℃降低到950℃,频率温度系数由-62ppm/℃优化至-32ppm/℃,满足了其在低温共烧陶瓷材料的应用。该方法的设计不仅拓展了AWO4型材料的应用范围,并为陶瓷材料的烧结促进及性能优化提供了方法上的借鉴。
附图说明
附图1是不同烧结温度下制备原位双相共生高熵陶瓷的XRD图。
附图2是实施例1中原位双相共生高熵陶瓷的SEM图。
附图3是实施例2中原位双相共生高熵陶瓷的SEM图。
附图4是实施例3中原位双相共生高熵陶瓷的SEM图。
具体实施方式
为了使本发明的发明目的、技术方案和有益技术效果更加清晰,以下结合实施例对本发明进行进一步详细说明。应理解的是,本说明书描述的实施例仅仅是为了解释本发明,并非为了限定本发明。
本发明的上述发明内容并不意欲描述本发明中的每个公开的实施方式或每种实现方式。如下描述更具体地举例说明示例性实施方式。在整篇申请中的多处,通过一系列实施例提供了指导,这些实施例可以以各种组合形式使用。在各个实施例中,列举仅作为代表性组,不应解释为穷举。
下述实施例更具体地描述了本申请公开的内容,这些实施例仅仅用于阐述性说明,因为在本申请公开内容的范围内进行各种修改和变化对本领域技术人员来说是明显的。实施例中使用的所有试剂都可商购获得或是按照常规方法进行合成获得,并且可直接使用而无需进一步处理,以及实施例中使用的仪器均可商购获得。
实施例1
本实施例制备的原位双相共生高熵陶瓷的步骤如下:
(1)按比例称取0.01mol Na2CO3、0.01mol Bi2O3、0.02mol CaCO3、0.02mol SrCO3、0.02mol BaCO3、0.1mol WO3 原料进行湿法球磨,球料比为4:1,球磨时间8h;混合后在50℃烘箱中干燥20h,得到干燥原料;
(2)将步骤(1)得到的干燥粉体在700℃下预烧8h后,混入无水乙醇进行充分球磨,球料比为4:1,球磨时间8h,球磨完毕后在50℃烘箱中干燥20h,得到预烧后的粉料;
(3)在步骤(2)得到的预烧粉料中加入聚乙烯醇粘结剂,聚乙烯醇:预烧粉料=1:17,在玛瑙研钵中进行混合均匀造粒,得到流动性较好的预制粉料;
(4)采用干压成型对步骤(3)得到的预制粉料进行压制成型,压力为100MPa,保压1min,将成型后的陶瓷生坯在500℃保温8h进行排胶;
(5)对步骤(4)排胶后的陶瓷生坯在925℃下烧结,升温速率为3℃/min,保温时间4h,得到双相高熵陶瓷。
附图1为本实施例制备原位双相共生高熵陶瓷的XRD图像,从图中可知除了生成钨酸铋钠和钨酸钡两相外,无其他杂相生成。附图2为本实施例制备原位双相共生高熵陶瓷的SEM图像,图中可知其致密性较高,孔隙少。制备原位双相共生高熵陶瓷的密度为5.95g/cm3,介电常数为14.4,Q×f值为30977GHz,谐振频率温度系数为-31.5ppm/℃。
实施例2
本实施例制备的原位双相共生高熵陶瓷的步骤如下:
(1)按比例称取0.01mol Na2CO3、0.01mol Bi2O3、0.02mol CaCO3、0.02mol SrCO3、0.02mol BaCO3、0.1mol WO3原料进行湿法球磨,球料比为5:1,球磨时间9h;混合后在70℃烘箱中干燥15h,得到干燥原料;
(2)将步骤(1)得到的干燥粉体在800℃下预烧6h后,混入无水乙醇进行充分球磨,球料比为5:1,球磨时间9h;混合后在70℃烘箱中干燥15h,得到预烧后的粉料;
(3)在步骤(2)得到的预烧粉料加入聚乙烯醇粘结剂,聚乙烯醇:预烧粉料=1:15,在玛瑙研钵中进行混合均匀造粒,得到流动性较好的预制粉料;
(4)采用干压成型对步骤(3)得到的预制粉料进行压制成型,压力为200MPa,保压2min,将成型后的陶瓷生坯在550℃保温6h进行排胶;
(5)对步骤(4)排胶后的陶瓷生坯在950℃下烧结,升温速率为5℃/min,保温时间6h,得到白钨矿双相高熵陶瓷。
本实施例制备原位双相共生高熵陶瓷的XRD测试结果如附图1所示,从图中可知除了生成钨酸铋钠和钨酸钡两相外,无其他杂相生成。附图3为本实施例制备原位双相共生高熵陶瓷的SEM图像,图中可知其致密性较高,孔隙少。制备原位双相共生高熵陶瓷的密度为6.58g/cm3,介电常数为14,Q×f值为33110GHz,谐振频率温度系数为-34.6ppm/℃。
实施例3
本实施例制备的原位双相共生高熵陶瓷的步骤如下:
(1)按比例称取0.01mol Na2CO3、0.01mol Bi2O3、0.02mol CaCO3、0.02mol SrCO3、0.02mol BaCO3、0.1mol WO3原料进行湿法球磨,球料比为6:1,球磨时间8h;混合后在80℃烘箱中干燥10h,得到干燥原料;
(2)将步骤(1)得到的干燥粉体在900℃下预烧4h后,混入无水乙醇进行充分球磨,球料比为6:1,球磨时间8h;混合后在80℃烘箱中干燥10h,得到预烧后的粉料;
(3) 在步骤(2)得到的预烧粉料加入聚乙烯醇粘结剂,聚乙烯醇:预烧粉料=1:20,在玛瑙研钵中进行混合均匀造粒,得到流动性较好的预制粉料;
(4)采用干压成型对步骤(3)得到的预制粉料进行压制成型,压力为150MPa,保压1.5min,将成型后的陶瓷生坯在600℃保温8h进行排胶;
(5)对步骤(4)排胶后的陶瓷生坯在975℃下烧结,升温速率为4℃/min,保温时间6h,得到双相高熵陶瓷。
本实施例制备原位双相共生高熵陶瓷的XRD测试结果如附图1所示,从图中可知除了生成钨酸铋钠和钨酸钡两相外,无其他杂相生成。附图4为本实施例制备原位双相共生高熵陶瓷的SEM图像,图中可知其致密性较高,孔隙少。制备原位双相共生高熵陶瓷的密度为6.02g/cm3,介电常数为12,Q×f值为29445GHz,谐振频率温度系数为-42ppm/℃。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (5)

1.一种原位双相共生高熵陶瓷,其特征在于,化学式为(Na0.2Bi0.2Ca0.2Sr0.2Ba0.2)WO4,原位生成BaWO4与Na0.5Bi0.5WO4双相共生的白钨矿陶瓷;其介电常数为11.5 ~ 14.4,Q×f值为28600 ~ 33110GHz,频率温度系数为-48 ~ -32ppm/℃。
2.如权利要求1 所述的一种原位双相共生高熵陶瓷的制备方法,其特征在于,包括如下步骤:
(1)根据原位双相共生高熵陶瓷的化学计量比,称取0.01mol Na2CO3、0.01mol Bi2O3、0.02mol CaCO3、0.02mol SrCO3、0.02mol BaCO3、0.1mol WO3 原料,进行湿法球磨并烘干,得到混合均匀的干燥原料;
(2)将步骤(1)得到的干燥粉体,研磨、过筛后进行预烧,预烧温度为700~900℃,保温时间4~8h,升温速率为3~5℃/min;
(3)将步骤(2)中预烧后的块体进行湿法球磨后,进行干燥得到预烧粉料;
(4)向步骤(3)得到的预烧粉料中加入聚乙烯醇粘结剂,在玛瑙研钵中进行造粒,得到流动性较好的预制粉料;
(5)将步骤(4)得到的预制粉料进行干压成型得到陶瓷生坯,并在500~600℃保温4~8h对生坯进行排胶;
(6)对步骤(5)排胶后的陶瓷生坯进行高温烧结得到所述原位双相共生高熵陶瓷,烧结温度为900~1050℃,升温速率为3~5℃/min,保温时间为4~8h。
3.根据权利要求2所述的一种原位双相共生高熵陶瓷的制备方法,其特征是,步骤(1)(3)中所述的湿法球磨介质为无水乙醇和氧化锆球,氧化锆球与粉料的质量比为(4~6):1,球磨时间为8~10h;粉料干燥时烘箱温度为50~80℃,时间为12~20h;所述过筛处理使用筛的目数为100。
4.根据权利要求2所述的一种原位双相共生高熵陶瓷的制备方法,其特征是,步骤(4)中聚乙烯醇与预烧粉料的质量比为1:(15~20)。
5.根据权利要求2所述的一种原位双相共生高熵陶瓷的制备方法,其特征是,步骤(5)中所述的干压成型压力为100~200MPa,保压时间为1~2min。
CN202311662879.1A 2023-12-06 2023-12-06 一种原位双相共生高熵陶瓷及其制备方法 Active CN117342871B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311662879.1A CN117342871B (zh) 2023-12-06 2023-12-06 一种原位双相共生高熵陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311662879.1A CN117342871B (zh) 2023-12-06 2023-12-06 一种原位双相共生高熵陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN117342871A true CN117342871A (zh) 2024-01-05
CN117342871B CN117342871B (zh) 2024-02-02

Family

ID=89359864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311662879.1A Active CN117342871B (zh) 2023-12-06 2023-12-06 一种原位双相共生高熵陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN117342871B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218324B1 (en) * 1998-01-14 2001-04-17 Mcdermott Technology, Inc. Ceramic composites containing weak interfaces with ABO4 tungstate, molybdate, tantalate, and niobate phases
CN1818147A (zh) * 2005-12-30 2006-08-16 四川大学 一种白钨矿发光膜材料的制备方法
CN103121842A (zh) * 2013-03-19 2013-05-29 电子科技大学 一种低介低损耗ltcc微波陶瓷材料及其制备方法
CN112225559A (zh) * 2020-09-25 2021-01-15 陕西科技大学 一种高储能高效率的Zr掺杂高熵钙钛矿氧化物陶瓷材料、制备方法及应用
CN114075074A (zh) * 2020-08-17 2022-02-22 厦门稀土材料研究所 一种稀土掺杂钨酸基高熵陶瓷及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218324B1 (en) * 1998-01-14 2001-04-17 Mcdermott Technology, Inc. Ceramic composites containing weak interfaces with ABO4 tungstate, molybdate, tantalate, and niobate phases
CN1818147A (zh) * 2005-12-30 2006-08-16 四川大学 一种白钨矿发光膜材料的制备方法
CN103121842A (zh) * 2013-03-19 2013-05-29 电子科技大学 一种低介低损耗ltcc微波陶瓷材料及其制备方法
CN114075074A (zh) * 2020-08-17 2022-02-22 厦门稀土材料研究所 一种稀土掺杂钨酸基高熵陶瓷及其制备方法
CN112225559A (zh) * 2020-09-25 2021-01-15 陕西科技大学 一种高储能高效率的Zr掺杂高熵钙钛矿氧化物陶瓷材料、制备方法及应用

Also Published As

Publication number Publication date
CN117342871B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
CN101260001A (zh) 新型高q微波介质陶瓷材料及其制备方法
CN100457678C (zh) 一种介电可调的陶瓷材料及其制备方法
CN114409389B (zh) 一种低介低损Ba-Si-B-M基LTCC材料及其制备方法
CN102249670A (zh) 低温烧结的微波介电陶瓷Li2Ba1-xSrxTi4O16及其制备方法
CN110229004B (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN108975913B (zh) 一种ZnO-TiO2-Nb2O5基LTCC材料及其制备方法
CN102603292A (zh) 一种用于可低温烧结微波介电陶瓷的复合氧化物
CN103570345A (zh) 低温烧结微波介电陶瓷Bi12MgO19及其制备方法
CN103496981A (zh) 低温烧结温度稳定型微波介电陶瓷Bi14W2O27及其制备方法
CN103319177B (zh) 可低温烧结微波介电陶瓷Ba3WTiO8及其制备方法
CN117342871B (zh) 一种原位双相共生高熵陶瓷及其制备方法
CN103524126B (zh) 低温烧结微波介电陶瓷CaBi2O4及其制备方法
CN101265097B (zh) 一种低温烧结的复合微波介质陶瓷及其制备方法
CN104876568B (zh) 钒基温度稳定型超低温烧结微波介质陶瓷材料及其制备方法
CN103496969A (zh) 低温烧结温度稳定型微波介电陶瓷Bi14WO24及其制备方法
CN103922721B (zh) 可低温烧结微波介电陶瓷Li4P2O7及其制备方法
CN102531568A (zh) 可低温烧结微波介电陶瓷LiBa4Bi3O11及其制备方法
CN104446433A (zh) 温度稳定型超低介电常数微波介电陶瓷Li3Al2P3O12
CN116041062B (zh) 一种低温共烧陶瓷材料及其制备方法
CN103435348B (zh) 可低温烧结的微波介电陶瓷Sr8CuW3O18及其制备方法
CN112250441B (zh) 一种低烧结温度介电性能可调的微波介质陶瓷
CN106083036B (zh) 碳酸钙掺杂钛酸铋微波介质陶瓷
CN103964848A (zh) 超低温烧结的微波介电陶瓷Li2PVO6及其制备方法
CN104591701A (zh) 温度稳定型超低介电常数微波介电陶瓷Li2Mg5O6及其制备方法
CN117447196A (zh) 一种温度稳定型毫米波介质陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant