CN117317211A - 一种长循环稳定的o3型钠离子电池层状正极材料及其制备方法 - Google Patents

一种长循环稳定的o3型钠离子电池层状正极材料及其制备方法 Download PDF

Info

Publication number
CN117317211A
CN117317211A CN202311498110.0A CN202311498110A CN117317211A CN 117317211 A CN117317211 A CN 117317211A CN 202311498110 A CN202311498110 A CN 202311498110A CN 117317211 A CN117317211 A CN 117317211A
Authority
CN
China
Prior art keywords
equal
source
less
ion battery
sodium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311498110.0A
Other languages
English (en)
Inventor
徐赛龙
颜濛濛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202311498110.0A priority Critical patent/CN117317211A/zh
Publication of CN117317211A publication Critical patent/CN117317211A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种长循环稳定的O3型钠离子电池层状正极材料,所述正极材料的化学式为NaxNiaMnbTicM1dM2eO2,其中,0.80≤x≤0.95,0.35≤a≤0.50,0.40≤b≤0.50,0.10≤c≤0.30,0<d≤0.15,0<e≤0.15,a+b+c+d+e=1;M1离子为低价态,M2离子为高价态。本发明利用钠空位和元素掺杂策略,并且控制元素的配比,解决了O3型正极材料在循环过程中存在结构稳定性差,工作电压低,复杂的不利相变等问题,最终得到具有较长循环寿命的层状正极材料。

Description

一种长循环稳定的O3型钠离子电池层状正极材料及其制备 方法
技术领域
本发明涉及钠离子电池正极材料技术领域,尤其涉及一种长循环稳定的O3型钠离子电池层状正极材料及其制备方法
背景技术
随着化石燃料的日益枯竭,人们普遍认识到迫切需要开发高能效和高成本效益的储能技术。钠离子电池由于其低成本、广泛分布的钠资源和环境友好性而被认为是可行的储能系统。作为钠离子电池的关键部件,正极材料对电池的成本和能量密度起着关键作用。在各种正极材料中,O3型过渡金属层状氧化物正极材料因其高能量密度、简单的合成工艺和充足的Na+存储而被认为是钠离子电池中最有前途的候选材料之一。然而,O3型正极材料在循环过程中结构演变不可逆,结构稳定性差,工作电压低,复杂的电化学行为,不可避免地导致晶格体积膨胀和收缩,导致电化学性能差,严重阻碍其商业化进程。
元素取代或调整化学成分已被证明可以通过巩固晶体结构来提高整体结构/化学稳定性。Wang等人通过高温固相法制备了Ti4+取代的O3-NaNi0.5Mn0.5-xTixO2(0≤x≤0.5),一方面Ti4+取代抑制O3-NaNi0.5Mn0.5O2复杂的相变提高了结构稳定性,另一方面Ti4+取代扩大了层间距,提高了钠离子传输动力学,该材料在循环200圈具有85%的容量保持率(Adv.Mater.2017,29,1700210)。Hu等人制备了Sn4+取代的NaNi0.5Mn0.5O2正极,Sn的引入可以抑制不利的和不可逆的多相转变,提高氧化还原电位,改性后的材料在充放电过程中只发生了高度可逆的相变(O3→P3),2C下循环450圈容量保持率为76.1%(ACS Nano 2023,17,16,15871–15882.)。尽管这些策略显著改善了材料的电化学性能,但对于O3-NaNi0.5Mn0.5O2而言,当充电截止电压小于4.0V时,该材料能发挥大约120mAh g-1的可逆比容量,当大于4.0V,该材料可展现出180mAh g-1的可逆比容量,上述正极材料的工作电压仅为2.0~4.0V,容量受到一定限制,无法满足实际应用。Huang等人制备了Mg/Ti共取代的NaMn0.45Ni0.45Mg0.05Ti0.05O2,该材料在2.0~4.2V电压区间内展现出177.7mAh g-1的高可逆比容量。尽管该材料具有较高的放电容量,然而当充电到4.2V时,高压区域发生P3-O′3的相变会使结构稳定性变差,0.2C循环200圈后容量保持率仅为72.6%(Chem.Eng.J.,2021,431,133454)。
结构稳定性差、容量保持率低是O3型层状氧化物无法实际应用的重要原因之一。以往的掺杂策略在深度脱钠状态下(>4.0V),改善O3材料缓慢的动力学和不可逆的相演化的效果十分有限。如何在高压下稳定材料的结构,改善高电压充放电过程中出现的不可逆相变问题仍是一个研究难点。
发明内容
本发明的目的在于提供一种O3型长循环钠离子电池层状正极材料解决该类正极材料循环性能性能差的问题。
为了达到上述目的,本发明采用以下技术方案予以实现:
一种长循环稳定的O3型钠离子电池层状正极材料,所述正极材料的化学式为NaxNiaMnbTicM1dM2eO2,其中,0.80≤x≤0.95,0.35≤a≤0.50,0.40≤b≤0.50,0.10≤c≤0.30,0<d≤0.15,0<e≤0.15,a+b+c+d+e=1;M1离子选自低价态Li+、Mg2+、Cu2+、Zn2+、Fe3+、Al3+中的一种或多种的组合,M2离子选自高价态Ce4+、Sn4+、Zr4+、Sb5+、Bi5+、Nb5+、Ta5+、Mo6+、W6+中的一种或多种的组合。
优选地,0.85≤x≤0.95,0.35≤a≤0.40,0.32≤b≤0.40,0.15≤c≤0.20,0.03≤d≤0.10,0.03≤e≤0.07。
更优选地,0.87≤x≤0.90,0.38≤a≤0.40,0.34≤b≤0.36,0.15≤c≤0.18,0.05≤d≤0.06,0.05≤e≤0.06。
进一步优选地,M1为Mg,M2为Sb和Sn,且Sb和Sn的摩尔比为1-2:1-2。
在本发明一个更为优选的技术方案中,所述长循环稳定的O3型钠离子电池层状正极材料为Na0.90Ni0.39Mn0.35Mg0.05Sb0.03Sn0.03Ti0.15O2、Na0.87Ni0.40Mn0.34Mg0.05Sb0.03Sn0.03Ti0.1 5O2、Na0.87Ni0.38Mn0.36Mg0.05Sb0.04Sn0.02Ti0.15O2中的至少一种。
本发明以低价态的M1和高价态的M2共同进行掺杂,同时引入钠空位,有利于正极材料电化学性能的提升。
一方面,我们通过降低钠的含量在材料中引入钠空位。钠空位可以降低了过渡金属离子的电荷密度,增强材料的抗氧化能力,保证材料在暴露于空气中时具有稳定的晶格钠。此外,钠空位可以扩大的Na层间距,降低钠离子的扩散能垒,使材料具有更多大的钠离子扩散位点,提升材料的倍率性能。
另一方面,我们采用低价态的M1和高价态的M2共同进行掺杂。低价的金属阳离子掺杂可以稳定由于三价镍离子的Jahn-Teller效应导致的NiO6八面体的局部畸变,进而增加了材料中相变的难度。尤其是d0电子组成的Mg还可以提高过渡金属和氧键的离子型,使电子云向过渡金属偏移,从而使过渡金属得失电子更加容易。此外,高价态的金属阳离子具有较高的电荷/半径比值,可以增加O离子的有效负电荷,有利于延缓高压的相变,增加材料的稳定性。并且在材料中引入d10电子结构的Sn/Sb后还可以提升材料的工作电压,这是由于填满d10电子的Sn4+和Sb5+在MO2层内不参与杂化,O2p轨道只与Ni eg轨道杂化,使Ni和O上的空穴/电子离域。O上产生更高的电子,并且Ni的3d轨道和O2p轨道之间的能量差增大,导致Ni-O键离子性和Ni氧化还原反应的增加,使材料表现出优异的高电位。
发明人还预料不到发现,当钠含量为0.9,M1为Mg,M2为Sb和Sn按照摩尔比1-2:1-2的复配时,能够得到长循环性能的O3型钠离子电池层状正极材料,倍率性能得到明显改善。
本发明还提供所述长循环稳定的O3型钠离子电池层状正极材料的制备方法,为固相法,包括以下步骤:
按照NaxNiaMnbTicM1dM2eO2中各元素的化学计量比称量钠源、镍源、锰源、钛源以及掺杂金属源,球磨后混合均匀,经压片后在马弗炉中煅烧,冷却即得所述层状氧化物正极材料。
固相法中,所述钠源、镍源、锰源、钛源以及掺杂金属源为其盐、氧化物、氢氧化物,所述盐为无机盐或者有机酸盐,无机盐为卤盐(氯化物、溴化物)、碳酸盐、碳酸氢盐、硝酸盐;所述有机盐为草酸盐、柠檬酸盐、苹果酸盐、乙酸盐;所形成的化合物选自含有其金属的乙酸盐、硝酸盐、碳酸盐、草酸盐。
优选地,钠源为碳酸钠,其他金属源均为其氧化物。
所述球磨时间为3~8h,球磨机转速为400~700rpm;压片机压力为15~20MPa,圆片直径为10~15mm;煅烧温度为850~1000℃,升温速率为2~10℃/min,煅烧时间为15~20h,然后程序降温至100~250℃,将得到的正极立即转移到氩气保护的手套箱内以备后用。
本发明还提供所述长循环稳定的O3型钠离子电池层状正极材料的的制备方法,为溶胶凝胶法,包括以下步骤:
(1)将水溶性的钠源和镍源、锰源、钛源、以及掺杂金属源按化学计量比溶于去离子水混合成溶液;
进一步地,所述钠源为乙酸钠或硝酸钠,所述镍源、锰源、掺杂金属源为其硝酸盐、醋酸盐或者卤盐(氯化物),所述钛源为钛酸四丁酯。
(2)加热搅拌,并且加入鳌合剂,蒸干形成前驱体凝胶;
(3)将所述前驱体凝胶在烘箱中烘干,在马弗炉中分两段煅烧,冷却即得所述层状氧化物正极材料。
所述的正极的制备方法,步骤(2)中加热搅拌温度为850~1000℃,搅拌时间为850~1000℃;步骤(3)中,烘箱温度为50~100℃,放置时间12~36h,第一段煅烧温度为300~600℃,煅烧时间为3~8h,第二段煅烧温度为800~950℃,煅烧时间为10~15h,然后程序降温至100~250℃,将得到的正极立即转移到氩气保护的手套箱内以备后用。
所述螯合剂选自柠檬酸、苹果酸中的至少一种,螯合剂的加入量是金属离子摩尔量的2-4倍,比如3倍。
本发明还公开了上述长循环稳定的型钠离子电池层状正极材料在钠离子电池中的应用
将O3型钠离子电池层状正极材料,导电添加剂Super P炭黑与粘结剂聚偏二氟乙烯按8:1:1的质量比混合调成浆料均匀涂覆到铝箔上,干燥得到工作电极,将工作电极与金属钠匹配组装成半电池。
与现有技术相比,本发明具有以下有益效果:
一、本发明采用固相法或者溶胶凝胶法合成了目标层状正极材料,制备过程中无需特殊气氛保护,合成工艺简单,生产效率高。并且本发明所有原料易得、无毒、成本低廉,适合规模化大批量生产。
二、本发明制备的O3型正极材料具有较长的循环寿命。一方面,本发明在材料中引入了钠空位,可以提高材料电压,改善材料离子扩散动力学,提高材料的循环稳定性;另一方面,本发明采用元素掺杂策略,抑制充放电过程中的空位有序以及不利相变,降低晶格体积膨胀和收缩带来的结构破化,进一步提高材料的稳定性。利用钠空位工程和元素掺杂双重策略,制得的O3型层状正极材料在测试区间2.2V~4.15V内充放电反应过程展现出优异的电化学性能,在0.1C倍率测试下,放电可逆容量为123.0mAh g-1,在1C下经历500次循环后容量保持率高达92.8%,具有电化学应用潜能。
附图说明
图1为实施例1得到的Na0.90Ni0.39Mn0.35Mg0.05Sb0.03Sn0.03Ti0.15O2的X射线衍射图;
图2为实施例1得到的Na0.90Ni0.39Mn0.35Mg0.05Sb0.03Sn0.03Ti0.15O2的扫描图;
图3为实施例1得到的Na0.90Ni0.39Mn0.35Mg0.05Sb0.03Sn0.03Ti0.15O2的充放电曲线图;
图4为对比例1得到的Na0.90Ni0.39Mn0.35Mg0.05Sb0.03Sn0.03Ti0.15O2的充放电曲线图;
图5为实施例1得到的Na0.90Ni0.39Mn0.35Mg0.05Sb0.03Sn0.03Ti0.15O2得到的长循环图。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
本发明实施例中制备正极材料时,,Na源为Na2CO3、其他金属源为其氧化物,比如Ni源为NiO、Mn源为Mn2O3、Mg源为MgO、Ti源为TiO2、Sb源为Sb2O3、Sn源为SnO2、Fe源为Fe2O3、Zn源为ZnO。
实施例1
制备Na0.90Ni0.39Mn0.35Mg0.05Sb0.03Sn0.03Ti0.15O2正极材料。
称取0.45mol Na2CO3、0.39mol NiO、0.175mol Mn2O3、0.05mol MgO、0.015molSb2O3、0.03mol SnO2、0.15mol TiO2置于玛瑙球磨罐中,加入乙醇作分散剂,经球磨混合均匀后,在80℃的烘箱中放置12h烘干;将干燥后的粉末用20Mpa的压力压制成12mm的圆片,将圆片放置于刚玉瓷舟中,在马弗炉中950℃煅烧20小时,升温速率5℃/min,降温速度2℃/min,随炉冷却至100℃后得到钠离子电池正极材料。
图1为本发明实施例1制备的Na0.90Ni0.39Mn0.35Mg0.05Sb0.03Sn0.03Ti0.15O2钠离子电池层状正极材料的XRD图,可以看出其结构很好归属于空间群为的三方晶系,对应于O3相除此之外,XRD中还观察到少量的NiO杂相,这与Ni在O3相中的溶解度有关。
图2为本发明实施例1制备的Na0.90Ni0.39Mn0.35Mg0.05Sb0.03Sn0.03Ti0.15O2钠离子电池层状正极材料的SEM图,可以看出样品由不规则纳米片板状颗粒组成,样品颗粒尺寸在1-4μm之间。
实施例2-13,对比例1-4
按照表1中正极材料化学式改变原料投料物质以及配比,采用固相法,分别得到表1中实施例1-13,对比例1-4的正极材料。
实施例14
制备Na0.90Ni0.39Mn0.35Mg0.05Sb0.03Sn0.03Ti0.15O2正极材料。
采用溶胶凝胶制备法,(1)按0.90:0.39:0.35:0.05:0.03:0.03:0.15的摩尔比称取将硝酸钠、硝酸镍、硝酸锰、硝酸镁、醋酸锑、四氯化锡、钛酸四丁酯溶解于去离子水中;
(2)70℃水浴搅拌滴加质量分数为60%的柠檬酸水溶液(加入量是金属离子摩尔量的三倍),并继续搅拌8h形成凝胶;
(3)将凝胶放置在100℃烘箱中,24h后取出研磨成粉末前体;
(4)将步骤(3)所得的前体在在马弗炉中分阶段煅烧,第一阶段程序升温至450℃后煅烧6小时;第二阶段程序升温至900℃后煅烧15h,然后程序降温至100℃,将得到的正极立即转移到氩气保护的手套箱内以备后用。
对比例1
制备Na0.87Ni0.40Mn0.45Ti0.15O2正极材料。
制备方法与实施例1相同,区别仅在于:原料投料比改为0.435mol Na2CO3、0.40molNiO、0.225mol Mn2O3、0.15mol TiO2
对比例2
制备Na0.87Ni0.40Mn0.40Mg0.05Ti0.15O2正极材料。
制备方法与实施例1相同,区别仅在于:原料投料比改为0.435mol Na2CO3、0.40molNiO、0.200mol Mn2O3、0.05mol MgO、0.15mol TiO2
对比例3
制备Na0.87Ni0.40Mn0.42Sb0.03Ti0.15O2正极。
制备方法与实施例1相同,区别仅在于:原料投料比改为0.435mol Na2CO3、0.40molNiO、0.210mol Mn2O3、0.015mol Sb2O3、0.15mol TiO2
对比例4
制备NaNi0.40Mn0.37Mg0.05Sb0.03Ti0.15O2正极。
制备方法与实施例1相同,区别仅在于:原料投料比改为0.500mol Na2CO3、0.40molNiO、0.185mol Mn2O3、0.05mol MgO、0.015mol Sb2O3、0.15mol TiO2
钠离子电池组装例
将钠离子电池正极材料制备实施例和钠离子电池正极材料制备对比例得到的正极材料按照如下步骤制备钠离子电池,具体如下:
(1)将制备的正极材料与Super P、粘结剂聚偏二氟乙烯(PVDF)和导电添加剂碳黑按质量比混合80:10:10,并加入溶剂N-甲基吡咯烷酮(NMP)、经制浆、涂片、干燥等工艺流程即得到直径为10mm的电极片。
(2)将得到的正极同金属钠负极组装钠离子电池,电解液中包含NaClO4,其浓度为1M,溶剂为体积比为95:5的碳酸丙烯酯(PC)和氟代碳酸乙烯酯(FEC)的混合溶剂,隔膜采用多孔的玻璃纤维隔膜(whatman,GF/D),在充满氩气的手套箱中组装成CR2025扣式电池并进行电化学测试。
电化学性能测试:
将钠离子电池组装例组装成的钠离子电池,在2.2~4.15V的测试电压范围内,进行充放电测试(测试电流0.1C,1C=150mAh g-1)、循环性能测试(测试电流1C,循环500圈),高倍率循环性能测试(测试电流5C,循环100圈),测试结果如表1所示。
表1电化学性能测试
本发明通过钠空位工程和元素掺杂策略,并且控制元素的配比,成功制备出长循环稳定的O3型钠离子电池层状正极材料。通过对比以上实施案例可以看出,所提出的一类O3型钠离子电池正极材料具有较高的可逆容量和良好的循环寿命。通过对比图3、4可以看出,该掺杂策略明显抑制了高压下的不利相变,因而具有较好的循环稳定性。

Claims (10)

1.一种长循环稳定的O3型钠离子电池层状正极材料,其特征在于,所述正极材料的化学式为NaxNiaMnbTicM1dM2eO2,其中,0.80≤x≤0.95,0.35≤a≤0.50,0.40≤b≤0.50,0.10≤c≤0.30,0<d≤0.15,0<e≤0.15,a+b+c+d+e=1;M1离子选自低价态Li+、Mg2+、Cu2+、Zn2 +、Fe3+、Al3+中的一种或多种的组合,M2离子选自高价态Ce4+、Sn4+、Zr4+、Sb5+、Bi5+、Nb5+、Ta5+、Mo6+、W6+中的一种或多种的组合。
2.根据权利要求1所述的长循环稳定的O3型钠离子电池层状正极材料,其特征在于,0.85≤x≤0.95,0.35≤a≤0.40,0.32≤b≤0.40,0.15≤c≤0.20,0.03≤d≤0.10,0.03≤e≤0.07。
3.根据权利要求1所述的长循环稳定的O3型钠离子电池层状正极材料,其特征在于,0.87≤x≤0.90,0.38≤a≤0.40,0.34≤b≤0.36,0.15≤c≤0.18,0.05≤d≤0.06,0.05≤e≤0.06。
4.根据权利要求1所述的长循环稳定的O3型钠离子电池层状正极材料,其特征在于,M1为Mg,M2为Sb和Sn,且Sb和Sn的摩尔比为1-2:1-2。
5.根据权利要求1所述的长循环稳定的O3型钠离子电池层状正极材料,其特征在于,为Na0.90Ni0.39Mn0.35Mg0.05Sb0.03Sn0.03Ti0.15O2、Na0.87Ni0.40Mn0.34Mg0.05Sb0.03Sn0.03Ti0.15O2、Na0.87Ni0.38Mn0.36Mg0.05Sb0.04Sn0.02Ti0.15O2中的至少一种。
6.权利要求1-5任一项所述的长循环稳定的O3型钠离子电池层状正极材料的制备方法,其特征在于,为固相法,包括以下步骤:
按照NaxNiaMnbTicM1dM2eO2中各元素的化学计量比称量钠源、镍源、锰源、钛源以及掺杂金属源,球磨后混合均匀,经压片后在马弗炉中煅烧,冷却即得所述层状氧化物正极材料。
7.根据权利要求6所述的制备方法,其特征在于,所述钠源、镍源、锰源、钛源以及掺杂金属源为其盐、氧化物、氢氧化物,所述盐为无机盐或者有机酸盐,无机盐为卤盐(氯化物、溴化物)、碳酸盐、碳酸氢盐、硝酸盐;所述有机盐为草酸盐、柠檬酸盐、苹果酸盐、乙酸盐;所形成的化合物选自含有其金属的乙酸盐、硝酸盐、碳酸盐、草酸盐;
优选地,所述球磨时间为3~8h,球磨机转速为400~700rpm;压片机压力为15~20MPa,圆片直径为10~15mm;煅烧温度为850~1000℃,升温速率为2~10℃/min,煅烧时间为15~20h,然后程序降温至100~250℃,将得到的正极立即转移到氩气保护的手套箱内以备后用。
8.权利要求1-5任一项所述的长循环稳定的O3型钠离子电池层状正极材料的制备方法,其特征在于,为溶胶凝胶法,包括以下步骤:
(1)将水溶性的钠源和镍源、锰源、钛源、以及掺杂金属源按化学计量比溶于去离子水混合成溶液;
进一步地,所述钠源为乙酸钠或硝酸钠,所述镍源、锰源、掺杂金属源为其硝酸盐、醋酸盐或者卤盐(氯化物),所述钛源为钛酸四丁酯;
(2)加热搅拌,并且加入鳌合剂,蒸干形成前驱体凝胶;
(3)将所述前驱体凝胶在烘箱中烘干,在马弗炉中分两段煅烧,冷却即得所述层状氧化物正极材料。
9.根据权利要求8所述的制备方法,其特征在于,步骤(2)中加热搅拌温度为850~1000℃,搅拌时间为850~1000℃;步骤(3)中,烘箱温度为50~100℃,放置时间12~36h,第一段煅烧温度为300~600℃,煅烧时间为3~8h,第二段煅烧温度为800~950℃,煅烧时间为10~15h,然后程序降温至100~250℃,将得到的正极立即转移到氩气保护的手套箱内以备后用;
所述螯合剂选自柠檬酸、苹果酸中的至少一种,螯合剂的加入量是金属离子摩尔量的2-4倍。
10.权利要求1-5任一项所述长循环稳定的型钠离子电池层状正极材料在钠离子电池中的应用。
CN202311498110.0A 2023-11-10 2023-11-10 一种长循环稳定的o3型钠离子电池层状正极材料及其制备方法 Pending CN117317211A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311498110.0A CN117317211A (zh) 2023-11-10 2023-11-10 一种长循环稳定的o3型钠离子电池层状正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311498110.0A CN117317211A (zh) 2023-11-10 2023-11-10 一种长循环稳定的o3型钠离子电池层状正极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN117317211A true CN117317211A (zh) 2023-12-29

Family

ID=89273784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311498110.0A Pending CN117317211A (zh) 2023-11-10 2023-11-10 一种长循环稳定的o3型钠离子电池层状正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN117317211A (zh)

Similar Documents

Publication Publication Date Title
Bhide et al. Physicochemical properties of NaxCoO2 as a cathode for solid state sodium battery
Wen et al. Effects of magnesium and fluorine co-doping on the structural and electrochemical performance of the spinel LiMn2O4 cathode materials
CN115207340B (zh) 一种钠离子电池层状氧化物正极材料及其制备方法和应用
CN114695855A (zh) 一种锂/钛共掺杂钠离子电池复合正极材料及其制备方法和应用
CN116314704B (zh) 一种包覆改性钠离子层状正极材料及其制备方法
Jeong et al. Electrochemical studies on cathode blends of LiMn2O4 and Li [Li1/15Ni1/5Co2/5Mn1/3O2]
CN115663173A (zh) 一种富钠层状氧化物材料及其制备方法和应用
CN115995536A (zh) 一种正极材料及其制备方法、钠离子电池
Yang et al. Hybrid microwave synthesis and characterization of the compounds in the Li–Ti–O system
CN116387504A (zh) 一种多元o3型层状钠离子电池正极材料及其制备方法
JP2015166291A (ja) リチウム複合酸化物
CN116130617A (zh) 一种碳包覆的钠离子层状氧化物正极材料及其制备方法
CN115911332A (zh) 铜锰基层状氧化物材料及制备方法、正极及钠离子电池
CN115763715A (zh) 一种BixSey/C复合材料及其制备方法和应用、调控该复合材料铋硒原子比的方法
CN103746117A (zh) 镁离子掺杂锂离子电池正极磷酸钒锂/碳材料的制备方法
CN103199236B (zh) 掺杂锰酸锂前驱体、改性锰酸锂正极材料及其制备方法
CN116031395A (zh) 氟离子和/或空位掺杂的钠电池正极材料及制备方法和应用
CN113830841A (zh) 一种正极固溶体材料及其制备方法和应用
CN115676915B (zh) 一种层状氧化物正极材料及其制备方法和应用
CN117317211A (zh) 一种长循环稳定的o3型钠离子电池层状正极材料及其制备方法
CN116799218B (zh) 一种高熵钠离子电池正极材料
JP7133215B2 (ja) ニッケルマンガン系複合酸化物及びその製造方法
CN118307054A (zh) NaF-NaaNibMncMedO2及其制备和在钠离子电池中的应用
WO2001015252A1 (fr) Materiau d'electrode positive pour accumulateur au lithium et electrode positive, et accumulateur au lithium
CN117239086A (zh) 一种高熵层状氧化物钠离子电池正极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination