CN117276410A - Passivated contact solar cell and preparation method thereof - Google Patents

Passivated contact solar cell and preparation method thereof Download PDF

Info

Publication number
CN117276410A
CN117276410A CN202311542639.8A CN202311542639A CN117276410A CN 117276410 A CN117276410 A CN 117276410A CN 202311542639 A CN202311542639 A CN 202311542639A CN 117276410 A CN117276410 A CN 117276410A
Authority
CN
China
Prior art keywords
temperature
solar cell
diffusion chamber
layer
contact solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311542639.8A
Other languages
Chinese (zh)
Other versions
CN117276410B (en
Inventor
徐孟雷
杨洁
张昕宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Jinko Solar Co Ltd
Original Assignee
Zhejiang Jinko Solar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Jinko Solar Co Ltd filed Critical Zhejiang Jinko Solar Co Ltd
Priority to CN202311542639.8A priority Critical patent/CN117276410B/en
Publication of CN117276410A publication Critical patent/CN117276410A/en
Application granted granted Critical
Publication of CN117276410B publication Critical patent/CN117276410B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/121The active layers comprising only Group IV materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/30Coatings
    • H10F77/306Coatings for devices having potential barriers
    • H10F77/311Coatings for devices having potential barriers for photovoltaic cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The embodiment of the application relates to the technical field of solar cells, and provides a passivation contact solar cell and a preparation method thereof, wherein the method comprises the following steps: forming a tunneling layer and an initial silicon layer which are sequentially stacked on the surface of a substrate, wherein the material of the initial silicon layer comprises a polycrystalline structure and an amorphous structure; placing the substrate with the tunneling layer and the initial silicon layer into a diffusion chamber; performing a first temperature raising process to raise the temperature of the diffusion chamber to a first preset temperature; annealing treatment is carried out in the diffusion chamber at a first preset temperature so as to convert the initial silicon layer into a polycrystalline silicon layer; and doping the polysilicon layer, and introducing source gas into the diffusion chamber in the doping process to convert the polysilicon layer into a doped polysilicon layer. The passivation contact solar cell and the preparation method thereof are at least beneficial to improving the performance of the solar cell.

Description

钝化接触太阳能电池及其制备方法Passivated contact solar cell and preparation method thereof

技术领域Technical field

本申请实施例涉及太阳能电池技术领域,特别涉及一种钝化接触太阳能电池及其制备方法。The embodiments of the present application relate to the technical field of solar cells, and in particular to a passivated contact solar cell and a preparation method thereof.

背景技术Background technique

化石能源存在大气污染并且储量有限,而太阳能具有清洁、无污染和资源丰富等优点,因此,太阳能正在逐步成为替代化石能源的核心清洁能源,由于太阳能电池具有良好的光电转化效率,太阳能电池成为了清洁能源利用的发展重心。Fossil energy has air pollution and limited reserves, while solar energy has the advantages of cleanness, pollution-free and rich resources. Therefore, solar energy is gradually becoming the core clean energy alternative to fossil energy. Since solar cells have good photoelectric conversion efficiency, solar cells have become The development focus of clean energy utilization.

为了提高太阳能电池的效率,可以在太阳能电池的正面和/或背面形成钝化接触结构,利用钝化接触结构的场钝化和/或化学钝化能力,提高太阳能电池的载流子隧穿能力,降低载流子在基底表面的复合。例如,隧穿氧化层钝化接触太阳能电池(Tunnel OxidePassivated Contact solar cell,TOPCon)、高温异质结电池(Heterojunction withIntrinsic Thin-layer,HJT)和背接触太阳能电池(Back Contact,BC)中均有应用。然而,在制作钝化接触结构时容易形成缺陷,导致太阳能电池的性能下降。In order to improve the efficiency of solar cells, a passivated contact structure can be formed on the front and/or back of the solar cell, and the field passivation and/or chemical passivation capabilities of the passivated contact structure can be used to improve the carrier tunneling capability of the solar cell. , reducing the recombination of carriers on the substrate surface. For example, tunnel oxide layer passivated contact solar cell (Tunnel OxidePassivated Contact solar cell, TOPCon), high temperature heterojunction cell (Heterojunction with Intrinsic Thin-layer, HJT) and back contact solar cell (Back Contact, BC) are all used. . However, defects are easily formed during the fabrication of passivated contact structures, resulting in reduced solar cell performance.

发明内容Contents of the invention

本申请实施例提供一种钝化接触太阳能电池及其制备方法,至少有利于提高太阳能电池的性能。The embodiments of the present application provide a passivated contact solar cell and a preparation method thereof, which are at least beneficial to improving the performance of the solar cell.

根据本申请一些实施例,本申请实施例一方面提供一种钝化接触太阳能电池的制备方法,包括:在基底表面形成依次层叠的隧穿层和初始硅层,初始硅层的材料包括多晶结构和非晶结构;将形成有隧穿层和初始硅层的基底放入扩散腔室中;进行第一升温处理,以将扩散腔室的温度升高至第一预设温度;在第一预设温度下,在扩散腔室内进行退火处理,以使初始硅层转化为多晶硅层;对多晶硅层进行掺杂处理,在掺杂处理中向扩散腔室中通入源气体,以使多晶硅层转化为掺杂多晶硅层。According to some embodiments of the present application, on the one hand, the embodiments of the present application provide a method for preparing a passivated contact solar cell, including: forming a sequentially stacked tunnel layer and an initial silicon layer on the surface of a substrate, and the material of the initial silicon layer includes polycrystalline structure and amorphous structure; placing the substrate with the tunneling layer and the initial silicon layer formed into the diffusion chamber; performing a first temperature raising process to increase the temperature of the diffusion chamber to a first preset temperature; in the first At a preset temperature, an annealing process is performed in the diffusion chamber to convert the initial silicon layer into a polysilicon layer; the polysilicon layer is doped, and source gas is introduced into the diffusion chamber during the doping process to make the polysilicon layer Converted into a doped polysilicon layer.

在一些实施例中,退火处理包括:在第一预设时间内维持扩散腔室的温度为第一预设温度,其中,第一预设时间的范围为10min~60min。In some embodiments, the annealing process includes: maintaining the temperature of the diffusion chamber at a first preset temperature within a first preset time, where the first preset time ranges from 10 min to 60 min.

在一些实施例中,第一预设温度的范围为800℃~1000℃。In some embodiments, the first preset temperature ranges from 800°C to 1000°C.

在一些实施例中,第一升温处理的升温速率为3℃/min~10℃/min。In some embodiments, the heating rate of the first heating treatment is 3°C/min~10°C/min.

在一些实施例中,采用低压化学气相沉积工艺,形成初始硅层。In some embodiments, a low pressure chemical vapor deposition process is used to form the initial silicon layer.

在一些实施例中,掺杂处理包括:进行降温处理,以将扩散腔室的温度降低从第一预设温度至第二预设温度;进行沉积处理,以在第二预设温度下向扩散腔室中通入源气体,并在第二预设时间内扩散腔室的温度保持为第二预设温度;进行推结处理,以将扩散腔室的温度从第二预设温度升高至第三预设温度,并在第三预设时间内扩散腔室的温度保持为第三预设温度。In some embodiments, the doping process includes: performing a cooling process to reduce the temperature of the diffusion chamber from a first preset temperature to a second preset temperature; and performing a deposition process to diffuse the diffusion chamber at the second preset temperature. The source gas is introduced into the chamber, and the temperature of the diffusion chamber is maintained at the second preset temperature within the second preset time; a push-off process is performed to increase the temperature of the diffusion chamber from the second preset temperature to a third preset temperature, and the temperature of the diffusion chamber is maintained at the third preset temperature within a third preset time.

在一些实施例中,第三预设温度高于第一预设温度。In some embodiments, the third preset temperature is higher than the first preset temperature.

在一些实施例中,在进行推结处理之后,还包括:进行后推结处理,以将扩散腔室的温度从第三预设温度升高至第四预设温度,并在第四预设时间内扩散腔室的温度保持为第四预设温度。In some embodiments, after performing the push-knot process, the method further includes: performing a post-knot process to increase the temperature of the diffusion chamber from the third preset temperature to the fourth preset temperature, and perform a post-knot process at the fourth preset temperature. The temperature of the diffusion chamber is maintained at the fourth preset temperature during the time.

在一些实施例中,第二预设温度的范围为750℃~950℃;第二预设时间为10min~60min。In some embodiments, the second preset temperature ranges from 750°C to 950°C; the second preset time ranges from 10min to 60min.

在一些实施例中,在第一升温处理之后,进行退火处理之前,还包括:进行检漏处理,以检测扩散腔室的漏率是否小于等于5mbar/min。In some embodiments, after the first temperature raising process and before the annealing process, the method further includes: performing a leak detection process to detect whether the leak rate of the diffusion chamber is less than or equal to 5 mbar/min.

根据本申请一些实施例,本申请另一实施例提供一种钝化接触太阳能电池,采用上述实施例中任一种钝化接触太阳能电池的制备方法形成,包括:基底;隧穿层,隧穿层位于基底表面;掺杂多晶硅层,掺杂多晶硅层位于隧穿层远离基底的表面。According to some embodiments of the present application, another embodiment of the present application provides a passivated contact solar cell, which is formed using any of the preparation methods of the passivated contact solar cell in the above embodiments, including: a substrate; a tunneling layer; The layer is located on the surface of the substrate; the doped polysilicon layer is located on the surface of the tunnel layer away from the substrate.

在一些实施例中,在掺杂多晶硅层中,掺杂原子浓度大于等于3E+20 atom/cm3In some embodiments, in the doped polysilicon layer, the doping atom concentration is greater than or equal to 3E+20 atoms/cm 3 .

本申请实施例提供的技术方案至少具有以下优点:The technical solutions provided by the embodiments of this application have at least the following advantages:

本申请实施例提供的钝化接触太阳能电池的制备方法,在基底上形成隧穿层和初始硅层之后,先将形成有隧穿层和初始硅层的基底放入扩散腔室中进行第一升温处理,且在第一预设温度下进行退火处理,以使初始硅层转化为多晶硅层。如此,可以利用现有的扩散工艺所需的扩散腔室,对初始硅层进行退火处理,无需添加新的设备,不会增加工艺成本。在退火处理之后,直接进行掺杂处理,不用更换腔室,避免了降温更换腔室再升温的过程中,多晶硅层的结晶性发生改变的问题,同时提高了工艺制程效率。先进行退火步骤,以使初始晶硅层由多晶结构和非晶结构构成的混合晶相结构转化为均一的多晶结构,转化后的多晶硅层相较于初始硅层具有更高的结晶度,则在进一步通入源气体进行掺杂处理时,掺杂原子不容易在多晶硅层中聚集,从而避免了形成的掺杂多晶硅内具有较多的孔洞,提高了钝化接触太阳能电池的稳定性和效率。In the method for preparing a passivated contact solar cell provided by the embodiment of the present application, after forming a tunneling layer and an initial silicon layer on a substrate, the substrate with the tunneling layer and the initial silicon layer is first placed into a diffusion chamber for the first step. The temperature is raised, and the annealing process is performed at a first preset temperature to convert the initial silicon layer into a polysilicon layer. In this way, the existing diffusion chamber required for the diffusion process can be used to anneal the initial silicon layer without adding new equipment or increasing process costs. After the annealing process, the doping process is carried out directly without changing the chamber, which avoids the problem of the crystallinity of the polysilicon layer changing during the process of cooling down, replacing the chamber and then raising the temperature, and at the same time improves the process efficiency. An annealing step is first performed to convert the mixed crystal phase structure of the initial crystalline silicon layer consisting of polycrystalline structure and amorphous structure into a uniform polycrystalline structure. The converted polycrystalline silicon layer has a higher crystallinity than the initial silicon layer. , then when the source gas is further introduced for doping treatment, the doped atoms will not easily gather in the polysilicon layer, thus avoiding the formation of more holes in the doped polysilicon and improving the stability of the passivated contact solar cell. and efficiency.

附图说明Description of the drawings

一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,除非有特别申明,附图中的图不构成比例限制;为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。One or more embodiments are exemplified by the pictures in the corresponding drawings. These illustrative illustrations do not constitute a limitation on the embodiments. Unless otherwise stated, the pictures in the drawings do not constitute a limitation on proportions; in order to To more clearly illustrate the technical solutions in the embodiments of the present application or traditional technologies, the following will briefly introduce the drawings needed in the embodiments. Obviously, the drawings in the following description are only some embodiments of the present application. , for those of ordinary skill in the art, other drawings can also be obtained based on these drawings without exerting creative efforts.

图1为本申请一实施例提供的一种钝化接触结构的示意图;Figure 1 is a schematic diagram of a passivation contact structure provided by an embodiment of the present application;

图2为本申请一实施例提供的一种初始硅层和掺杂多晶硅层的激光显微镜图;Figure 2 is a laser microscope image of an initial silicon layer and a doped polysilicon layer provided by an embodiment of the present application;

图3为本申请一实施例提供的一种钝化接触太阳能电池的制备方法的流程图;Figure 3 is a flow chart of a method for preparing a passivated contact solar cell according to an embodiment of the present application;

图4为本申请一实施例提供的两种钝化接触太阳能电池中掺杂多晶硅的激光显微镜图。Figure 4 is a laser microscope image of doped polysilicon in two passivated contact solar cells according to an embodiment of the present application.

具体实施方式Detailed ways

图1为本申请一实施例提供的一种钝化接触结构的示意图。FIG. 1 is a schematic diagram of a passivation contact structure provided by an embodiment of the present application.

参考图1,钝化接触结构由位于基底100表面的隧穿层101和掺杂多晶硅层102构成,隧穿层101与基底100接触可以中和基底100表面的悬挂键,进行优异的化学钝化;掺杂多晶硅层102因与基底100存在费米能级的差异,在基底100表面造成能带弯曲,可以更加有效的阻挡少子(又称为少数载流子)的通过,而不会影响多子(又称为多数载流子)的传输,实现载流子的选择性收集。Referring to Figure 1, the passivation contact structure is composed of a tunnel layer 101 and a doped polysilicon layer 102 located on the surface of the substrate 100. The tunnel layer 101 and the substrate 100 can neutralize the dangling bonds on the surface of the substrate 100 and perform excellent chemical passivation. ; Due to the Fermi level difference between the doped polysilicon layer 102 and the substrate 100, the energy band is bent on the surface of the substrate 100, which can more effectively block the passage of minority carriers (also known as minority carriers) without affecting the majority of carriers. The transmission of carriers (also called majority carriers) realizes the selective collection of carriers.

通常形成钝化接触结构的方法为,先在基底100表面沉积隧穿层101和初始硅层,再对初始硅层进行掺杂处理,最后通过退火处理进行激活,在退火处理的过程中初始硅层的结晶性发生变化,初始晶硅层由多晶结构和非晶结构构成的混合晶相结构转化为均一的多晶结构,如此,初始硅层转化成掺杂多晶硅层102。The usual method of forming a passivated contact structure is to first deposit the tunneling layer 101 and the initial silicon layer on the surface of the substrate 100, then dope the initial silicon layer, and finally activate it through annealing. During the annealing process, the initial silicon layer is The crystallinity of the layer changes, and the initial crystalline silicon layer is transformed from a mixed crystal phase structure composed of a polycrystalline structure and an amorphous structure into a uniform polycrystalline structure. In this way, the initial silicon layer is transformed into a doped polycrystalline silicon layer 102 .

图2为本申请一实施例提供的一种初始硅层和掺杂多晶硅层的激光显微镜图。其中,图2中的(A)所示为未进行掺杂处理和退火处理的初始硅层,图2中的(B)所示为已进行掺杂处理和退火处理的掺杂多晶硅。FIG. 2 is a laser microscope image of an initial silicon layer and a doped polysilicon layer according to an embodiment of the present application. Among them, (A) in Figure 2 shows the initial silicon layer that has not been doped and annealed, and (B) in Figure 2 shows the doped polysilicon that has been doped and annealed.

对比图2中的(A)和图2中的(B)发现,未进行掺杂处理和退火处理的初始硅层本身较为无孔洞,在初始硅层转化为掺杂多晶硅层102之后,掺杂多晶硅层102表面形成了较多的孔洞,进而导致在后续的清洗或者刻蚀工艺过程中,清洗液或者刻蚀液会通过孔洞接触到隧穿层101,导致隧穿层101被破坏影响钝化接触结构的效果,进而导致太阳能电池的性能受损。这是由于初始硅层中包括多晶结构和非晶结构,初始硅层中的多晶结构之间的晶格间空隙较大,在进行掺杂处理的过程中,掺杂原子容易在空隙处聚集,进而导致退火之后形成的掺杂多晶硅103内具有较多的孔洞。Comparing (A) in Figure 2 and (B) in Figure 2, it is found that the initial silicon layer itself that has not been doped and annealed is relatively free of holes. After the initial silicon layer is converted into the doped polysilicon layer 102, the doped A large number of holes are formed on the surface of the polysilicon layer 102, which causes the cleaning liquid or etching liquid to contact the tunneling layer 101 through the holes during the subsequent cleaning or etching process, causing the tunneling layer 101 to be damaged and affect passivation. The effect of the contact structure, which in turn leads to compromised solar cell performance. This is because the initial silicon layer includes a polycrystalline structure and an amorphous structure. The inter-lattice gaps between the polycrystalline structures in the initial silicon layer are large. During the doping process, doping atoms are easy to form in the gaps. aggregation, thereby causing the doped polysilicon 103 formed after annealing to have more holes.

本申请一实施例提供一种钝化接触太阳能电池的制备方法,至少有利于提高太阳能电池的性能。An embodiment of the present application provides a method for preparing a passivated contact solar cell, which is at least beneficial to improving the performance of the solar cell.

下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。Each embodiment of the present application will be described in detail below with reference to the accompanying drawings. However, those of ordinary skill in the art can understand that in each embodiment of the present application, many technical details are provided to enable readers to better understand the present application. However, even without these technical details and various changes and modifications based on the following embodiments, the technical solution claimed in this application can also be implemented.

图3为本申请一实施例提供的一种钝化接触太阳能电池的制备方法的流程图。FIG. 3 is a flow chart of a method for preparing a passivated contact solar cell according to an embodiment of the present application.

参考图3,钝化接触太阳能电池的制备方法,包括:Referring to Figure 3, the preparation method of passivated contact solar cells includes:

步骤11:在基底表面形成依次层叠的隧穿层和初始硅层,初始硅层的材料包括多晶结构和非晶结构。Step 11: Form a sequentially stacked tunnel layer and an initial silicon layer on the surface of the substrate. The material of the initial silicon layer includes a polycrystalline structure and an amorphous structure.

在一些实施例中,基底可以为元素半导体材料。其中,元素半导体材料可以由单一元素组成,例如可以是硅或者锗。或者,元素半导体材料可以为单晶态、多晶态、非晶态或者微晶态(同时具有单晶态和非晶态的状态,称为微晶态),例如,硅可以是单晶硅、多晶硅、非晶硅或者微晶硅中的至少一种。In some embodiments, the substrate may be an elemental semiconductor material. The elemental semiconductor material may be composed of a single element, such as silicon or germanium. Alternatively, elemental semiconductor materials can be monocrystalline, polycrystalline, amorphous, or microcrystalline (a state that has both monocrystalline and amorphous is called a microcrystalline state). For example, silicon can be monocrystalline silicon. , at least one of polycrystalline silicon, amorphous silicon or microcrystalline silicon.

在一些实施例中,基底的材料也可以是化合物半导体材料。常见的化合物半导体材料包括但不限于锗化硅、碳化硅、砷化镓、镓化铟、钙钛矿、碲化镉、铜铟硒等材料。In some embodiments, the material of the substrate may also be a compound semiconductor material. Common compound semiconductor materials include but are not limited to silicon germanium, silicon carbide, gallium arsenide, indium gallium, perovskite, cadmium telluride, copper indium selenide and other materials.

基底也可以为蓝宝石基底、绝缘体上的硅基底或者绝缘体上的锗基底。The substrate may also be a sapphire substrate, a silicon-on-insulator substrate, or a germanium-on-insulator substrate.

在一些实施例中,基底可以为N型半导体基底或者P型半导体基底。N型半导体基底内掺杂有N型掺杂元素,N型掺杂元素可以为磷(P)元素、铋(Bi)元素、锑(Sb)元素或砷(As)元素等Ⅴ族元素中的任意一者。P型半导体基底内掺杂有P型元素,P型掺杂元素可以为硼(B)元素、铝(Al)元素、镓(Ga)元素或铟(In)元素等Ⅲ族元素中的任意一者。In some embodiments, the substrate may be an N-type semiconductor substrate or a P-type semiconductor substrate. The N-type semiconductor substrate is doped with N-type doping elements. The N-type doping elements can be phosphorus (P) elements, bismuth (Bi) elements, antimony (Sb) elements or arsenic (As) elements among Group V elements. Any one. The P-type semiconductor substrate is doped with P-type elements. The P-type doping element can be any group III element such as boron (B) element, aluminum (Al) element, gallium (Ga) element or indium (In) element. By.

在一些实施例中,基底可以具有相对的正面和背面。若钝化接触太阳能电池为单面电池,则基底的正面可以作为受光面,用于接收入射光线,背面作为背光面。若钝化接触太阳能电池为双面电池,则基底的正面和背面均可以作为受光面,均可用于接收入射光线。In some embodiments, the substrate may have opposing front and back sides. If the passivated contact solar cell is a single-sided cell, the front side of the substrate can be used as the light-receiving surface to receive incident light, and the back side can be used as the backlight surface. If the passivated contact solar cell is a bifacial cell, both the front and back sides of the substrate can be used as light-receiving surfaces and can be used to receive incident light.

在一些实施例中,可以在基底的正面或者背面的至少一者表面进行制绒工艺,以在基底正面或者背面中的至少一者表面形成绒面,如此,可以增强基底的正面以及背面对入射光线的吸收利用率。例如绒面可以为金字塔结构的绒面。In some embodiments, a texturing process can be performed on at least one surface of the front or back surface of the substrate to form a textured surface on at least one surface of the front or back surface of the substrate. In this way, the front and back surfaces of the substrate can be enhanced to face incident light. The absorption and utilization of light. For example, the suede surface may be a pyramid-structured suede surface.

若钝化接触太阳能电池为单面电池,则可以在基底的受光面形成绒面,基底的背光面可以为抛光面,即基底的背光面相较于受光面更平坦。需要说明的是,对于单面电池,也可以在基底的受光面以及背光面均形成绒面。If the passivated contact solar cell is a single-sided cell, a textured surface can be formed on the light-receiving surface of the substrate, and the backlight surface of the substrate can be a polished surface, that is, the backlight surface of the substrate is flatter than the light-receiving surface. It should be noted that for a single-sided battery, a textured surface can also be formed on both the light-receiving surface and the backlight surface of the substrate.

若太阳能电池为双面电池,则可以在基底的正面以及背面均形成绒面。If the solar cell is a bifacial cell, textured surfaces can be formed on both the front and back sides of the substrate.

在一些实施例中,隧穿层的材料可以包括氧化硅、氮化硅、氮氧化硅、碳化硅或者氟化镁中的至少一者。In some embodiments, the material of the tunneling layer may include at least one of silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, or magnesium fluoride.

隧穿层位于基底的表面,可以起到化学钝化的效果,由于基底表面存在界面态缺陷,隧穿层可以饱和基底表面的悬挂键,降低基底表面的缺陷态密度,减少基底表面的复合中心来降低载流子复合速率,使得基底表面的界面态密度较大,界面态密度的增大会促进光生载流子的复合,增大太阳能电池的填充因子、短路电流以及开路电压,以提高太阳能电池的光电转换效率。The tunneling layer is located on the surface of the substrate and can have a chemical passivation effect. Since there are interface state defects on the substrate surface, the tunneling layer can saturate the dangling bonds on the substrate surface, reduce the density of defect states on the substrate surface, and reduce the recombination centers on the substrate surface. To reduce the carrier recombination rate, the interface state density on the surface of the substrate is larger. The increase in the interface state density will promote the recombination of photogenerated carriers, increase the filling factor, short-circuit current and open-circuit voltage of the solar cell to improve the solar cell. photoelectric conversion efficiency.

在一些实施例中,形成隧穿层的工艺可以采用化学气相沉积工艺、物理气相沉积工艺或者原子层沉积工艺等。In some embodiments, the tunneling layer may be formed using a chemical vapor deposition process, a physical vapor deposition process, an atomic layer deposition process, or the like.

在一些实施例中,初始硅层可以为非晶硅或者多晶硅中的至少一者。In some embodiments, the initial silicon layer may be at least one of amorphous silicon or polysilicon.

在一些实施例中,形成初始硅层的工艺可以采用化学气相沉积工艺(ChemicalVapor Deposition,CVD)、物理气相沉积工艺(Physical Vapor Deposition,PVD)或者原子层沉积工艺(Atomic Layer Deposition,ALD)等。In some embodiments, the process of forming the initial silicon layer may use chemical vapor deposition (CVD), physical vapor deposition (PVD), or atomic layer deposition (ALD).

在一些实施例中,可以采用低压化学气相沉积工艺(Low Pressure ChemicalVapor Deposition,LPCVD)形成初始硅层。In some embodiments, a low pressure chemical vapor deposition (LPCVD) process may be used to form the initial silicon layer.

在一些实施例中,形成初始硅层时的沉积工艺采用的沉积温度可以为500℃~700℃,例如,沉积温度可以为500℃、530℃、560℃、590℃、610℃、640℃、670℃或者700℃。积温度在500℃~700℃的范围内,有利于初始硅层具有较高的电导率和载流子迁移率。In some embodiments, the deposition temperature used in the deposition process when forming the initial silicon layer can be 500°C~700°C. For example, the deposition temperature can be 500°C, 530°C, 560°C, 590°C, 610°C, 640°C, 670℃ or 700℃. The deposition temperature is in the range of 500°C to 700°C, which is beneficial to the initial silicon layer having higher electrical conductivity and carrier mobility.

步骤12:将形成有隧穿层和初始硅层的基底放入扩散腔室中。Step 12: Place the substrate with the tunneling layer and the initial silicon layer formed into the diffusion chamber.

在一些实施例中,在将形成有隧穿层和初始硅层的基底放入扩散腔室之后,将扩散腔室内的压力降低至负压50mbar~200mbar,例如50mbar、55mbar、70mbar、100mbar、130mbar、160mbar、180mbar或者200mbar。In some embodiments, after placing the substrate with the tunneling layer and the initial silicon layer formed into the diffusion chamber, the pressure in the diffusion chamber is reduced to a negative pressure of 50mbar~200mbar, such as 50mbar, 55mbar, 70mbar, 100mbar, 130mbar , 160mbar, 180mbar or 200mbar.

在一些实施例中,在将扩散腔室内的压力降低至负压50mbar~200mbar之后,可以进行检漏处理,以检测扩散腔室的漏率是否小于等于3mbar/min,例如漏率可以为3mbar/min、2mbar/min、1mbar/min或者0.5mbar/min。即在未对扩散腔室进行升温之前,对扩散腔室进行检漏处理,漏率需要在适当的范围内才可进行后续工艺步骤,以保证扩散腔室中的气体环境在可控的范围内,以有利于后续工艺的进行。In some embodiments, after reducing the pressure in the diffusion chamber to a negative pressure of 50 mbar to 200 mbar, a leak detection process may be performed to detect whether the leak rate of the diffusion chamber is less than or equal to 3 mbar/min. For example, the leak rate may be 3 mbar/min. min, 2mbar/min, 1mbar/min or 0.5mbar/min. That is, before the diffusion chamber is heated, the diffusion chamber is leak-detected. The leak rate needs to be within an appropriate range before subsequent process steps can be carried out to ensure that the gas environment in the diffusion chamber is within a controllable range. , to facilitate the subsequent process.

若扩散腔室的漏率小于等于3mbar/min,则可以进行后续的工艺步骤;若扩散腔室的漏率大于3mbar/min,则需要将形成有隧穿层和初始硅层的基底取出,以对扩散腔室进行检修。If the leakage rate of the diffusion chamber is less than or equal to 3mbar/min, subsequent process steps can be performed; if the leakage rate of the diffusion chamber is greater than 3mbar/min, the substrate with the tunneling layer and the initial silicon layer needs to be removed to Perform maintenance on the diffusion chamber.

步骤13:进行第一升温处理,以将扩散腔室的温度升高至第一预设温度。Step 13: Perform a first temperature raising process to raise the temperature of the diffusion chamber to a first preset temperature.

在一些实施例中,可以在第一升温处理的过程中,将扩散腔室内的压力降低至负压50mbar~200mbar,例如50mbar、55mbar、70mbar、100mbar、130mbar、160mbar、180mbar或者200mbar。In some embodiments, during the first temperature raising process, the pressure in the diffusion chamber can be reduced to a negative pressure of 50mbar~200mbar, such as 50mbar, 55mbar, 70mbar, 100mbar, 130mbar, 160mbar, 180mbar or 200mbar.

在一些实施例中,可以在第一升温处理之后,在进行退火处理之前进行检漏处理,以检测扩散腔室的漏率是否小于等于5mbar/min,例如漏率可以为5mbar/min、4.3mbar/min、3.5mbar/min、2.4mbar/min、1.6mbar/min或者0.8mbar/min。即在对扩散腔室进行第一升温处理之后,再对扩散腔室进行检漏处理,此时扩散腔室内的环境更接近于后续工艺进行时的实际状况,漏率准确度更高,更有利于及时的做出相应的判断和操作。In some embodiments, a leak detection process may be performed after the first temperature raising process and before the annealing process to detect whether the leak rate of the diffusion chamber is less than or equal to 5 mbar/min. For example, the leak rate may be 5 mbar/min or 4.3 mbar. /min, 3.5mbar/min, 2.4mbar/min, 1.6mbar/min or 0.8mbar/min. That is, after the first temperature-raising process is performed on the diffusion chamber, the leakage detection process is performed on the diffusion chamber. At this time, the environment in the diffusion chamber is closer to the actual situation during the subsequent process, and the leakage rate is more accurate and more precise. It is conducive to making corresponding judgments and operations in a timely manner.

若扩散腔室的漏率小于等于5mbar/min,则可以进行后续的工艺步骤;若扩散腔室的漏率大于5mbar/min,则需要将形成有隧穿层和初始硅层的基底取出,以对扩散腔室进行检修,以避免扩散腔室的工作环境不佳导致后续工艺无法进行或者获得的产品良率较低。If the leakage rate of the diffusion chamber is less than or equal to 5mbar/min, subsequent process steps can be performed; if the leakage rate of the diffusion chamber is greater than 5mbar/min, the substrate with the tunneling layer and the initial silicon layer needs to be removed to Maintenance of the diffusion chamber is carried out to prevent the poor working environment of the diffusion chamber from causing inability to proceed with subsequent processes or resulting in low product yield.

在一些实施例中,第一升温处理的升温速率可以为3℃/min~10℃/min,例如第一升温处理的升温速率可以为3℃/min、4℃/min、5℃/min、6℃/min、7℃/min、8℃/min、9℃/min或者10℃/min。第一升温处理的升温速率过快,容易导致转化的多晶硅层中晶粒结构的尺寸分布不均匀;第一升温处理的升温速率过慢,容易造成工艺效率较低,因此,第一升温处理的升温速率需要在适当的范围内调整。In some embodiments, the temperature rise rate of the first temperature rise treatment may be 3°C/min~10°C/min. For example, the temperature rise rate of the first temperature rise treatment may be 3°C/min, 4°C/min, 5°C/min, 6℃/min, 7℃/min, 8℃/min, 9℃/min or 10℃/min. If the heating rate of the first heating treatment is too fast, it is easy to cause uneven size distribution of the grain structure in the converted polysilicon layer; if the heating rate of the first heating treatment is too slow, it is easy to cause low process efficiency. Therefore, the first temperature raising treatment The heating rate needs to be adjusted within an appropriate range.

步骤14:在第一预设温度下,在扩散腔室内进行退火处理,以使初始硅层转化为多晶硅层。在第一预设温度下,初始硅层中的非晶结构和多晶结构进行重组,以转化为致密度较高的多晶结构构成的多晶硅层。Step 14: Perform annealing treatment in the diffusion chamber at a first preset temperature to convert the initial silicon layer into a polysilicon layer. At the first preset temperature, the amorphous structure and polycrystalline structure in the initial silicon layer are reorganized to transform into a polycrystalline silicon layer composed of a denser polycrystalline structure.

若初始硅层为多晶硅材料,则沉积初始硅层所需的温度较高。在多晶硅材料中多晶结构多于非晶结构,多晶结构的尺寸较大,不同晶粒结构的尺寸差异较大,晶粒结构之间的界面较多,容易导致初始硅层的电导率较低。通过在第一预设温度下进行退火处理,可以使多晶硅材料中多晶结构重新组合,以形成晶粒结构尺寸差异较小,晶粒结构尺寸分布均匀的多晶结构,且使非晶结构转化为多晶结构,以形成致密度较高的多晶硅层。If the initial silicon layer is made of polysilicon material, the temperature required to deposit the initial silicon layer is relatively high. In polycrystalline silicon materials, there are more polycrystalline structures than amorphous structures. The size of the polycrystalline structure is larger. The sizes of different grain structures vary greatly. There are many interfaces between grain structures, which can easily lead to a lower conductivity of the initial silicon layer. Low. By performing annealing treatment at the first preset temperature, the polycrystalline structure in the polysilicon material can be recombined to form a polycrystalline structure with small size differences in grain structure and uniform grain structure size distribution, and the amorphous structure can be transformed It has a polycrystalline structure to form a denser polysilicon layer.

若初始硅层为非晶硅材料,则沉积初始硅层所需的温度较低。在非晶硅材料中非晶结构多于多晶结构,多晶结构之间空隙较大,容易造成掺杂原子的聚集,后续掺杂处理时容易形成具有孔洞的掺杂多晶硅。因此,在第一预设温度下,先对初始硅层进行退火处理,使非晶硅材料中的非晶结构转化为多晶结构,以形成致密度较高的多晶硅层。If the initial silicon layer is made of amorphous silicon material, the temperature required to deposit the initial silicon layer is lower. In amorphous silicon materials, there are more amorphous structures than polycrystalline structures. The gaps between polycrystalline structures are large, which can easily cause the aggregation of dopant atoms. Doped polysilicon with holes can easily be formed during subsequent doping treatments. Therefore, at the first preset temperature, the initial silicon layer is first annealed to convert the amorphous structure in the amorphous silicon material into a polycrystalline structure to form a polycrystalline silicon layer with higher density.

在一些实施例中,退火处理,包括:在第一预设时间内维持扩散腔室的温度为第一预设温度,其中,第一预设时间的范围为10min~60min,例如,第一预设时间可以为10min、15min、20min、25min、30min、35min、40min、45min、50min、55min或者60min。第一预设时间过短初始硅层不能充分的转化成多晶硅层;第一预设时间过长,容易导致多层硅层中的晶粒尺寸较大,相应的晶粒之间的界面较多,进而导致多晶硅层的电导率较低。In some embodiments, the annealing process includes: maintaining the temperature of the diffusion chamber at a first preset temperature within a first preset time, where the first preset time ranges from 10 min to 60 min, for example, the first preset time The set time can be 10min, 15min, 20min, 25min, 30min, 35min, 40min, 45min, 50min, 55min or 60min. If the first preset time is too short, the initial silicon layer cannot be fully converted into a polysilicon layer; if the first preset time is too long, it will easily lead to larger grain sizes in the multi-layer silicon layer and more interfaces between the corresponding grains. , resulting in lower conductivity of the polysilicon layer.

在一些实施例中,第一预设温度的范围为800℃~1000℃,例如第一预设温度可以为800℃、830℃、850℃、880℃、900℃、920℃、960℃、990℃或者1000℃。温度过低会导致初始硅层中的非晶结构转化为多晶结构的速率较慢甚至无法转化,温度过高容易导致初始硅层中的硅结构被破坏,影响初始硅层的电子性能,因此,第一预设温度需要在适当的范围内。In some embodiments, the first preset temperature ranges from 800°C to 1000°C. For example, the first preset temperature may be 800°C, 830°C, 850°C, 880°C, 900°C, 920°C, 960°C, 990°C. ℃ or 1000℃. If the temperature is too low, the amorphous structure in the initial silicon layer will be converted into a polycrystalline structure at a slow rate or even cannot be converted. If the temperature is too high, the silicon structure in the initial silicon layer will be destroyed, affecting the electronic properties of the initial silicon layer. Therefore, , the first preset temperature needs to be within the appropriate range.

在一些实施例中,第一预设温度和第一预设时间可以相对的适应性调整,例如,若第一预设温度较高的情况下,可以适当减少第一预设时间;第一预设时间较长的情况下,可以适当降低第一预设温度。In some embodiments, the first preset temperature and the first preset time can be relatively adaptively adjusted. For example, if the first preset temperature is higher, the first preset time can be appropriately reduced; If the setting time is long, the first preset temperature can be appropriately lowered.

步骤15:对多晶硅层进行掺杂处理,在掺杂处理中向扩散腔室中通入源气体,以使多晶硅层转化为掺杂多晶硅层。Step 15: Perform doping treatment on the polysilicon layer, and pass the source gas into the diffusion chamber during the doping treatment, so that the polysilicon layer is converted into a doped polysilicon layer.

掺杂多晶硅层可以具有场钝化效果,在自掺杂多晶硅层指向基底方向的可以形成一个内建电场,使少数载流子逃离,从而降低少数载流子的浓度,使得基底界面处的载流子复合速率降低,进而使太阳能电池的开路电压、短路电流以及填充因子增大,提升太阳能电池的光电转换效率。The doped polysilicon layer can have a field passivation effect. A built-in electric field can be formed when the self-doped polysilicon layer points toward the substrate, allowing minority carriers to escape, thereby reducing the concentration of minority carriers and making the carriers at the substrate interface The flow recombination rate decreases, thereby increasing the open circuit voltage, short circuit current and filling factor of the solar cell, thereby improving the photoelectric conversion efficiency of the solar cell.

在一些实施例中,若基底内具有N型掺杂元素,则掺杂多晶硅层内的掺杂元素为N型掺杂元素;若基底内具有P型掺杂元素,则掺杂多晶硅层内的掺杂元素为P型掺杂元素。也就是说,掺杂多晶硅层内的掺杂元素类型与基底内的掺杂元素类型相同。In some embodiments, if there are N-type doping elements in the substrate, the doping elements in the doped polysilicon layer are N-type doping elements; if there are P-type doping elements in the substrate, then the doping elements in the doped polysilicon layer are The doping element is a P-type doping element. That is, the type of doping elements in the doped polysilicon layer is the same as the type of doping elements in the substrate.

在一些实施例中,若掺杂多晶硅内的掺杂元素为P型掺杂元素,则源气体可以包括硼酸三甲酯、硼酸三丙酯、三溴化硼或无水硼酸三甲酯等,源气体分解出氧化硼与多晶硅层表面的硅反应以产生硼硅玻璃,然后硼原子向多晶硅层内扩散,如此形成掺杂P型元素的掺杂多晶硅层;若掺杂多晶硅内的掺杂元素为N型掺杂元素,则源气体可以包括三氯氧磷,源气体分解出五氧化二磷与多晶硅层表面的硅反应以产生磷硅玻璃,然后磷原子向多晶硅层内扩散,如此形成掺杂N型元素的掺杂多晶硅层。In some embodiments, if the doping element in the doped polysilicon is a P-type doping element, the source gas may include trimethyl borate, tripropyl borate, boron tribromide or anhydrous trimethyl borate, etc. The source gas decomposes boron oxide and reacts with silicon on the surface of the polysilicon layer to produce borosilicate glass, and then boron atoms diffuse into the polysilicon layer, thus forming a doped polysilicon layer doped with P-type elements; if the doping elements in the polysilicon are doped If it is an N-type doping element, the source gas may include phosphorus oxychloride. The source gas decomposes phosphorus pentoxide and reacts with the silicon on the surface of the polysilicon layer to produce phosphorus silicate glass. Then the phosphorus atoms diffuse into the polysilicon layer, thus forming doped glass. A polysilicon layer doped with N-type elements.

在一些实施例中,可以在第一预设温度下,对多晶硅层进行掺杂处理。例如,在第一预设温度下向扩散腔室中通入源气体,以使掺杂原子与多晶硅层表面的硅反应同时向掺杂原子向多晶硅层内部扩散,如此使多晶硅层转化为掺杂多晶硅层。In some embodiments, the polysilicon layer may be doped at a first preset temperature. For example, the source gas is introduced into the diffusion chamber at a first preset temperature to cause the doping atoms to react with the silicon on the surface of the polysilicon layer and at the same time diffuse the doping atoms into the interior of the polysilicon layer, thus converting the polysilicon layer into doped polysilicon layer.

在一些实施例中,掺杂处理可以包括:进行降温处理,以将扩散腔室的温度降低从第一预设温度至第二预设温度;进行沉积处理,以在第二预设温度下向扩散腔室中通入源气体,并在第二预设时间内扩散腔室的温度保持为第二预设温度;进行推结处理,以将扩散腔室的温度从第二预设温度升高至第三预设温度,并在第三预设时间内扩散腔室的温度保持为第三预设温度。In some embodiments, the doping process may include: performing a cooling process to reduce the temperature of the diffusion chamber from a first preset temperature to a second preset temperature; and performing a deposition process to lower the temperature of the diffusion chamber to a second preset temperature. The source gas is introduced into the diffusion chamber, and the temperature of the diffusion chamber is maintained at the second preset temperature within the second preset time; a push-off process is performed to increase the temperature of the diffusion chamber from the second preset temperature. to the third preset temperature, and the temperature of the diffusion chamber is maintained at the third preset temperature within the third preset time.

也就是说,先降温沉积,以使部分厚度的多晶硅层先与源气体反应,以形成掺杂浓度较高的初始掺杂多晶硅层,然后再进行升温推结处理,以使初始掺杂多晶硅层中的掺杂原子向多晶硅层内部扩散,最终使多晶硅层全部转化为掺杂多晶硅层。如此,较低的温度下源气体与多晶硅层的反应程度可控,有利于控制掺杂原子的浓度和推进深度,避免扩散程度不受控导致掺杂原子穿过隧穿层使场钝化效果降低的问题。That is to say, the temperature is first lowered and deposited so that a part of the thickness of the polysilicon layer reacts with the source gas first to form an initial doped polysilicon layer with a higher doping concentration, and then the temperature is increased to cause the initial doped polysilicon layer to The doped atoms in the polycrystalline silicon layer diffuse into the interior of the polysilicon layer, eventually converting the entire polysilicon layer into a doped polysilicon layer. In this way, the degree of reaction between the source gas and the polysilicon layer is controllable at a lower temperature, which is conducive to controlling the concentration and advancement depth of dopant atoms, and avoids uncontrolled diffusion of dopant atoms through the tunnel layer, causing field passivation effects. reduce the problem.

在一些实施例中,降温处理可以是自然降温,即不对扩散腔室进行加热,以使扩散腔室的温度自然冷却至第二预设温度。在一些实施例中,降温处理也可以采用制冷设备进行降温。In some embodiments, the cooling process may be natural cooling, that is, the diffusion chamber is not heated, so that the temperature of the diffusion chamber is naturally cooled to the second preset temperature. In some embodiments, the cooling process may also use refrigeration equipment for cooling.

在一些实施例中,第二预设温度的范围可以为750℃~950℃,例如第二预设温度可以为750℃、780℃、800℃、830℃、860℃、890℃、910℃或者950℃。在一些实施例中,第二预设时间可以为10min~60min,例如第二预设时间可以为10min、15min、20min、25min、30min、35min、40min、45min、50min、55min或者60min。In some embodiments, the second preset temperature may range from 750°C to 950°C. For example, the second preset temperature may be 750°C, 780°C, 800°C, 830°C, 860°C, 890°C, 910°C, or 950℃. In some embodiments, the second preset time may be 10min~60min. For example, the second preset time may be 10min, 15min, 20min, 25min, 30min, 35min, 40min, 45min, 50min, 55min or 60min.

在一些实施例中,第三预设温度可以高于第一预设温度。在退火处理之后,初始硅层转化为多晶硅层,多晶硅层的致密度和结晶度相较于初始硅层较高,为了使掺杂原子更容易向致密度较高的多晶硅层内部扩散,可以设置更高的推结温度。In some embodiments, the third preset temperature may be higher than the first preset temperature. After the annealing treatment, the initial silicon layer is converted into a polysilicon layer. The density and crystallinity of the polysilicon layer are higher than those of the initial silicon layer. In order to make it easier for doping atoms to diffuse into the higher-density polysilicon layer, you can set Higher push junction temperature.

在一些实施例中,第三预设温度的范围可以为800℃~1000℃,例如第三预设温度可以为800℃、830℃、850℃、880℃、900℃、920℃、960℃、990℃或者1000℃。In some embodiments, the third preset temperature may range from 800°C to 1000°C. For example, the third preset temperature may be 800°C, 830°C, 850°C, 880°C, 900°C, 920°C, 960°C, 990℃ or 1000℃.

在一些实施例中,第三预设时间可以为10min~60min,例如第三预设时间可以为10min、15min、20min、25min、30min、35min、40min、45min、50min、55min或者60min。In some embodiments, the third preset time may be 10min~60min. For example, the third preset time may be 10min, 15min, 20min, 25min, 30min, 35min, 40min, 45min, 50min, 55min or 60min.

在一些实施例中,第三预设温度也可以不高于第一预设温度。通过调整第三预设温度和第三预设时间,以使掺杂原子能够扩散至多晶硅层与隧穿层接触的表面即可。In some embodiments, the third preset temperature may not be higher than the first preset temperature. By adjusting the third preset temperature and the third preset time, the doping atoms can be diffused to the surface in contact with the polysilicon layer and the tunnel layer.

在一些实施例中,在进行推结处理之后,还可以包括:进行后推结处理,以将扩散腔室的温度从第三预设温度升高至第四预设温度,并在第四预设时间内扩散腔室的温度保持为第四预设温度。In some embodiments, after performing the push-knot process, it may also include: performing a post-knot process to increase the temperature of the diffusion chamber from the third preset temperature to the fourth preset temperature, and perform the push-knot process at the fourth preset temperature. It is assumed that the temperature of the diffusion chamber is maintained at the fourth preset temperature during the time period.

也就是说,通过多次推结处理以使掺杂原子能够扩散至多晶硅层与隧穿层接触的表面,且使最终形成的掺杂多晶硅层中的掺杂原子浓度在所需的范围内。如此,通过多次推结可以使掺杂原子的深度逐渐向多晶硅层中推进,且每次推进的深度均在可控的范围内,从而避免推进深度过深导致掺杂原子穿透隧穿层的问题。That is to say, through multiple push-junction processes, the doping atoms can be diffused to the surface in contact with the polysilicon layer and the tunnel layer, and the doping atom concentration in the finally formed doped polysilicon layer is within a required range. In this way, the depth of the doped atoms can be gradually pushed into the polysilicon layer by pushing the junction multiple times, and the depth of each push is within a controllable range, thereby preventing the doped atoms from penetrating the tunneling layer due to too deep a push. The problem.

在一些实施例中,第四预设温度的范围可以为800℃~1000℃,例如第四预设温度可以为800℃、830℃、850℃、880℃、900℃、920℃、960℃、990℃或者1000℃。In some embodiments, the fourth preset temperature may range from 800°C to 1000°C. For example, the fourth preset temperature may be 800°C, 830°C, 850°C, 880°C, 900°C, 920°C, 960°C, 990℃ or 1000℃.

在一些实施例中,第四预设时间可以为10min~60min,例如第四预设时间可以为10min、15min、20min、25min、30min、35min、40min、45min、50min、55min或者60min。In some embodiments, the fourth preset time may be 10min~60min. For example, the fourth preset time may be 10min, 15min, 20min, 25min, 30min, 35min, 40min, 45min, 50min, 55min or 60min.

本申请实施例提供的钝化接触太阳能电池的制备方法,在基底上形成隧穿层和初始硅层之后,先将形成有隧穿层和初始硅层的基底放入扩散腔室中进行第一升温处理,且在第一预设温度下进行退火处理,以使初始硅层转化为多晶硅层。如此,可以利用现有的扩散工艺所需的扩散腔室,对初始硅层进行退火处理,无需添加新的设备,不会增加工艺成本。在退火处理之后,直接进行掺杂处理,不用更换腔室,避免了降温更换腔室再升温的过程中,多晶硅层的结晶性发生改变的问题,同时提高了工艺制程效率。先进行退火步骤,以使初始晶硅层由多晶结构和非晶结构构成的混合晶相结构转化为均一的多晶结构,转化后的多晶硅层相较于初始硅层具有更高的结晶度,则在进一步通入源气体进行掺杂处理时,掺杂原子不容易在多晶硅层中聚集,从而避免了形成的掺杂多晶硅内具有较多的孔洞,提高了钝化接触太阳能电池的稳定性和效率。In the method for preparing a passivated contact solar cell provided by the embodiment of the present application, after forming a tunneling layer and an initial silicon layer on a substrate, the substrate with the tunneling layer and the initial silicon layer is first placed into a diffusion chamber for the first step. The temperature is raised, and the annealing process is performed at a first preset temperature to convert the initial silicon layer into a polysilicon layer. In this way, the existing diffusion chamber required for the diffusion process can be used to anneal the initial silicon layer without adding new equipment or increasing process costs. After the annealing process, the doping process is carried out directly without changing the chamber, which avoids the problem of the crystallinity of the polysilicon layer changing during the process of cooling down, replacing the chamber and then raising the temperature, and at the same time improves the process efficiency. An annealing step is first performed to convert the mixed crystal phase structure of the initial crystalline silicon layer consisting of polycrystalline structure and amorphous structure into a uniform polycrystalline structure. The converted polycrystalline silicon layer has a higher crystallinity than the initial silicon layer. , then when the source gas is further introduced for doping treatment, the doped atoms will not easily gather in the polysilicon layer, thus avoiding the formation of more holes in the doped polysilicon and improving the stability of the passivated contact solar cell. and efficiency.

本申请另一实施例提供一种钝化接触太阳能电池,可采用上述实施例中提供的钝化接触太阳能电池的制备方法形成,以提高钝化接触太阳能电池的性能。需要说明的是,与上述实施例相同或者相应的部分,可参考前述实施例的相应说明,以下将不做详细赘述。Another embodiment of the present application provides a passivated contact solar cell, which can be formed using the preparation method of the passivated contact solar cell provided in the above embodiment, so as to improve the performance of the passivated contact solar cell. It should be noted that for parts that are the same as or corresponding to the above-mentioned embodiments, reference may be made to the corresponding descriptions of the foregoing embodiments and will not be described in detail below.

钝化接触太阳能电池包括:基底;隧穿层,隧穿层位于基底表面;掺杂多晶硅层,掺杂多晶硅层位于隧穿层远离基底的表面。The passivated contact solar cell includes: a substrate; a tunneling layer located on the surface of the substrate; and a doped polysilicon layer located on the surface of the tunneling layer away from the substrate.

隧穿层位于基底的表面,可以起到化学钝化的效果,由于基底表面存在界面态缺陷,隧穿层可以饱和基底表面的悬挂键,降低基底表面的缺陷态密度,减少基底表面的复合中心来降低载流子复合速率,使得基底表面的界面态密度较大,界面态密度的增大会促进光生载流子的复合,增大太阳能电池的填充因子、短路电流以及开路电压,以提高太阳能电池的光电转换效率;掺杂多晶硅层可以具有场钝化效果,在自掺杂多晶硅层指向基底方向的可以形成一个内建电场,使少数载流子逃离,从而降低少数载流子的浓度,使得基底界面处的载流子复合速率降低,进而使太阳能电池的开路电压、短路电流以及填充因子增大,提升太阳能电池的光电转换效率。The tunneling layer is located on the surface of the substrate and can have a chemical passivation effect. Since there are interface state defects on the substrate surface, the tunneling layer can saturate the dangling bonds on the substrate surface, reduce the density of defect states on the substrate surface, and reduce the recombination centers on the substrate surface. To reduce the carrier recombination rate, the interface state density on the surface of the substrate is larger. The increase in the interface state density will promote the recombination of photogenerated carriers, increase the filling factor, short-circuit current and open-circuit voltage of the solar cell to improve the solar cell. The photoelectric conversion efficiency; the doped polysilicon layer can have a field passivation effect. A built-in electric field can be formed in the direction of the self-doped polysilicon layer toward the substrate, allowing minority carriers to escape, thus reducing the concentration of minority carriers. The carrier recombination rate at the substrate interface decreases, thereby increasing the open circuit voltage, short circuit current and filling factor of the solar cell, thereby improving the photoelectric conversion efficiency of the solar cell.

在一些实施例中,钝化接触太阳能电池可以为隧穿氧化层钝化接触太阳能电池、高温异质结太阳能电池或者背接触太阳能电池。In some embodiments, the passivated contact solar cell may be a tunnel oxide passivated contact solar cell, a high temperature heterojunction solar cell, or a back contact solar cell.

在一些实施例中,在沿垂直于基底表面的方向上,隧穿层的厚度可以为1nm~3nm,例如1nm、1.2nm、1.5nm、1.8nm、2.0nm、2.3nm、2.6nm、2.8nm或者3nm。In some embodiments, the thickness of the tunneling layer may be 1 nm~3 nm in a direction perpendicular to the substrate surface, such as 1 nm, 1.2 nm, 1.5 nm, 1.8 nm, 2.0 nm, 2.3 nm, 2.6 nm, 2.8 nm Or 3nm.

在一些实施例中,在沿垂直于基底表面的方向上,掺杂多晶硅层的厚度可以为5nm~200nm,例如5nm、10nm、30nm、60nm、100nm、130nm、150nm、180nm、200nm。In some embodiments, the thickness of the doped polysilicon layer may be 5 nm to 200 nm in a direction perpendicular to the substrate surface, such as 5 nm, 10 nm, 30 nm, 60 nm, 100 nm, 130 nm, 150 nm, 180 nm, 200 nm.

图4为本申请一实施例提供的两种钝化接触太阳能电池中掺杂多晶硅的激光显微镜图。其中,图4中的(C)所示的掺杂多晶硅为初始硅层先经过掺杂处理之后再进行退火工艺转化形成,图4中的(D)所示的掺杂多晶硅为初始硅层先经过退火处理再进行掺杂处理转化形成(即上述实施例中提供的钝化接触太阳能电池的制备方法)。Figure 4 is a laser microscope image of doped polysilicon in two passivated contact solar cells according to an embodiment of the present application. Among them, the doped polysilicon shown in (C) in Figure 4 is formed by the initial silicon layer first being doped and then annealed. The doped polysilicon shown in (D) in Figure 4 is the initial silicon layer first. After annealing treatment, doping treatment and transformation are performed (ie, the preparation method of the passivated contact solar cell provided in the above embodiment).

图4中采用的初始硅层均为非晶硅,且采用相同的工艺制备形成。根据图4中的(C)和图4中的(D)对比可发现,采用上述实施例中提供的钝化接触太阳能电池的制备方法形成的掺杂多晶硅层表面几乎不存在孔洞。此外,根据电池性能测试得到,图4中的(D)对应的钝化接触太阳能电池中掺杂多晶硅的少子寿命比图4中的(C)对应的钝化接触太阳能电池中掺杂多晶硅的少子寿命高1000us;图4中的(D)对应的钝化接触太阳能电池的电池转换效率比图4中的(C)对应的钝化接触太阳能电池的电池转换效率提高0.2%;图4中的(D)对应的钝化接触太阳能电池的开路电压比图4中的(C)对应的钝化接触太阳能电池的开路电压提高3mV;图4中的(D)对应的钝化接触太阳能电池的填充因子比图4中的(C)对应的钝化接触太阳能电池的填充因子提高0.1%。The initial silicon layers used in Figure 4 are all amorphous silicon and are prepared and formed using the same process. According to the comparison between (C) in FIG. 4 and (D) in FIG. 4 , it can be found that there are almost no holes on the surface of the doped polysilicon layer formed by the preparation method of the passivated contact solar cell provided in the above embodiment. In addition, according to the battery performance test, the minority carrier lifetime of the passivated contact solar cell doped with polysilicon corresponding to (D) in Figure 4 is longer than the minority carrier lifetime of the doped polysilicon in the passivated contact solar cell corresponding to (C) of Figure 4 The service life is 1000us longer; the cell conversion efficiency of the passivated contact solar cell corresponding to (D) in Figure 4 is 0.2% higher than that of the passivated contact solar cell corresponding to (C) in Figure 4; ((D) in Figure 4 D) The open circuit voltage of the corresponding passivated contact solar cell is 3 mV higher than the open circuit voltage of the passivated contact solar cell corresponding to (C) in Figure 4; the fill factor of the passivated contact solar cell corresponding to (D) in Figure 4 The fill factor of the passivated contact solar cell corresponding to (C) in Figure 4 is increased by 0.1%.

可见,采用上述实施例中提供的钝化接触太阳能电池的制备方法形成的掺杂多晶硅层不仅可以避免产生孔洞的问题,还可以提高钝化接触太阳能电池性能。It can be seen that the doped polysilicon layer formed by the preparation method of the passivated contact solar cell provided in the above embodiment can not only avoid the problem of holes, but also improve the performance of the passivated contact solar cell.

在一些实施例中,采用上述实施例中提供的钝化接触太阳能电池的制备方法形成的掺杂多晶硅层掺杂多晶硅层中,掺杂原子的浓度大于等于3E+20atom/cm3,例如3E+20atom/cm3、3.5E+20atom/cm3、4E+20atom/cm3、4.5E+20atom/cm3、5E+20atom/cm3或者5.5E+20atom/cm3等。其中,掺杂原子的浓度可以指掺杂多晶硅层多个不同位置平均浓度;或者,可以指掺杂多晶硅层中任一位置的单位体积浓度。采用上述实施例中提供的钝化接触太阳能电池的制备方法形成的掺杂多晶硅层掺杂多晶硅层中,各个位置的掺杂原子浓度较为均一。In some embodiments, in the doped polysilicon layer formed using the method for preparing a passivated contact solar cell provided in the above embodiments, the concentration of doping atoms in the doped polysilicon layer is greater than or equal to 3E+20atom/cm 3 , for example, 3E+ 20atom/cm 3 , 3.5E+20atom/cm 3 , 4E+20atom/cm 3 , 4.5E+20atom/cm 3 , 5E+20atom/cm 3 or 5.5E+20atom/cm 3 etc. The concentration of doping atoms may refer to the average concentration of multiple different locations in the doped polysilicon layer; or may refer to the unit volume concentration at any location in the doping polysilicon layer. In the doped polysilicon layer formed using the method for preparing a passivated contact solar cell provided in the above embodiment, the doping atom concentration at each position in the doped polysilicon layer is relatively uniform.

本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。Those of ordinary skill in the art can understand that the above-mentioned embodiments are specific examples for implementing the present application, and in actual applications, various changes can be made in form and details without departing from the spirit and spirit of the present application. scope.

Claims (12)

1.一种钝化接触太阳能电池的制备方法,其特征在于,包括:1. A method for preparing a passivated contact solar cell, which is characterized by comprising: 在基底表面形成依次层叠的隧穿层和初始硅层,所述初始硅层的材料包括多晶结构和非晶结构;Form a sequentially stacked tunnel layer and an initial silicon layer on the surface of the substrate, where the material of the initial silicon layer includes a polycrystalline structure and an amorphous structure; 将形成有所述隧穿层和所述初始硅层的所述基底放入扩散腔室中;Put the substrate on which the tunneling layer and the initial silicon layer are formed into a diffusion chamber; 进行第一升温处理,以将所述扩散腔室的温度升高至第一预设温度;Perform a first temperature raising process to raise the temperature of the diffusion chamber to a first preset temperature; 在所述第一预设温度下,在所述扩散腔室内进行退火处理,以使所述初始硅层转化为多晶硅层;At the first preset temperature, an annealing process is performed in the diffusion chamber to convert the initial silicon layer into a polysilicon layer; 对所述多晶硅层进行掺杂处理,在所述掺杂处理中向所述扩散腔室中通入源气体,以使所述多晶硅层转化为掺杂多晶硅层。The polysilicon layer is subjected to a doping process, and a source gas is introduced into the diffusion chamber during the doping process, so that the polysilicon layer is converted into a doped polysilicon layer. 2.根据权利要求1所述的钝化接触太阳能电池的制备方法,其特征在于,所述退火处理包括:在第一预设时间内维持所述扩散腔室的温度为所述第一预设温度,其中,所述第一预设时间的范围为10min~60min。2. The method for preparing a passivated contact solar cell according to claim 1, wherein the annealing treatment includes: maintaining the temperature of the diffusion chamber at the first preset time within a first preset time. temperature, wherein the first preset time ranges from 10min to 60min. 3.根据权利要求1所述的钝化接触太阳能电池的制备方法,其特征在于,所述第一预设温度的范围为800℃~1000℃。3. The method for preparing a passivated contact solar cell according to claim 1, wherein the first preset temperature ranges from 800°C to 1000°C. 4.根据权利要求1所述的钝化接触太阳能电池的制备方法,其特征在于,所述第一升温处理的升温速率为3℃/min~10℃/min。4. The method for preparing a passivated contact solar cell according to claim 1, wherein the heating rate of the first heating treatment is 3°C/min~10°C/min. 5.根据权利要求1所述的钝化接触太阳能电池的制备方法,其特征在于,采用低压化学气相沉积工艺,形成所述初始硅层。5. The method for preparing a passivated contact solar cell according to claim 1, characterized in that a low-pressure chemical vapor deposition process is used to form the initial silicon layer. 6.根据权利要求1所述的钝化接触太阳能电池的制备方法,其特征在于,所述掺杂处理包括:6. The method for preparing a passivated contact solar cell according to claim 1, wherein the doping treatment includes: 进行降温处理,以将所述扩散腔室的温度降低从所述第一预设温度至第二预设温度;Perform a cooling process to reduce the temperature of the diffusion chamber from the first preset temperature to a second preset temperature; 进行沉积处理,以在所述第二预设温度下向所述扩散腔室中通入所述源气体,并在第二预设时间内所述扩散腔室的温度保持为所述第二预设温度;Perform a deposition process to pass the source gas into the diffusion chamber at the second preset temperature, and maintain the temperature of the diffusion chamber at the second preset time within a second preset time. Set temperature; 进行推结处理,以将所述扩散腔室的温度从所述第二预设温度升高至第三预设温度,并在第三预设时间内所述扩散腔室的温度保持为所述第三预设温度。A pushing process is performed to increase the temperature of the diffusion chamber from the second preset temperature to a third preset temperature, and maintain the temperature of the diffusion chamber at the third preset time. Third preset temperature. 7.根据权利要求6所述的钝化接触太阳能电池的制备方法,其特征在于,所述第三预设温度高于所述第一预设温度。7. The method for preparing a passivated contact solar cell according to claim 6, wherein the third preset temperature is higher than the first preset temperature. 8.根据权利要求6所述的钝化接触太阳能电池的制备方法,其特征在于,在进行所述推结处理之后,还包括:8. The method for preparing a passivated contact solar cell according to claim 6, characterized in that, after performing the push-down process, it further includes: 进行后推结处理,以将所述扩散腔室的温度从所述第三预设温度升高至第四预设温度,并在第四预设时间内所述扩散腔室的温度保持为所述第四预设温度。A back-pushing process is performed to increase the temperature of the diffusion chamber from the third preset temperature to a fourth preset temperature, and maintain the temperature of the diffusion chamber at the predetermined temperature within a fourth preset time. The fourth preset temperature. 9.根据权利要求6所述的钝化接触太阳能电池的制备方法,其特征在于,所述第二预设温度的范围为750℃~950℃;所述第二预设时间为10min~60min。9. The method for preparing a passivated contact solar cell according to claim 6, wherein the second preset temperature ranges from 750°C to 950°C; and the second preset time ranges from 10 min to 60 min. 10.根据权利要求1所述的钝化接触太阳能电池的制备方法,其特征在于,在所述第一升温处理之后,进行所述退火处理之前,还包括:进行检漏处理,以检测所述扩散腔室的漏率是否小于等于5mbar/min。10. The method for preparing a passivated contact solar cell according to claim 1, wherein after the first temperature raising process and before the annealing process, the method further includes: performing a leak detection process to detect the Whether the leakage rate of the diffusion chamber is less than or equal to 5mbar/min. 11.一种钝化接触太阳能电池,其特征在于,采用如权利要求1~10中任一项所述的钝化接触太阳能电池的制备方法形成,包括:11. A passivated contact solar cell, characterized in that it is formed by the preparation method of a passivated contact solar cell according to any one of claims 1 to 10, including: 基底;base; 隧穿层,所述隧穿层位于所述基底表面;A tunneling layer, the tunneling layer is located on the surface of the substrate; 掺杂多晶硅层,所述掺杂多晶硅层位于所述隧穿层远离所述基底的表面。A doped polysilicon layer is located on a surface of the tunneling layer away from the substrate. 12.根据权利要求11所述的钝化接触太阳能电池,其特征在于,在所述掺杂多晶硅层中,掺杂原子浓度大于等于3E+20 atom/cm312. The passivated contact solar cell according to claim 11, wherein in the doped polysilicon layer, the doping atom concentration is greater than or equal to 3E+20 atoms/ cm3 .
CN202311542639.8A 2023-11-17 2023-11-17 Passivation contact solar cell and preparation method thereof Active CN117276410B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311542639.8A CN117276410B (en) 2023-11-17 2023-11-17 Passivation contact solar cell and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311542639.8A CN117276410B (en) 2023-11-17 2023-11-17 Passivation contact solar cell and preparation method thereof

Publications (2)

Publication Number Publication Date
CN117276410A true CN117276410A (en) 2023-12-22
CN117276410B CN117276410B (en) 2024-03-29

Family

ID=89208486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311542639.8A Active CN117276410B (en) 2023-11-17 2023-11-17 Passivation contact solar cell and preparation method thereof

Country Status (1)

Country Link
CN (1) CN117276410B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117594669A (en) * 2024-01-19 2024-02-23 浙江晶科能源有限公司 Solar cells and preparation methods thereof, stacked cells and photovoltaic modules
CN118588816A (en) * 2024-07-31 2024-09-03 天合光能股份有限公司 Solar cell preparation method, passivation contact structure preparation method and solar cell

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057439A (en) * 1990-02-12 1991-10-15 Electric Power Research Institute Method of fabricating polysilicon emitters for solar cells
US5411907A (en) * 1992-09-01 1995-05-02 Taiwan Semiconductor Manufacturing Company Capping free metal silicide integrated process
US6093646A (en) * 1997-11-25 2000-07-25 United Semiconductor Corp. Manufacturing method for a thin film with an anti-reflection rough surface
US20040005756A1 (en) * 2002-07-02 2004-01-08 Chin-Te Huang Method of forming an isolated-grain rugged polysilicon surface via a temperature ramping step
CN1549313A (en) * 2003-05-21 2004-11-24 友达光电股份有限公司 Method for converting amorphous silicon into polycrystalline silicon
US20060024442A1 (en) * 2003-05-19 2006-02-02 Ovshinsky Stanford R Deposition methods for the formation of polycrystalline materials on mobile substrates
CN101093798A (en) * 2006-06-22 2007-12-26 中华映管股份有限公司 Polysilicon layer and manufacturing method thereof
US20100102403A1 (en) * 2008-08-14 2010-04-29 Board Of Regents, The University Of Texas System Method and apparatus for fabricating piezoresistive polysilicon by low-temperature metal induced crystallization
US20140302666A1 (en) * 2013-04-04 2014-10-09 Tokyo Electron Limited Pulsed gas plasma doping method and apparatus
CN107742616A (en) * 2017-09-29 2018-02-27 睿力集成电路有限公司 A kind of semiconductor structure and preparation method thereof
WO2018147739A1 (en) * 2017-02-10 2018-08-16 Tempress Ip B.V. Method of manufacturing a passivated solar cell and resulting passivated solar cell
CN110199376A (en) * 2016-12-06 2019-09-03 澳大利亚国立大学 Solar battery manufacture
CN114038928A (en) * 2021-11-25 2022-02-11 浙江晶科能源有限公司 Solar cell, preparation method thereof and photovoltaic module
CN114883421A (en) * 2022-04-14 2022-08-09 青海黄河上游水电开发有限责任公司西宁太阳能电力分公司 Double-sided passivation contact solar cell and manufacturing method thereof
CN115000246A (en) * 2022-06-23 2022-09-02 韩华新能源(启东)有限公司 P-type passivated contact battery preparation method and passivated contact battery
CN115995508A (en) * 2022-12-27 2023-04-21 江苏润阳悦达光伏科技有限公司 Annealing process for reducing polysilicon doped rupture disk
WO2023071329A1 (en) * 2021-10-26 2023-05-04 通威太阳能(眉山)有限公司 Topcon battery and preparation method therefor, and electrical appliance
US20230197876A1 (en) * 2016-12-06 2023-06-22 The Australian National University Solar cell fabrication

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057439A (en) * 1990-02-12 1991-10-15 Electric Power Research Institute Method of fabricating polysilicon emitters for solar cells
US5411907A (en) * 1992-09-01 1995-05-02 Taiwan Semiconductor Manufacturing Company Capping free metal silicide integrated process
US6093646A (en) * 1997-11-25 2000-07-25 United Semiconductor Corp. Manufacturing method for a thin film with an anti-reflection rough surface
US20040005756A1 (en) * 2002-07-02 2004-01-08 Chin-Te Huang Method of forming an isolated-grain rugged polysilicon surface via a temperature ramping step
US20060024442A1 (en) * 2003-05-19 2006-02-02 Ovshinsky Stanford R Deposition methods for the formation of polycrystalline materials on mobile substrates
CN1549313A (en) * 2003-05-21 2004-11-24 友达光电股份有限公司 Method for converting amorphous silicon into polycrystalline silicon
CN101093798A (en) * 2006-06-22 2007-12-26 中华映管股份有限公司 Polysilicon layer and manufacturing method thereof
US20100102403A1 (en) * 2008-08-14 2010-04-29 Board Of Regents, The University Of Texas System Method and apparatus for fabricating piezoresistive polysilicon by low-temperature metal induced crystallization
US20140302666A1 (en) * 2013-04-04 2014-10-09 Tokyo Electron Limited Pulsed gas plasma doping method and apparatus
CN110199376A (en) * 2016-12-06 2019-09-03 澳大利亚国立大学 Solar battery manufacture
US20230197876A1 (en) * 2016-12-06 2023-06-22 The Australian National University Solar cell fabrication
WO2018147739A1 (en) * 2017-02-10 2018-08-16 Tempress Ip B.V. Method of manufacturing a passivated solar cell and resulting passivated solar cell
CN107742616A (en) * 2017-09-29 2018-02-27 睿力集成电路有限公司 A kind of semiconductor structure and preparation method thereof
WO2023071329A1 (en) * 2021-10-26 2023-05-04 通威太阳能(眉山)有限公司 Topcon battery and preparation method therefor, and electrical appliance
CN114038928A (en) * 2021-11-25 2022-02-11 浙江晶科能源有限公司 Solar cell, preparation method thereof and photovoltaic module
CN114883421A (en) * 2022-04-14 2022-08-09 青海黄河上游水电开发有限责任公司西宁太阳能电力分公司 Double-sided passivation contact solar cell and manufacturing method thereof
CN115000246A (en) * 2022-06-23 2022-09-02 韩华新能源(启东)有限公司 P-type passivated contact battery preparation method and passivated contact battery
CN115995508A (en) * 2022-12-27 2023-04-21 江苏润阳悦达光伏科技有限公司 Annealing process for reducing polysilicon doped rupture disk

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李琛;: "优化n型接触极钝化多晶硅太阳能电池的硼扩散工艺", 西安科技大学学报, no. 02, 30 March 2020 (2020-03-30) *
陈德媛;冒昌银;: "退火温度对硅/氧化硅多层膜微结构的影响", 南京邮电大学学报(自然科学版), no. 04, 15 August 2012 (2012-08-15) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117594669A (en) * 2024-01-19 2024-02-23 浙江晶科能源有限公司 Solar cells and preparation methods thereof, stacked cells and photovoltaic modules
CN117594669B (en) * 2024-01-19 2024-05-17 浙江晶科能源有限公司 Solar cell and preparation method thereof, laminated cell and photovoltaic module
CN118588816A (en) * 2024-07-31 2024-09-03 天合光能股份有限公司 Solar cell preparation method, passivation contact structure preparation method and solar cell

Also Published As

Publication number Publication date
CN117276410B (en) 2024-03-29

Similar Documents

Publication Publication Date Title
CN111628047B (en) Manufacturing method of N-type TOPCon solar cell
CN108963005B (en) Novel composite-structure full-back-face heterojunction solar cell and preparation method
CN117276410B (en) Passivation contact solar cell and preparation method thereof
CN110197855A (en) For Topcon battery production poly-Si around plating minimizing technology
CN111341649B (en) Boron diffusion method for N-type solar cell
CN218414591U (en) Solar cell
CN114975643B (en) N-TOPCon photovoltaic solar cell preparation method and solar cell
KR20090011519A (en) Crystalline Silicon Solar Cell, Manufacturing Method and Manufacturing System Thereof
CN111416011B (en) P-type PERC crystalline silicon solar cell and preparation method thereof
CN218548445U (en) Film layer structure for crystalline silicon solar cell, photovoltaic module and photovoltaic system
CN114883421A (en) Double-sided passivation contact solar cell and manufacturing method thereof
CN111416014A (en) A kind of passivation contact back junction silicon heterojunction solar cell and preparation method thereof
JP2023155914A (en) Photovoltaic cell, production method thereof, and photovoltaic module
CN115332392A (en) Preparation method of P-type passivated contact solar cell
JP2024119744A (en) Solar cell and its manufacturing method, solar power generation module
CN116666493A (en) Manufacturing method of solar battery sheet and solar battery sheet
CN117153946A (en) Silicon wafer impurity removal method, silicon wafer and its preparation method and application
CN113410334A (en) Preparation method of multilayer thin film passivation contact structure and fully-passivated contact crystalline silicon solar cell
CN116053333A (en) Preparation method of solar cell emitter
CN114267753A (en) TOPCon solar cell, preparation method thereof and photovoltaic module
CN114497278B (en) PECVD-based TOPCon battery boron-expanded SE manufacturing method
CN116994945A (en) Impurity diffusion method, solar cell and manufacturing method thereof
CN113066874A (en) Heterojunction solar cell and preparation method thereof
CN102737964B (en) Crystal wafer and diffusion method thereof
TWI408822B (en) Thin silicon solar cell and its manufacturing method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant