CN117069985A - 一种多磺酸基共聚型聚苯并咪唑两性离子交换膜及其制备方法 - Google Patents

一种多磺酸基共聚型聚苯并咪唑两性离子交换膜及其制备方法 Download PDF

Info

Publication number
CN117069985A
CN117069985A CN202311031023.4A CN202311031023A CN117069985A CN 117069985 A CN117069985 A CN 117069985A CN 202311031023 A CN202311031023 A CN 202311031023A CN 117069985 A CN117069985 A CN 117069985A
Authority
CN
China
Prior art keywords
solvent
monomer
acid
solution
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311031023.4A
Other languages
English (en)
Inventor
焉晓明
宋紫微
贺高红
高莉
吴雪梅
阮雪华
姜晓滨
郑文姬
代岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202311031023.4A priority Critical patent/CN117069985A/zh
Publication of CN117069985A publication Critical patent/CN117069985A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本发明属于两性离子交换膜技术领域,公开了一种多磺酸基共聚型聚苯并咪唑两性离子交换膜及其制备方法,通过制备带有磺酸基团的二酸单体,醚键单体促进聚合物的溶解性,间苯二甲酸‑5‑磺酸钠单体促进聚合物膜的吸水,降低膜的阻抗,使得更加有利于质子传导。磺酸基团和咪唑单体之间的离子交联作用限制膜的溶胀,增强膜的稳定性。所制备的膜具有较好的稳定性和较高的离子传导率,可应用于全钒液流电池中。

Description

一种多磺酸基共聚型聚苯并咪唑两性离子交换膜及其制备 方法
技术领域
本发明属于两性离子交换膜技术领域,涉及到一种多磺酸基的聚苯并咪唑两性离子交换膜及其制备方法。
背景技术
随着化石能源的持续使用,再加上当今社会不断增加的能源消耗活动,导致了严重的能源危机和环境污染,因此需要开发更高效的能源。风能和太阳能等可再生能源已被广泛认为是实现清洁能源和可靠发电的可持续替代方案。为了有效利用风能和太阳能等间歇性可再生能源,现代电化学储能装置的开发投入了大量精力。液流电池系统的各种优点使其成为适合大规模电化学储能应用的最有前途的技术之一。
在液流电池中,离子交换隔膜的基本功能是隔离参与电极反应的氧化还原对的离子,以防止自放电,同时允许特定离子(电荷载流子)以高速率穿过膜,以完成电路传输。IEM在氧化还原活性离子和电荷载流子之间的选择性渗透性决定了库仑效率,并最终决定了液流电池的能量效率。高性能VRFB的理想膜应具备以下特点:(i)良好的离子传导性,(ii)高离子选择性,(iii)良好的化学和机械稳定性,以及(iv)低成本。
商用全氟磺酸膜材料,如Nafion系列,被广泛用于液流电池中,它们由聚四氟乙烯(PTFE)的疏水骨架和-SO3H基团连接的全氟醚亲水侧链组成。Timothy D.Gierke在论文Iontransport and clustering in nafion perfluorinated membranes中报道了在溶剂化条件下,亲水基团附着在疏水域上,形成连续的高速公路,形成簇网络结构,该结构由4nm的离子簇与1nm的狭窄水通道连接而成。它可以基于Grotthuss机制和车载机制高度传输离子。此外,PTFE主链结构确保了恶劣条件下的高化学稳定性。但是Nafion膜往往表现出过于严重的钒离子渗透性,从而导致电池容量降低和电池性能下降效率,并且其成本高昂。因此寻找低成本、低钒渗透性的膜成为目前关注的热点之一。
发明内容
本发明旨在提高两性离子交换膜的离子传导率、化学稳定性和机械稳定性,通过制备带有磺酸基团的二酸单体,醚键单体促进聚合物的溶解性,间苯二甲酸-5-磺酸钠单体促进聚合物膜的吸水,降低膜的阻抗,使得更加有利于质子传导。磺酸基团和咪唑单体之间的离子交联作用限制膜的溶胀,增强膜的稳定性。所制备的膜具有较好的稳定性和较高的离子传导率,可应用于全钒液流电池中。
本发明的技术方案:
一种多磺酸基共聚型聚苯并咪唑两性离子交换膜,其结构如下:
其中,x=0.5~0.7,y=0.3~0.5。
一种多磺酸基共聚型聚苯并咪唑两性离子交换膜的制备方法,步骤如下:
(1)含磺酸基的二羧酸(OBAS)单体的合成:在装有恒压滴液漏斗及回流冷凝管的三口烧瓶中加入2,5-二羟基苯磺酸钾、对氟苯甲腈、碳酸钾及溶剂A,在氮气保护下,机械搅拌,先常温反应2h,再在温度为155℃条件下反应24h,停止加热,冷却至室温后将溶液倒入溶剂B中,过滤,烘干得到白色固体;
在氮气保护下,在三口烧瓶中加入上步中得到的白色产物、KOH,随后添加溶剂B,于100℃反应12h后停止加热,加入1mol/L HCl至pH=1时过滤,烘干得到含磺酸基的二羧酸(OBAS)单体;
所述的2,5-二羟基苯磺酸钾:对氟苯甲腈:碳酸钾的摩尔比为1:2:2;
所述2,5-二羟基苯磺酸钾在溶剂A中的摩尔浓度为0.8mol/L;
所述白色产物与KOH的质量比为1:10;
所述KOH在反应体系中浓度为1.3g/mL~1.6g/mL;
所述溶剂A为DMAc;
所述溶剂B为去离子水;
(2)聚苯并咪唑聚合物制备:在氮气环境下,先将溶剂C在温度为130℃条件下除氧;将OBAS单体、间苯二甲酸-5-磺酸钠单体以及3,3'-二氨基联苯胺单体溶于除氧后的溶剂C中,在150℃下先预聚7h,然后升温至200℃再反应至溶液变得粘稠;再将溶液在溶剂B中析出,过滤、洗涤、干燥得到聚合物;
所述OBAS单体:间苯二甲酸-5-磺酸钠单体:3,3'-二氨基联苯胺单体的摩尔比为0.5~0.7:0.3~0.5:1;
所述溶剂B为去离子水;
所述溶剂C为多聚磷酸;
(3)聚苯并咪唑两性离子交换膜的制备:将烘干后的聚合物溶于溶剂D中,溶解后离心去除杂质得到铸膜液;再将铸膜液浇铸成膜;将膜浸泡于3mol/L稀硫酸溶液中24~48h,得到两性离子交换膜;
所述的溶剂D为二甲基亚砜的一种;
所述的铸膜液质量浓度为0.13~0.22g/mL;
所述的浇铸法成膜的烘干温度为60~80℃,时间为24h。
本发明的有益效果:
(1)同时将OBAS单体和间苯二甲酸-5-磺酸钠单体同时引入到聚苯并咪唑聚合物中,使得BDPSPBI-x膜(x=30、40、50)相比于BDPSPBI-0膜和BDPSPBI-100膜在电池性上有所提升。200mA cm-2时,BDPSPBI-40膜EE为80.84%,BDPSPBI-0膜EE为72.25%,BDPSPBI-100膜,EE为76.69%。
(2)同时将OBAS单体和间苯二甲酸-5-磺酸钠单体同时引入到聚苯并咪唑聚合物中,使得BDPSPBI-x膜(x=30、40、50)比BDPSPBI-100膜具有更好的溶解性。
具体实施方式
以下结合实施案例对本发明做进一步详细的描述,但是本发明的实施方式并不仅限于此。
实施例1间苯二甲酸-5-磺酸钠占比0%
含磺酸基的二羧酸(OBAS)单体的合成:在装有恒压滴液漏斗及回流冷凝管的250mL三口烧瓶中加入2,5-二羟基苯磺酸钾(60mmol)、对氟苯甲腈(120mmol)、碳酸钾(120mmol)及DMAc(75mL),在氮气保护下,机械搅拌,常温反应2h,在155℃反应24h,停止加热,冷却至室温后将溶液倒入去离子水中,过滤,烘干得到白色固体。
在氮气保护下,在500mL三口烧瓶中加入上一步白色产物(5g)、KOH(50g)和去离子水(32mL),于100℃反应12h后停止加热,加入1mol/L HCl至pH=1时过滤,烘干得到白色固体。
聚苯并咪唑聚合物制备:氮气保护下,在干燥的三口烧瓶中加入50g多聚磷酸,先在130℃下除氧1h,然后加入3,3'-二氨基联苯胺(0.005mol),二羧酸磺酸基单体(0.005mol)于150℃反应3h,升温至200℃反应至聚合物溶液粘稠,停止加热,快速倒入水中,聚合物呈棕色硬粗条状。经去离子水洗后加入到200mL质量分数为10%的NaHCO3溶液中,在60℃下搅拌36h,过滤烘干,然后再将聚合物用去离子水清洗至中性,得到BDPSPBI-0膜。
本实例所得到的两性离子交换膜的结构如下:
经测试表明,本实施例中所制备BDPSPBI-0膜在水溶液中,吸水率为26%,溶胀度为10%。在全钒液流电池中,200mA cm-2时,CE为99.89%,EE为72.25%。
实施例2间苯二甲酸-5-磺酸钠占比30%
含磺酸基的二羧酸(OBAS)单体的合成:在装有恒压滴液漏斗及回流冷凝管的250mL三口烧瓶中加入2,5-二羟基苯磺酸钾(60mmol)、对氟苯甲腈(120mmol)、碳酸钾(120mmol)及DMAc(75mL),在氮气保护下,机械搅拌,常温反应2h,在155℃反应24h,停止加热,冷却至室温后将溶液倒入去离子水中,过滤,烘干得到白色固体。
在氮气保护下,在500mL三口烧瓶中加入上一步白色产物(5g)、KOH(50g)和去离子水(32mL),于100℃反应12h后停止加热,加入1mol/L HCl至pH=1时过滤,烘干得到白色固体。
聚苯并咪唑聚合物制备:氮气保护下,在干燥的三口烧瓶中加入50g多聚磷酸,先在130℃下除氧1h,然后加入3,3'-二氨基联苯胺(0.005mol),二羧酸磺酸基单体(0.0035mol),间苯二甲酸-5-磺酸钠(0.0015mol)于150℃反应7h,升温至200℃反应至聚合物溶液粘稠,停止加热,快速倒入去离子水中,聚合物呈棕色硬粗条状。经去离子水洗后加入到200mL质量分数为10%的NaHCO3溶液中,在60℃下搅拌36h,过滤烘干.然后再将聚合物用去离子水清洗至中性,制备了BDPSPBI-30膜。
本实例所得到的两性离子交换膜的结构如下:
x=0.7,y=0.3
经测试表明,本实施例中所制备的多磺酸基共聚型聚苯并咪唑两性离子交换膜在水溶液中,吸水率为28%,溶胀度为8%。在全钒液流电池中,200mA cm-2时,CE为99.85%,EE为72.21%。
实施例3间苯二甲酸-5-磺酸钠占比40%
含磺酸基的二羧酸(OBAS)单体的合成:在装有恒压滴液漏斗及回流冷凝管的250mL三口烧瓶中加入2,5-二羟基苯磺酸钾(60mmol)、对氟苯甲腈(120mmol)、碳酸钾(120mmol)及DMAc(75mL),在氮气保护下,机械搅拌,常温反应2h,在155℃反应24h,停止加热,冷却至室温后将溶液倒入去离子水中,过滤,烘干得到白色固体。
在氮气保护下,在500mL三口烧瓶中加入上一步白色产物(5g)、KOH(50g)和去离子水(32mL),于100℃反应12h后停止加热,加入1mol/L HCl至pH=1时过滤,烘干得到白色固体。
聚苯并咪唑聚合物制备:氮气保护下,在干燥的三口烧瓶中加入50g多聚磷酸,先在130℃下除氧1h,然后加入3,3'-二氨基联苯胺(0.005mol),二羧酸磺酸基单体(0.003mol),间苯二甲酸-5-磺酸钠(0.002mol)于150℃反应7h,升温至200℃反应至聚合物溶液粘稠,停止加热,快速倒入去离子水中,聚合物呈棕色硬粗条状。经去离子水洗后加入到200mL质量分数为10%的NaHCO3溶液中,在60℃下搅拌36h,过滤烘干.然后再将聚合物用去离子水清洗至中性,制备了BDPSPBI-40膜。
本实例所得到的两性离子交换膜的结构如下:
x=0.6,y=0.4
经测试表明,本实施例中所制备的多磺酸基共聚型聚苯并咪唑两性离子交换膜在水溶液中,吸水率为36%,溶胀度为11%。在全钒液流电池中,200mA cm-2时,CE为99.51%,EE为80.84%。
实施例4间苯二甲酸-5-磺酸钠占比50%
含磺酸基的二羧酸(OBAS)单体的合成:在装有恒压滴液漏斗及回流冷凝管的250mL三口烧瓶中加入2,5-二羟基苯磺酸钾(60mmol)、对氟苯甲腈(120mmol)、碳酸钾(120mmol)及DMAc(75mL),在氮气保护下,机械搅拌,常温反应2h,在155℃反应24h,停止加热,冷却至室温后将溶液倒入去离子水中,过滤,烘干得到白色固体。
在氮气保护下,在500mL三口烧瓶中加入上一步白色产物(5g)、KOH(50g)和去离子水(32mL),于100℃反应12h后停止加热,加入1mol/L HCl至pH=1时过滤,烘干得到白色固体。
聚苯并咪唑聚合物制备:氮气保护下,在干燥的三口烧瓶中加入50g多聚磷酸,先在130℃下除氧1h,然后加入3,3'-二氨基联苯胺(0.005mol),二羧酸磺酸基单体(0.0025mol),间苯二甲酸-5-磺酸钠(0.0025mol)于150℃反应7h,升温至200℃反应至聚合物溶液粘稠,停止加热,快速倒入去离子水中,聚合物呈棕色硬粗条状。经去离子水洗后加入到200mL质量分数为10%的NaHCO3溶液中,在60℃下搅拌36h,过滤烘干.然后再将聚合物用去离子水清洗至中性,制备了BDPSPBI-50膜。
本实例所得到的两性离子交换膜的结构如下:
x=0.5,y=0.5
经测试表明,本实施例中所制备的多磺酸基共聚型聚苯并咪唑两性离子交换膜在水溶液中,吸水率为40%,溶胀度为13%。在全钒液流电池中,200mA cm-2时,CE为94.4%,EE为78.37%。
实施例5间苯二甲酸-5-磺酸钠占比100%
含磺酸基的二羧酸(OBAS)单体的合成:在装有恒压滴液漏斗及回流冷凝管的250mL三口烧瓶中加入2,5-二羟基苯磺酸钾(60mmol)、对氟苯甲腈(120mmol)、碳酸钾(120mmol)及DMAc(75mL),在氮气保护下,机械搅拌,常温反应2h,在155℃反应24h,停止加热,冷却至室温后将溶液倒入去离子水中,过滤,烘干得到白色固体。
在氮气保护下,在500mL三口烧瓶中加入上一步白色产物(5g)、KOH(50g)和去离子水(32mL),于100℃反应12h后停止加热,加入1mol/L HCl至pH=1时过滤,烘干得到白色固体。
聚苯并咪唑聚合物制备:氮气保护下,在干燥的三口烧瓶中加入50g多聚磷酸,先在130℃下除氧1h,然后加入3,3'-二氨基联苯胺(0.005mol),间苯二甲酸-5-磺酸钠(0.005mol)于150℃反应7h,升温至200℃反应至聚合物溶液粘稠,停止加热,快速倒入去离子水中,聚合物呈棕色硬粗条状。经去离子水洗后加入到200mL质量分数为10%的NaHCO3溶液中,在60℃下搅拌36h,过滤烘干.然后再将聚合物用去离子水清洗至中性,制备了BDPSPBI-100膜。
本实例所得到的两性离子交换膜的结构如下:
经测试表明,本实施例中所制备的BDPSPBI-100膜在水溶液中,吸水率为45%,溶胀度为18%。在全钒液流电池中,200mA cm-2时,CE为91.06%,EE为76.69%。

Claims (2)

1.一种多磺酸基共聚型聚苯并咪唑两性离子交换膜,其特征在于,该多磺酸基共聚型聚苯并咪唑两性离子交换膜的结构如下:
其中,x=0.5~0.7,y=0.3~0.5。
2.一种多磺酸基共聚型聚苯并咪唑两性离子交换膜的制备方法,其特征在于,步骤如下:
(1)含磺酸基的二羧酸OBAS单体的合成:在装有恒压滴液漏斗及回流冷凝管的三口烧瓶中加入2,5-二羟基苯磺酸钾、对氟苯甲腈、碳酸钾及溶剂A,在氮气保护下,机械搅拌,先常温反应2h,再在温度为155℃条件下反应24h,停止加热,冷却至室温后将溶液倒入溶剂B中,过滤,烘干得到白色固体;
在氮气保护下,在三口烧瓶中加入上步中得到的白色产物、KOH,随后添加溶剂B,于100℃反应12h后停止加热,加入1mol/L HCl至pH=1时过滤,烘干得到含磺酸基的二羧酸OBAS单体;
所述的2,5-二羟基苯磺酸钾:对氟苯甲腈:碳酸钾的摩尔比为1:2:2;
所述2,5-二羟基苯磺酸钾在溶剂A中的摩尔浓度为0.8mol/L;
所述白色产物与KOH的质量比为1:10;
所述KOH在反应体系中浓度为1.3g/mL~1.6g/mL;
所述溶剂A为DMAc;
所述溶剂B为去离子水;
(2)聚苯并咪唑聚合物制备:在氮气环境下,先将溶剂C在温度为130℃条件下除氧;将OBAS单体、间苯二甲酸-5-磺酸钠单体以及3,3'-二氨基联苯胺单体溶于除氧后的溶剂C中,在150℃下先预聚7h,然后升温至200℃再反应至溶液变得粘稠;再将溶液在溶剂B中析出,过滤、洗涤、干燥得到聚合物;
所述OBAS单体:间苯二甲酸-5-磺酸钠单体:3,3'-二氨基联苯胺单体的摩尔比为0.5~0.7:0.3~0.5:1;
所述溶剂B为去离子水;
所述溶剂C为多聚磷酸;
(3)聚苯并咪唑两性离子交换膜的制备:将烘干后的聚合物溶于溶剂D中,溶解后离心去除杂质得到铸膜液;再将铸膜液浇铸成膜;将膜浸泡于3mol/L稀硫酸溶液中24~48h,得到两性离子交换膜;
所述的溶剂D为二甲基亚砜的一种;
所述的铸膜液质量浓度为0.13~0.22g/mL;
所述的浇铸法成膜的烘干温度为60~80℃,时间为24h。
CN202311031023.4A 2023-08-16 2023-08-16 一种多磺酸基共聚型聚苯并咪唑两性离子交换膜及其制备方法 Pending CN117069985A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311031023.4A CN117069985A (zh) 2023-08-16 2023-08-16 一种多磺酸基共聚型聚苯并咪唑两性离子交换膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311031023.4A CN117069985A (zh) 2023-08-16 2023-08-16 一种多磺酸基共聚型聚苯并咪唑两性离子交换膜及其制备方法

Publications (1)

Publication Number Publication Date
CN117069985A true CN117069985A (zh) 2023-11-17

Family

ID=88716396

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311031023.4A Pending CN117069985A (zh) 2023-08-16 2023-08-16 一种多磺酸基共聚型聚苯并咪唑两性离子交换膜及其制备方法

Country Status (1)

Country Link
CN (1) CN117069985A (zh)

Similar Documents

Publication Publication Date Title
CN110336052B (zh) 一种混合基质型阳离子交换膜及其制备方法
CN110224166B (zh) 一种磷酸掺杂交联型聚苯并咪唑高温质子交换膜及其制备方法
CN108878936B (zh) 一种疏水侧链修饰烷基磺化聚苯并咪唑两性膜及其制备方法
CN109096473B (zh) 不含芳基醚键的聚芳哌啶类两性离子交换膜及其制备方法
US10854890B2 (en) Cross-linked porous membrane from hydrolysis of ester-containing side chain and preparation method thereof
CN108428837B (zh) 一种侧链型磺化聚酰亚胺/全氟磺酸复合膜及其制备方法和应用
CN113437341B (zh) 一种液流电池用两性离子传导膜及其制备方法
CN115010907A (zh) 一种含有亲水和疏水双侧链的聚芳基哌啶型阴离子交换膜及其制备方法
CN103012772B (zh) 具有微相分离结构的碱性聚芳醚离聚物材料及其制备与应用
CN101388466A (zh) 一种用于高温燃料电池的质子交换膜及其制备方法
CN103709379B (zh) 芳香磺化聚酮及其制备方法
CN110041519B (zh) 一种长支链聚芳醚腈阴离子交换膜及其制备方法
CN114044884B (zh) 一种基于聚芴的高温磷酸质子交换膜及制备方法
CN111423607B (zh) 一种双支化节磺化聚酰亚胺膜的制备方法
CN110444792B (zh) 一种长链多官能团聚乙烯醇阴离子交换膜及其制备方法
CN110078961B (zh) 一种多羟基功能化聚苯并咪唑离子交换膜及制备方法
CN108878740B (zh) 一种非离子型侧链修饰聚苯并咪唑膜及其制备方法
CN115536885B (zh) 一种亚微相分离阴离子交换膜的制备方法
CN117069985A (zh) 一种多磺酸基共聚型聚苯并咪唑两性离子交换膜及其制备方法
CN104311819B (zh) 一类含芴基和三氟甲基结构磺化聚芳酰胺及其制备方法
CN115819734A (zh) 一类含两性离子侧链结构的阴离子交换聚合物及其应用
CN112708155B (zh) 一种基于氰基结构侧链磺化聚芳醚离子交换膜及其制备方法
CN108682883B (zh) 一种氢键自交联型磺化聚酰亚胺膜及其制备方法、应用
CN101701071B (zh) 侧链磺化型聚酰亚胺和磺化聚丁二烯嵌段共聚物及其制备方法
CN114716650A (zh) 新型具有螺旋结构的磺化聚靛红类芳基高分子结构、高效制备及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination