CN117105320A - 一种阴离子有机污染物吸附还原一体化材料及其制备方法和应用 - Google Patents

一种阴离子有机污染物吸附还原一体化材料及其制备方法和应用 Download PDF

Info

Publication number
CN117105320A
CN117105320A CN202311221646.8A CN202311221646A CN117105320A CN 117105320 A CN117105320 A CN 117105320A CN 202311221646 A CN202311221646 A CN 202311221646A CN 117105320 A CN117105320 A CN 117105320A
Authority
CN
China
Prior art keywords
ldh
suspension
pind
adsorption
pfoa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311221646.8A
Other languages
English (en)
Inventor
冯静毅
田浩廷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University of Science and Technology
Original Assignee
Suzhou University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University of Science and Technology filed Critical Suzhou University of Science and Technology
Priority to CN202311221646.8A priority Critical patent/CN117105320A/zh
Publication of CN117105320A publication Critical patent/CN117105320A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及环境治理技术领域,尤其涉及一种阴离子有机污染物的吸附‑还原一体化材料的制备方法。制备方法包括如下步骤:将氯化镁和氯化铝溶液调节为碱性后加热,合成层状双金属氢氧化物LDH;采用过硫酸钠处理LDH,获得层间阴离子为过硫酸根的层状双金属氢氧化物S2O8 2‑‑LDH的悬浊液;将吲哚加入到S2O8 2‑‑LDH悬浊液中,使吲哚分子在LDH的层间聚合,以获取层间含有聚吲哚的层状双金属氢氧化物复合材料Pind‑LDH。还公开了该材料高效吸附和还原阴离子有机污染物的方法,对于应对阴离子有机污染物的环境污染治理具有重要意义。

Description

一种阴离子有机污染物吸附还原一体化材料及其制备方法和 应用
技术领域
本发明涉及环境治理技术领域,尤其涉及一种阴离子有机污染物吸附还原一体化材料及其制备方法和应用。
背景技术
阴离子有机污染物是一类常见的污染物,如新污染物全氟烷基羧酸(PFCAs)、全氟烷基磺酸(PFSAs)等。这部分阴离子有机污染物被列入致癌物清单且具有持久性污染物的特性,对生态系统和人类健康产生了严重威胁。尽管传统的吸附剂,如阴离子交换树脂、活性炭等能快速降低水中阴离子有机污染物的浓度,但污染物并没有被降解,存在后续处理难度大的问题。
高级还原法是利用目已知氧化还原电位最低的自由基——水合电子(eaq -, -2.9V)还原污染物的新兴技术,能高效还原包括PFCAs和PFSAs在内的大部分有机污染物,这是传统的水处理技术难以做到的。然而eaq -极易受水体中O2和H+的干扰,使得大多水合电子的反应体系需要在隔绝氧气和强碱性的苛刻环境下进行,导致设备和运行成本上升。目前存在利用蒙脱石层间作为水合电子降解有机污染物场所的技术,通过其限域效应能规避O2和H+的影响,使反应条件变得温和。但受制于蒙脱石结构中的永久负电荷,该方法对降解阴离子有机污染物的效果较差,或需引入表面活性剂从而存在产生二次污染的风险。因此,寻找一种环境友好,且具有吸附-还原阴离子有机污染物一体化功能的材料是解决上述问题的有效途径。
发明内容
本发明的目的在于针对现有技术的不足之处,本发明提供一种阴离子有机污染物吸附-还原一体化材料的制备方法,用以快速降低水中阴离子有机污染物的浓度并进行进一步还原处理。本发明以带正电的层状双金属氢氧化物(LDH)作为框架,在其层间复合能够持续产生水合电子且不带电荷的聚吲哚。该材料能结合LDH通过静电作用吸附阴离子有机污染物、水合电子高效还原污染物和LDH限域效应的优势,从而达到阴离子有机污染物的吸附-还原一体化的处理效果。
本发明提供一种阴离子有机污染物吸附-还原一体化的材料制备方法,包括如下步骤:
步骤(1):将含有一定比例氯化镁和氯化铝的溶液加入到碱性的水中得到悬浊液,加热悬浊液以制备层状双金属氢氧化物(LDH);
步骤(2):将过硫酸钠固体加入所得LDH悬浊液中,使过硫酸根S2O8 2-交换到LDH层间,得到S2O8 2--LDH;
步骤(3):将吲哚固体加入S2O8 2--LDH悬浊液中,得到层间含有聚吲哚的层状双金属氢氧化物复合材料Pind-LDH;
上述方案中,本发明的原理为:在碱性且加热的条件下,溶液中的Mg2+和Al3+能够共沉淀形成LDH。LDH是结构类似水镁石且具有层状结构的粘土材料,但部分Mg2+被Al3+替换,因此LDH带有正电荷。这部分正电荷被其周围的负电荷平衡,并赋予其通过静电作用大量吸附阴离子有机污染物的能力。聚吲哚可以通过氧化吲哚使其聚合得到,能够在紫外线的照射下大量产生水合电子。聚吲哚不带电荷,几乎不会对LDH的正电荷产生影响。故将LDH与聚吲哚结合是构建高效吸附-还原阴离子有机污染物一体化材料的可行方法,目前尚未见此类材料的报道。本发明采用过硫酸钠把LDH层间的大部分可交换阴离子替换为S2O8 2-,利用S2O8 2-的氧化性聚合吲哚,并将生成的聚吲哚固定在LDH的层间,成功合成了LDH和聚吲哚的复合材料Pind-LDH。将本发明制备方法合成的Pind-LDH用于处理水中以PFOA为代表的阴离子有机污染物,可以实现吸附-还原一体化的处理效果,为开发阴离子有机污染物控制技术提供了新的方法和思路,对于应对阴离子有机污染物的环境问题具有重要意义。
进一步地,步骤(1)中,LDH的制备方法如下:
采用去离子水配制含有1.34 mol/L MgCl2和0.67 mol/L AlCl3的溶液,将其逐滴加入到等体积pH为10的去离子水中;
整个加入过程持续搅拌且维持溶液pH为10,所有pH的调节过程均采用NaOH;
加入完毕后将所得悬浊液加热至85℃,持续18 h,得到沉淀物,即为LDH。
上述方案中,通过对LDH制备方法的设定,保证LDH能够稳定地结晶,使合成的LDH具有较多正电荷,有利于吸附阴离子有机污染物。
进一步地,所述步骤(2)中,S2O8 2--LDH的制备方法如下:
搅拌所得LDH沉淀使其均匀分散到水中,得到悬浊液;
迅速向悬浊液中加入过硫酸钠固体,持续搅拌20 min,即可获得S2O8 2--LDH悬浊液;
上述方案中,通过均匀分散LDH沉淀和控制搅拌时间能够使迅速S2O8 2-交换到LDH的层间,避免因S2O8 2-不稳定而自然分解。
进一步地,所述步骤(2)中,加入过硫酸钠固体的量需使其在悬浊液中的含量达到0.099-0.149 mol/L,优选为0.125 mol/L。
上述方案中,通过将加入的过硫酸钠与LDH悬浊液的用量比限定在合理的范围内,可以使足够的S2O8 2-被交换到LDH层间,保障后续LDH层间生成聚吲哚的效果,同时避免大量S2O8 2-残留在溶液中,干扰后续步骤中在LDH的层间生成聚吲哚。
进一步地,所述步骤(3)中,Pind-LDH的制备方法如下:
加热S2O8 2--LDH悬浊液至30℃,随后加入吲哚固体,保持温度为30℃并持续剧烈搅拌18 h;
搅拌后离心,得到沉淀物,弃去上清液,采用去离子水清洗沉淀,真空冷冻干燥后即可获得Pind-LDH;
上述方案中,通过对加入吲哚时体系的温度、震荡速度和震荡时间的控制,有利于提升吲哚在溶液中的溶解度和S2O8 2--LDH的分散程度,提升LDH层间吲哚聚合反应的速率。
进一步地,所述步骤(3)中,吲哚固体的添加量需使其在悬浊液中的含量达到0.28mol/L-0.35 mol/L,优选为0.33 mol/L。
上述方案中,通过对加入吲哚质量的合理限定,一方面能使较多吲哚进入LDH的层间并在S2O8 2-的作用下大量聚合,另一方面能够避免过量吲哚覆盖在LDH的表面,阻止LDH与阴离子有机污染物的接触,从而降低其吸附能力。
根据本发明的第二方面,本发明还提供Pind-LDH的应用,所述应用包括以下步骤:
步骤(4):配制PFOA溶液,代表阴离子有机污染物;
步骤(5):将所述一种阴离子有机污染物吸附-还原一体化材料分散于配制的所述PFOA水溶液中,均匀搅拌30 min,吸附水溶液中的PFOA,并得到悬浊液;
步骤(6):将所得悬浊液转移到光化学反应器内,加入低压汞灯并浸没在所述悬浊液中,打开低压汞灯进行降解反应。
上述方案中,本发明将Pind-LDH应用到PFOA的吸附-降解一体化过程当中。通过静电作用,Pind-LDH大量吸附水中的PFOA至层间,表明Pind-LDH能快速降低水溶液中阴离子型污染物的浓度。打开紫外灯后,由于聚吲哚和PFOA均位于LDH层间,聚吲哚产生的大量水合电子能直接作用于PFOA,使其快速还原。LDH的限域效应也能够排斥水溶液中的O2和H+,从而保护在层间生成的水合电子不受影响,提高水合电子的利用率,大大提升了该材料的适用范围。此外,LDH作为天然环境中存在的粘土矿物,对环境的负面影响极小,且能在酸性条件下快速溶解,易于处理,是一种环境友好的材料,这些都为该材料的广泛应用奠定了基础。
进一步地,所述反应体系不需要隔绝空气和额外调节溶液pH;
吸附阶段温度控制在25±1℃,吸附时间为30 min;
降解阶段温度控制在25±1℃,光源为一盏波长为254 nm的36 W低压汞灯,降解时间为3 h;
体系中Pind-LDH复合体与PFOA的含量分别为1 g/L和10 mg/L。
上述方案中,通过对还原反应体系中的温度、时间、光源、Pind-LDH的浓度和PFOA浓度进行合理有效地设计,有利于还原反应效率的提升,避免面光源能量的浪费。
本发明的优点在于:
本发明一种阴离子有机污染物吸附-降解一体化材料的制备方法针对目前单一吸附方法和现存利用水和电子还原污染物技术的缺陷,以LDH作为框架,复合不带电荷且在紫外光照射下能大量产生水合电子的聚吲哚,获得了一种集吸附与还原功能于一体的阴离子有机污染物处理材料。该材料能通过静电作用迅速吸附水体中的阴离子有机污染物,降低其环境风险。后续在紫外灯的照射下于该材料的层间大量生成水合电子,直接作用于被吸附的阴离子有机污染物。在此过程中,LDH的限域效应还能阻止水中的溶解氧和H+进入LDH层间,保护水合电子不受干扰,实现阴离子有机污染物的高效还原。此外,LDH是天然存在的物质,对环境的影响极小,可以避免产生二次污染。本制备方法为处理水体中阴离子有机污染物提供了新的技术方法,具有重要意义。
附图说明
图1为本发明中合成的LDH结构示意图
图2为吲哚在S2O8 2--LDH层间聚合生成聚吲哚的示意图
图3为本发明中合成的LDH、Pind和Pind-LDH的红外光谱图
图4为本发明中合成的LDH和Pind-LDH的X射线衍射图
图5为本发明中Pind-LDH吸附PFOA的等温吸附线
图6为本发明中Pind-LDH吸附PFOA的吸附动力学
图7为本发明中Pind-LDH对PFOA的降解和脱氟动力学
图8为本发明中Pind-LDH在厌氧和好氧条件下Pind-LDH对PFOA的降解情况对比图
图9为本发明中Pind-LDH在不同pH条件下对PFOA降解情况对比图
图10为Pind-LDH吸附-还原PFOA一体化机制示意图。
实施方式
为使本发明的目的、方案和有点更加直观,将结合附图对本发明的方案进行更加清楚和完整地描述。显然,所描述的实施案例仅是本发明的一步分,而非全部。基于本发明中的实施案例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施案例,都属于本发明的保护范围。
实施案例1
本实施案例提供一种阴离子有机污染物吸附-还原一体化材料的制备方法,其包括如下步骤:
步骤(1):采用去离子水配制含有1.34 mol/L MgCl2和0.67 mol/L AlCl3的溶液,将其逐滴加入到等体积且pH为10的去离子水中;整个过程持续搅拌并维持溶液pH为10,所有pH的调节均采用NaOH;加入完毕后将所得悬浊液加热至85℃,持续18 h,得到沉淀物,即为LDH。
步骤(2):搅拌所得LDH沉淀使其均匀分散到水中,得到悬浊液;迅速向悬浊液中加入过硫酸钠固体,使其浓度达到0.125 mol/L,持续搅拌20 min,获得S2O8 2--LDH悬浊液;
步骤(3):加热S2O8 2--LDH悬浊液至30℃,随后加入吲哚使其浓度为0.33 mol/L,保持温度为30℃并持续剧烈搅拌18 h;搅拌后离心,得到沉淀物,弃去上清液,采用去离子水清洗沉淀,真空冷冻干燥后获得Pind-LDH;
对实施案例1得到的LDH、Pind-LDH和Pind进行了红外光谱表征。由于Pind-LDH是Pind位于LDH层间的复合体,故应该能够在Pind-LDH的红外图谱中观察到LDH和Pind的特征。从图3中可以观察到Pind-LDH在3450 cm-1处具有和LDH相似的吸收峰,而在1618 cm-1和1209 cm-1处能够观察到聚吲哚的红外光谱特征吸收峰,表明了成功合成了Pind和LDH的复合体。
对实施案例1得到的LDH和Pind-LDH进行了X-射线衍射表征,所得图谱如图4所示。从图中可以看出相对于LDH的X-射线衍射图,代表0.388 nm和0.197 nm的峰在Pind-LDH的X-射线衍射图中均向着更小的角度移动,说明在LDH的层间成功合成了Pind。值得注意的是Pind-LDH在21°附近可以观察到代表0.222 nm和0.211 nm的两个峰,表明Pind在LDH的层间可以形成多层的结构。
实施案例2
本实施案例提供一种实施案例1得到的Pind-LDH在吸附和还原阴离子有机污染物中的应用,应用包括以下步骤:
本发明以PFOA作为阴离子有机污染物的代表,研究了Pind-LDH吸附阴离子型污染物的吸附量和吸附速率。配制10 mL浓度为0.1、1、2、5、10 mg/L的PFOA溶液,随后加入0.01g合成的Pind-LDH,震荡18 h后离心,采用液相色谱质谱联用仪(HPLC-MS/MS)测定其上清液中PFOA浓度,结果如图5所示。在Pind-LDH和溶液的固液比为1 g/1 L的条件下,初始PFOA浓度为0.1 mg/L时便能去除45%的PFOA。随着初始浓度的上升,Pind-LDH的吸附能力进一步上升,当初始浓度为1 mg/L时约能去除70% 的PFOA,当PFOA初始浓度为10 mg/L时则能去除约92%的PFOA。考虑到静电作用是Pind-LDH吸附PFOA的主要机制,说明Pind-LDH具有极强吸附以PFOA为代表的阴离子有机污染物的能力。配制300 mL浓度为10 mg/L的PFOA水溶液,随后加入0.3 g合成的Pind-LDH,并持续搅拌4 h。在0、5、10、15、25、45、60、120、240 min时取样1mL样品,离心后采用HPLC-MS/MS测定上清液中PFOA浓度以获得Pind-LDH吸附PFOA的吸附动力学曲线,结果如图6所示。仅经过5 min,Pind-LDH便使溶液中PFOA的浓度下降85%,1 h后溶液中剩余的PFOA稳定在初始浓度的8%左右,表明了Pind-LDH具有快速吸附大量以PFOA为代表的阴离子有机污染物的能力,在应急处理方面具有极大的应用潜力。
本发明还研究了Pind-LDH还原阴离子有机污染物的能力。配制300 mL浓度为10mg/L的PFOA水溶液,随后加入0.3 g合成的Pind-LDH,平衡0.5 h后安装并打开一盏功率为36 W的低压汞灯(光线波长集中在254 nm),采用循环水控制反应温度为25±1℃,在反应时间为0、0.5、1、2、3 h时取样5 mL。将取得的样品分为两份,其中1 mL采用等体积乙腈萃取后利用HPLC-MS/MS测定还原反应后剩余PFOA的浓度,剩余4 mL采用氟离子选择电极测定溶液中F-的浓度,以此计算脱氟率。为说明Pind-LDH还原性能的优越,也进行了采用相同方法,但将Pind-LDH替换为Pind的实验。实验结果如图7所示。结果表明,Pind单独存在时仅能较为缓慢地还原PFOA,反应3 h后降解率为19%。但在LDH存在时,还原PFOA的还原效率大幅提升,在3 h后可以达到98%。这表明,在LDH不存在时,Pind和PFOA分散在溶液中,在紫外光照射下生成的水合电子与PFOA直接产生作用的概率较低,从而限制了反应的速率。而Pind-LDH对PFOA的高效吸附能力能够极大程度地提升局部PFOA和Pind的浓度,使水合电子能有效作用于PFOA,大幅提升还原的效率。
本发明还对比了溶解氧浓度和溶液pH对Pind-LDH还原PFOA效率的影响。从图8中可以看出在开放条件和在厌氧条件下,PFOA的降解速率几乎一致,表明溶解氧对反应体系的影响极小。图9表明pH降低时,PFOA的还原效率有略微下降,但总体差异很小,即使是在初始pH为4的强酸性条件下,PFOA在3 h时的降解率也可达到92%。以上结果表明LDH能够有效阻止溶液中的O2和H+进入其层间干扰水合电子。
由此,Pind-LDH吸附-还原阴离子有机污染物一体化的机制可总结为图10。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施案例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种阴离子有机污染物吸附-还原一体化材料的制备方法,其特征在于,所述方法包括以下步骤:
步骤(1):将含有氯化镁和氯化铝的溶液加入到碱性水中得到悬浊液,加热悬浊液;
步骤(2):将过硫酸钠固体加入所得LDH悬浊液中,使过硫酸根S2O8 2-进入LDH层间,获得S2O8 2--LDH;
步骤(3):将吲哚固体加入S2O8 2--LDH悬浊液中,得到层间含有聚吲哚的层状双金属氢氧化物复合材料Pind-LDH。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中,LDH的制备方法如下:
配制含有1.34 mol/L MgCl2与0.67 mol/L AlCl3的溶液,将其逐滴加入到等体积pH为10的去离子水中;
整个加入过程持续搅拌且维持溶液pH为10,所有pH的调节过程均采用NaOH;
加入完毕后将所得悬浊液加热至85℃,持续18 h,沉淀物即为LDH。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,S2O8 2--LDH的制备方法如下:
搅拌LDH沉淀使其均匀分散到水中,得到悬浊液;
迅速向悬浊液中加入Na2S2O8固体,持续搅拌20 min,即可获得S2O8 2--LDH悬浊液。
4. 根据权利要求1所述制备方法,其特征在于,所述步骤(2)中,加入过硫酸钠固体的量需使其在悬浊液中的含量达到0.099-0.149 mol/L,优选为0.125 mol/L。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤(3)中,Pind-LDH的制备方法如下:
加热S2O8 2--LDH悬浊液至30℃,随后加入吲哚固体,保持温度为30℃并持续剧烈搅拌18h;
搅拌后离心,得到沉淀物,弃去上清液,采用去离子水清洗沉淀,真空冷冻干燥后即可获得Pind-LDH。
6. 根据权利要求1所述的制备方法,其特征在于,步骤(3)所述的吲哚固体的添加量需使其在悬浊液中的含量达到0.28 mol/L-0.35 mol/L,优选为0.33 mol/L;
和/或
清洗方法具体为:加入适当体积的水使得Pind-LDH与水的固液比为1:10,剧烈搅拌沉淀物使其充分分散在水中,震荡半小时后离心,弃去上清液,获得沉淀物。
7.一种阴离子有机污染物吸附-还原一体化材料,其特征在于,采用权利要求1-6任一项所述的制备方法制备得到。
8.权利要求7中所述的阴离子有机污染物吸附和降解一体化材料的应用,其特征在于,所述材料在吸附和降解阴离子有机污染物中的应用。
9.根据权利要求8所述应用,其特征在于,所属应用包括如下步骤:
配制全氟辛酸水溶液,代表阴离子有机污染物;
将所述一种阴离子有机污染物吸附-还原一体化材料分散于配制的所述PFOA水溶液中,均匀搅拌30 min,吸附水溶液中的PFOA,并得到悬浊液;
将所得悬浊液转移到光化学反应器内,加入低压汞灯并浸没在所述悬浊液中,打开低压汞灯进行降解反应。
10.根据权利要求9所述的应用,其特征在于,该反应体系不需要隔绝空气和额外调节溶液pH;
吸附阶段温度控制在24-26℃,吸附时间为30 min;
降解阶段温度控制在24-26℃,光源为波长为254 nm的36 W低压汞灯,降解时间为3 h;
体系中Pind-LDH复合体与PFOA的含量分别为1 g/L和10 mg/L。
CN202311221646.8A 2023-09-21 2023-09-21 一种阴离子有机污染物吸附还原一体化材料及其制备方法和应用 Pending CN117105320A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311221646.8A CN117105320A (zh) 2023-09-21 2023-09-21 一种阴离子有机污染物吸附还原一体化材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311221646.8A CN117105320A (zh) 2023-09-21 2023-09-21 一种阴离子有机污染物吸附还原一体化材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN117105320A true CN117105320A (zh) 2023-11-24

Family

ID=88800121

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311221646.8A Pending CN117105320A (zh) 2023-09-21 2023-09-21 一种阴离子有机污染物吸附还原一体化材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN117105320A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030021745A1 (en) * 2001-04-13 2003-01-30 Engelhard Corporation SOx tolerant NOx trap catalysts and methods of making and using the same
WO2009046918A1 (de) * 2007-10-01 2009-04-16 Süd-Chemie AG Verwendung von schichtdoppelhydroxiden zur an- bzw. abreicherung von biomolekülen aus flüssigen oder fluiden medien
ITPI20110143A1 (it) * 2011-12-20 2013-06-21 Univ Pisa Agenti terapeutici in grado di ridurre la produzione cellulare di acido lattico e composizioni farmaceutiche che comprendono tali composti
JP2017178652A (ja) * 2016-03-29 2017-10-05 堺化学工業株式会社 ハイドロタルサイト型粒子及びその製造方法
CN109467559A (zh) * 2018-12-25 2019-03-15 苏州大学 稠合双吲哚衍生物及其制备方法
CN110880424A (zh) * 2019-11-28 2020-03-13 朱旭烈 一种聚吲哚包覆镍钴化合物超级电容器材料及其制法
CN113952935A (zh) * 2021-11-19 2022-01-21 中国农业科学院蔬菜花卉研究所 一种磁性MOFs复合材料及其制备方法和应用
US20220401777A1 (en) * 2019-11-08 2022-12-22 Board Of Trustees Of Michigan State University Nano-reactor system for decomposition of per- and polyfluoroalkyl substances
CN116573711A (zh) * 2023-05-15 2023-08-11 苏州科技大学 一种聚吲哚-蒙脱石复合体及其制备方法和应用
CN116675285A (zh) * 2023-05-15 2023-09-01 苏州科技大学 一种全氟化合物的降解方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030021745A1 (en) * 2001-04-13 2003-01-30 Engelhard Corporation SOx tolerant NOx trap catalysts and methods of making and using the same
WO2009046918A1 (de) * 2007-10-01 2009-04-16 Süd-Chemie AG Verwendung von schichtdoppelhydroxiden zur an- bzw. abreicherung von biomolekülen aus flüssigen oder fluiden medien
ITPI20110143A1 (it) * 2011-12-20 2013-06-21 Univ Pisa Agenti terapeutici in grado di ridurre la produzione cellulare di acido lattico e composizioni farmaceutiche che comprendono tali composti
JP2017178652A (ja) * 2016-03-29 2017-10-05 堺化学工業株式会社 ハイドロタルサイト型粒子及びその製造方法
CN109467559A (zh) * 2018-12-25 2019-03-15 苏州大学 稠合双吲哚衍生物及其制备方法
US20220401777A1 (en) * 2019-11-08 2022-12-22 Board Of Trustees Of Michigan State University Nano-reactor system for decomposition of per- and polyfluoroalkyl substances
CN110880424A (zh) * 2019-11-28 2020-03-13 朱旭烈 一种聚吲哚包覆镍钴化合物超级电容器材料及其制法
CN113952935A (zh) * 2021-11-19 2022-01-21 中国农业科学院蔬菜花卉研究所 一种磁性MOFs复合材料及其制备方法和应用
CN116573711A (zh) * 2023-05-15 2023-08-11 苏州科技大学 一种聚吲哚-蒙脱石复合体及其制备方法和应用
CN116675285A (zh) * 2023-05-15 2023-09-01 苏州科技大学 一种全氟化合物的降解方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. BANKAUSKAITE, K. BALTAKYS: "The Formation of Different Mg–Al LDHs (Mg/Al = 2:1) Under Hydrothermal Conditions and Their Application for Zn2+ ions Removal", SCIENCE OF SINTERING, vol. 46, 30 April 2014 (2014-04-30), pages 95 - 106 *
倪哲明;胥倩;潘国祥;毛江洪;: "层状双金属氢氧化物微观结构与性质的理论研究进展", 物理化学学报, no. 04, 15 April 2009 (2009-04-15) *
张来新;陈琦;: "蓬勃发展的酞菁化学", 化学工程师, no. 09, 25 September 2017 (2017-09-25) *

Similar Documents

Publication Publication Date Title
Ajoudanian et al. Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin
Tang et al. Enhanced photocatalytic performance of BiVO4 for degradation of methylene blue under LED visible light irradiation assisted by peroxymonosulfate
Munuera et al. Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO 2 surfaces. Part 1.—Role of hydroxyl groups in photo-adsorption
Yang et al. Photocatalytic reduction of chromium (VI) in aqueous solution using dye-sensitized nanoscale ZnO under visible light irradiation
Hong et al. Photocatalytic degradation of methylene blue in TiO2 aqueous suspensions using microwave powered electrodeless discharge lamps
Yan et al. A 2D mesoporous photocatalyst constructed by the modification of biochar on BiOCl ultrathin nanosheets for enhancing the TC-HCl degradation activity
Zhang et al. Uptake and degradation of Orange II by zinc aluminum layered double oxides
WO2020186795A1 (zh) 一种混合改性有机蒙脱土及其合成方法与应用
Virkutyte et al. Visible light activity of Ag-loaded and guanidine nitrate-doped nano-TiO2: degradation of dichlorophenol and antibacterial properties
CN113649052B (zh) 一种石墨相氮化碳基光催化复合材料及其制备和应用
Rahman et al. Detailed photocatalytic study of alkaline titanates and its application for the degradation of methylene blue (MB) under solar irradiation
CN115055197B (zh) 一种MOF衍生Co掺杂空心氮化碳催化剂及其制备方法和应用
Li et al. Photocatalytic degradation of organic dyes by La 3+/Ce 3+-H 3 PW 12 O 40 under different light irradiation
Jiang et al. Recent advances and perspectives of emerging two-dimensional transition metal carbide/nitride-based materials for organic pollutant photocatalysis
CN114849748A (zh) 一种CoS/Ti3C2 MXene复合材料的制备及其应用
JPWO2008093628A1 (ja) 乾膠体を利用したホウ素除去剤及びホウ素除去方法
CN117105320A (zh) 一种阴离子有机污染物吸附还原一体化材料及其制备方法和应用
CN115090312A (zh) 一种MOF衍生Co和Zn掺杂多孔氮化碳催化剂的制备方法和应用
CN113880088A (zh) 一种造纸污泥基生物炭的制备方法
CN108439505A (zh) 一种基于石墨强化的水合物法海水淡化方法
Ahmad et al. Enhancing the performance of modified ZnAl LDH as hybrid catalyst-adsorbent on tetracycline removal under solar light irradiation
CN110090657B (zh) 一种海泡石复合催化剂及其制备方法、新型类芬顿体系及其应用
KR101727148B1 (ko) 에탄올아민을 함유한 원전 폐수 처리방법, 이를 위한 흡착제 및 다공성 재료
Gao et al. Efficient degradation of carbamazepine by sulfate doped LDO/CN in the photo-assisted peroxymonosulfate system
CN111097481A (zh) 一种含钛、氮掺杂石墨烯量子点分子筛的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination