CN117079961B - 一种各向异性Nd2Fe14B/α-Fe块体纳米晶复合永磁材料的制备方法 - Google Patents
一种各向异性Nd2Fe14B/α-Fe块体纳米晶复合永磁材料的制备方法 Download PDFInfo
- Publication number
- CN117079961B CN117079961B CN202310828366.7A CN202310828366A CN117079961B CN 117079961 B CN117079961 B CN 117079961B CN 202310828366 A CN202310828366 A CN 202310828366A CN 117079961 B CN117079961 B CN 117079961B
- Authority
- CN
- China
- Prior art keywords
- stainless steel
- block
- permanent magnet
- steel die
- amorphous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000000463 material Substances 0.000 title claims abstract description 30
- 239000002131 composite material Substances 0.000 title claims abstract description 18
- 229910000859 α-Fe Inorganic materials 0.000 title claims abstract description 18
- 239000010935 stainless steel Substances 0.000 claims abstract description 27
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 27
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 23
- 239000000956 alloy Substances 0.000 claims abstract description 23
- 238000005096 rolling process Methods 0.000 claims abstract description 17
- 239000000843 powder Substances 0.000 claims abstract description 15
- 238000002360 preparation method Methods 0.000 claims abstract description 13
- 238000003825 pressing Methods 0.000 claims abstract description 12
- 238000010791 quenching Methods 0.000 claims abstract description 10
- 238000000227 grinding Methods 0.000 claims abstract description 9
- 230000000171 quenching effect Effects 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 239000000155 melt Substances 0.000 claims abstract description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 7
- 239000000654 additive Substances 0.000 claims description 6
- 230000000996 additive effect Effects 0.000 claims description 6
- 238000007789 sealing Methods 0.000 claims description 6
- 239000007769 metal material Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 239000012298 atmosphere Substances 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 238000002425 crystallisation Methods 0.000 abstract description 6
- 230000008025 crystallization Effects 0.000 abstract description 6
- 229910001172 neodymium magnet Inorganic materials 0.000 abstract description 5
- 239000004484 Briquette Substances 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 21
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000005415 magnetization Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000000498 ball milling Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 238000007578 melt-quenching technique Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0273—Imparting anisotropy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0576—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0266—Moulding; Pressing
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Hard Magnetic Materials (AREA)
Abstract
本发明公开了一种各向异性Nd2Fe14B/α‑Fe块体纳米晶复合永磁材料的制备方法,包括以下步骤:制备母合金;将母合金破碎成块,通过熔体快淬方法制备非晶条带;将非晶条带通过研磨得到非晶粉体;将粉体冷压成块;将块体置于不锈钢模具中加热后进行辊轧;其中,不锈钢模具为板状结构,不锈钢模具上沿其厚度方向开设有用于容置块体的腔室。本发明将NdFeB非晶粉体压块,包埋于不锈钢模具内部,在低于晶化温度以下进行轧制,实现高温非晶晶化。在该过程中,通过轧制引入的大的应力和应变诱导Nd2Fe14B相在晶化过程中择优取向生长,因而可以获得具有各向异性的Nd2Fe14B/α‑Fe块体纳米晶复合永磁材料。
Description
技术领域
本发明涉及永磁材料技术领域,尤其涉及一种各向异性Nd2Fe14B/α-Fe块体纳米晶复合永磁材料的制备方法。
背景技术
块体永磁材料在电动汽车、风能发电、航空航天、军事等领域具有非常重要的应用。衡量永磁材料性能最重要的指标是最大磁能积,目前磁性最好的永磁体是“永磁王”钕铁硼,但现有的钕铁硼永磁材料的磁能积已经接近理论最大值,却无法满足高新技术对超强永磁体的需求。要突破理论最大值需要提高材料的饱和磁化强度,在纳米尺度上在钕铁硼磁体中加入晶粒细小的具有更高饱和磁化强度的Fe形成Nd2Fe14B/α-Fe纳米晶复合磁体是提高理论磁能积的最好办法,这类材料具有更高的理论磁能积,从而具有更大的发展空间。遗憾的是人们一般制备的块体Nd2Fe14B/α-Fe纳米晶复合永磁材料都是各向同性的,磁能积都比较低,因为各向同性磁体的理论磁能积只有各向异性的四分之一,而要制备具有超高性能的Nd2Fe14B/α-Fe纳米晶复合磁体,需要磁体中的Nd2Fe14B相要在纳米尺度上沿着c轴进行择优取向排列,从而形成各向异性块体,而实际制备中,形成纳米晶各向异性块体材料十分困难。
发明内容
针对上述技术问题,本发明提供一种各向异性Nd2Fe14B/α-Fe块体纳米晶复合永磁材料的制备方法的制备方法。
为实现上述目的,本发明采取的技术方案为:
一方面,本发明提供一种各向异性Nd2Fe14B/α-Fe块体纳米晶复合永磁材料的制备方法,包括以下步骤:
步骤1:制备母合金;
步骤2:将步骤1中的母合金破碎成块,然后再通过熔体快淬方法制备非晶条带;
步骤3:将步骤2得到的非晶条带通过研磨得到非晶粉体;
步骤4:将步骤3得到的粉体冷压成块;
步骤5:将步骤4中冷压成块得到的块体置于不锈钢模具中加热后进行辊轧;
其中,所述不锈钢模具为板状结构,所述不锈钢模具上沿其厚度方向开设有用于容置所述块体的腔室。
作为优选地实施方式,步骤5中,所述加热为加热至500~530℃。
作为优选地实施方式,步骤5中,所述腔室的内径与所述块体的外径相适应;
优选地,将块体置于不锈钢模具上开设的腔室后还包括用金属材料对腔室进行密封的操作;所述金属材料优选为铜;所述密封在惰性气氛中进行;
在某些具体的实施方式中,所述密封为用比不锈钢模具上开设的腔室内径稍大的片状金属材料用液压机压入容置有块体的腔室内,保证密封的平整性;
在某些具体的实施方式中,所述不锈钢模具为厚度5~10mm的板状不锈钢模具;所述腔室的底厚为0.3~0.5mm,所述腔室的底厚指腔室底部的不锈钢的厚度。
作为优选地实施方式,步骤5中,所述辊轧中轧辊的辊速为0.9~1.5m/s;
优选地,所述辊轧过程中,所述块体的变形量≥70%,在本发明的技术方案中,所述变形量指块体高度减小的百分量。
作为优选地实施方式,步骤(1)中,所述母合金的化学组成如下式式(1)所示:
NdxFey-mBzXm(1);
式(1)中,X为添加元素,选自Nb、Zr、Ti、Cu、Ga和Al中的至少一种;m为添加元素的总原子百分比,所述添加元素中,单种元素的原子百分比不超过1at%;x、y、z为原子百分比,x为8~10at%,y为84~88at%,z为4~6at%。
作为优选地实施方式,步骤1中,所述制备母合金常采用真空熔炼法。
作为优选地实施方式,步骤2中,所述熔体快淬中的快淬速度为27~32m/s;
优选地,步骤2中,所述熔体快淬中的甩带温度为1250~1350℃。
优选地,所述非晶条带的厚度为10~15μm,宽度不限。
作为优选地实施方式,步骤3中,所述研磨的方式没有特别限制,可以为手动研磨或球磨;为了不破坏步骤2得到的条带结构,优选为手动研磨;在本发明的技术方案中,所述研磨为研磨至所述非晶粉体的粒径≤300目。
作为优选地实施方式,步骤4中,所述冷压成块的致密度≥80%;
在某些具体的实施方式中,采用冷压模具对上述粉体进行冷压成块时,模具的内径可选5~30mm,冷压得到的块体厚度一般不超过3mm,压制温度既可以选择常温,亦可以选择在一定的温度下压,可以在空气中压亦可以在氩气气氛中压。
又一方面,本发明提供上述制备方法得到的各向异性Nd2Fe14B/α-Fe块体纳米晶复合永磁材料。
在本发明的技术方案中,所述各向异性Nd2Fe14B/α-Fe块体纳米晶复合永磁材料由Nd2Fe14B相和α-Fe相两相复合而成,所述α-Fe相的含量为20~40%,Nd2Fe14B相晶粒取向生长,在压应力方向具有[004]晶体学织构特征。
上述技术方案具有如下优点或者有益效果:
本发明提供的制备方法中,将NdFeB非晶粉体压块,包埋于不锈钢模具内部,密封后,加热至低于晶化温度以下的温度,然后进行轧制,利用轧制本身产生的热量将样品升到适合温度,在适合温度下对其进行大变形量的轧制实现高温非晶晶化。在高温非晶晶华过程中,通过轧制引入的大的应力和应变诱导Nd2Fe14B相在晶化过程中择优取向生长。同时在该过程中,较快的轧辊辊速会抑制α-Fe相的长大,因而可以获得具有各向异性的Nd2Fe14B/α-Fe块体纳米晶复合永磁材料。本发明提供的制备方法可以获得具有晶体织构的纳米晶永磁材料,因此实现了高性能各向异性永磁材料的制备,方法简单,易于实现,适合工业化生产。
附图说明
图1是本发明实施例1步骤2中熔体快淬的过程示意图。
图2是本发明实施例1步骤3中的的研磨过程示意图。
图3是本发明实施例1步骤4中的冷压成块的过程示意图。
图4是本发明实施例1步骤5中将冷压成块得到的块体置于不锈钢模具中的过程的示意图。
图5是本发明实施例1步骤6中辊轧过程的示意图。
图6是本发明实施例1制备的永磁材料平行轧制面的XRD图谱。
图7是本发明实施例1制备的永磁材料易磁化和难磁化方向的磁滞回线图。
具体实施方式
下述实施例仅仅是本发明的一部分实施例,而不是全部的实施例。因此,以下提供的本发明实施例中的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
在本发明中,若非特指,所有的设备和原料等均可从市场购得或是本行业常用的。下述实施例中的方法,如无特别说明,均为本领域的常规方法。
实施例1:
本实施例中的各向异性Nd2Fe14B/α-Fe块体纳米晶复合永磁材料的制备方法如下:
步骤1:采用真空熔炼获得母合金,合金成分为Nd9Fe84CuB6;
步骤2:将母合金破碎成块,然后采用熔体快淬方法将合金制成条带,如图1所示,具体操作为:将母合金破碎后的合金块1置入下端带有小孔的石英管4中,在高频铜线圈2的加热下合金块1融化成合金液5,在有压力差的氩气的作用下将合金液吹到快速转动的铜辊3上,即可甩出合金条带7;其中,铜辊3的转速32m/s,石英管4的口径为0.6mm,石英管4的下管口到铜辊3的距离为2mm,甩带温度为1300℃;所制备得到的合金条带7的厚度约为13μm,宽度约为1.5mm,结构为非晶结构;
步骤3:如图2所示,将步骤2得到的合金条带7置于玛瑙研钵8中进行手动研磨,研磨至稍微细小后装入球磨罐9中,加入球磨介质10然后在球磨机上研磨2min,研磨得到300目以下的非晶粉体11;
步骤4:如图3所示,将非晶粉体11置入冷压模具13中,冷压模具内孔直径8mm,在模具内孔底部放置一个压杆小柱15,然后将装有非晶粉体的模具13放到硬质合金下压头16上,装入上压杆17,放入硬质合金上压头12,上/下硬质合金压头12/16共同加压,进行压块,压出的块体18的厚度为3mm,致密度为80%;
步骤5:如图4所示,在10mm厚的不锈钢钢板19上预先加工出8mm内径的半通孔20,半通孔20的底部剩余的钢板厚度为0.5mm;将块体18叠放于半通孔20内,共计叠放3个块体,而后采用紫铜片21在氩气保护环境中用液压机压入半通孔内,将半通孔的孔口进行密封;
步骤6:将步骤5密封后的不锈钢钢板加热到500℃,然后如图5所示,将加热后的不锈钢钢板22放入已经开动的辊轧机上进行轧制,两个轧辊间的辊缝23为2mm,轧辊辊速为0.9m/s本实施例中,轧制后的变形量超过75%;将包埋的样品取出即可获得各向异性Nd2Fe14B/α-Fe块体纳米晶复合永磁材料。
本实施例所制备的永磁材料的各向异性磁体可以用其微结构和磁特性进行检验:图6示出了永磁材料平行于热轧面的XRD图谱,图中,“R-d”为“rod direction”的缩写,表明箭头所指方向为轧制方向。从图谱中看出(004)衍射峰与Nd2Fe14B相最强峰(220)的比值为365%,明显高于PDF卡片的比值67.5%,说明制备的磁体具有(004)的择优取向。图7示出了磁体平行和垂直轧制方向的磁滞回线,能明显看出用该方法制备的磁体具有明显的磁各向异性,该样品的磁能积为22.1MGOe,α-Fe相的体积分数为32.8%。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (16)
1.一种各向异性Nd2Fe14B/α-Fe块体纳米晶复合永磁材料的制备方法,其特征在于,包括以下步骤:
步骤1:制备母合金;
步骤2:将步骤1中的母合金破碎成块,然后再通过熔体快淬方法制备非晶条带;
步骤3:将步骤2得到的非晶条带通过研磨得到非晶粉体;
步骤4:将步骤3得到的粉体冷压成块;
步骤5:将步骤4中冷压成块得到的块体置于不锈钢模具中加热后进行辊轧;
其中,所述不锈钢模具为板状结构,所述不锈钢模具上沿其厚度方向开设有用于容置所述块体的腔室。
2.根据权利要求1所述的制备方法,其特征在于,步骤5中,所述加热为加热至500~530℃。
3.根据权利要求1所述的制备方法,其特征在于,步骤5中,所述腔室的内径与所述块体的外径相适应。
4.根据权利要求1所述的制备方法,其特征在于,步骤5中,将块体置于不锈钢模具上开设的腔室后还包括用金属材料对腔室进行密封的操作;所述密封在惰性气氛中进行。
5.根据权利要求4所述的制备方法,其特征在于,所述金属材料为铜。
6.根据权利要求1所述的制备方法,其特征在于,所述不锈钢模具为厚度5~10mm的板状不锈钢模具;所述腔室的底厚为0.3~0.5mm,所述腔室的底厚指腔室底部的不锈钢的厚度。
7.根据权利要求1所述的制备方法,其特征在于,步骤5中,所述辊轧中轧辊的辊速为0.9~1.5m/s。
8.根据权利要求1所述的制备方法,其特征在于,步骤5中,所述辊轧过程中,所述块体的变形量≥70%。
9.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述母合金的化学组成如下式式(1)所示:
NdxFey-mBzXm(1);
式(1)中,X为添加元素,选自Nb、Zr、Ti、Cu、Ga和Al中的至少一种;m为添加元素的总原子百分比,所述添加元素中,单种元素的原子百分比不超过1at%;x、y、z为原子百分比,x为8~10at%,y为84~88at%,z为4~6at%。
10.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述制备母合金常采用真空熔炼法。
11.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述熔体快淬中的快淬速度为27~32m/s。
12.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述熔体快淬中的甩带温度为1250~1350℃。
13.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述非晶条带的厚度为10~15μm。
14.根据权利要求1所述的制备方法,其特征在于,步骤3中,所述研磨为研磨至所述非晶粉体的粒径≤300目。
15.根据权利要求1所述的制备方法,其特征在于,步骤4中,所述冷压成块的致密度≥80%。
16.权利要求1-15任一所述的制备方法得到的各向异性Nd2Fe14B/α-Fe块体纳米晶复合永磁材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310828366.7A CN117079961B (zh) | 2023-07-07 | 2023-07-07 | 一种各向异性Nd2Fe14B/α-Fe块体纳米晶复合永磁材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310828366.7A CN117079961B (zh) | 2023-07-07 | 2023-07-07 | 一种各向异性Nd2Fe14B/α-Fe块体纳米晶复合永磁材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117079961A CN117079961A (zh) | 2023-11-17 |
CN117079961B true CN117079961B (zh) | 2024-05-24 |
Family
ID=88705095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310828366.7A Active CN117079961B (zh) | 2023-07-07 | 2023-07-07 | 一种各向异性Nd2Fe14B/α-Fe块体纳米晶复合永磁材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117079961B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10270224A (ja) * | 1997-03-26 | 1998-10-09 | Seiko Epson Corp | 異方性磁石粉末の製造方法および異方性ボンド磁石の製造方法 |
JP2004296873A (ja) * | 2003-03-27 | 2004-10-21 | Matsushita Electric Ind Co Ltd | 異方性希土類ボンド磁石と磁界中圧縮成形装置、およびモ−タ |
CN102360653A (zh) * | 2011-06-08 | 2012-02-22 | 北矿磁材科技股份有限公司 | 一种压延各向异性柔性稀土粘结磁体及其制造方法 |
CN103996521A (zh) * | 2014-05-11 | 2014-08-20 | 沈阳中北通磁科技股份有限公司 | 一种钕铁硼稀土永磁体的真空预烧结方法和设备 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180166190A1 (en) * | 2016-12-14 | 2018-06-14 | Government Of The United States As Represented By The Secretary Of The Air Force | Bulk anisotropic exchange-spring magnets and method of producing the same |
-
2023
- 2023-07-07 CN CN202310828366.7A patent/CN117079961B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10270224A (ja) * | 1997-03-26 | 1998-10-09 | Seiko Epson Corp | 異方性磁石粉末の製造方法および異方性ボンド磁石の製造方法 |
JP2004296873A (ja) * | 2003-03-27 | 2004-10-21 | Matsushita Electric Ind Co Ltd | 異方性希土類ボンド磁石と磁界中圧縮成形装置、およびモ−タ |
CN102360653A (zh) * | 2011-06-08 | 2012-02-22 | 北矿磁材科技股份有限公司 | 一种压延各向异性柔性稀土粘结磁体及其制造方法 |
CN103996521A (zh) * | 2014-05-11 | 2014-08-20 | 沈阳中北通磁科技股份有限公司 | 一种钕铁硼稀土永磁体的真空预烧结方法和设备 |
Also Published As
Publication number | Publication date |
---|---|
CN117079961A (zh) | 2023-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0133758B1 (en) | Iron-rare earth-boron permanent magnets by hot working | |
US4792367A (en) | Iron-rare earth-boron permanent | |
CA1269029A (en) | Permanent magnet manufacture from very low coercivity crystalline rare earth-transition metal-boron alloy | |
EP3251130B1 (en) | Iron nitride magnetic materials | |
JPH01704A (ja) | 希土類−鉄系永久磁石 | |
US11335484B2 (en) | Permanent magnet | |
Keller et al. | Manganese-based permanent magnet materials | |
Xi et al. | Magnetic and magnetostrictive properties of RE-doped Cu-Co ferrite fabricated from spent lithium-ion batteries | |
US4844754A (en) | Iron-rare earth-boron permanent magnets by hot working | |
CN115312283B (zh) | 一种高压实密度注射磁粉及其制备方法 | |
JPH0366105A (ja) | 希土類系異方性粉末および希土類系異方性磁石 | |
CN101477863A (zh) | 一种钐-钴系磁粉及其制备方法 | |
CN117079961B (zh) | 一种各向异性Nd2Fe14B/α-Fe块体纳米晶复合永磁材料的制备方法 | |
US5085716A (en) | Hot worked rare earth-iron-carbon magnets | |
Sharma et al. | Structural ordering at magnetic seeds with twins at boundaries of a core–shell alloy Mn60Bi40 and tailored magnetic properties | |
EP0306599B1 (en) | Method and apparatus for producing magnetically anisotropic Nd-Fe-B magnet material | |
US5049335A (en) | Method for making polycrystalline flakes of magnetic materials having strong grain orientation | |
CN115938771B (zh) | 一种SmFexM12-x纳米晶永磁材料的制备方法 | |
JP5447246B2 (ja) | 異方性希土類磁石の製造方法 | |
Fuerst et al. | Die‐upset PrCo5‐type magnets from melt‐spun ribbons | |
CN105280320B (zh) | 一种易面各向异性高频微波磁性材料及其制备方法 | |
CN114974775B (zh) | 一种具有强吸氢能力的稀土钴磁粉及其制备方法 | |
CN116682661A (zh) | 一种钕铁硼永磁材料的制备方法 | |
JPH01228106A (ja) | R−Fe−B系磁石およびその製造方法 | |
CN117954187A (zh) | 一种(Pr,Sm)Co5纳米晶磁体及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |