CN114716650A - 新型具有螺旋结构的磺化聚靛红类芳基高分子结构、高效制备及其应用 - Google Patents

新型具有螺旋结构的磺化聚靛红类芳基高分子结构、高效制备及其应用 Download PDF

Info

Publication number
CN114716650A
CN114716650A CN202110000811.1A CN202110000811A CN114716650A CN 114716650 A CN114716650 A CN 114716650A CN 202110000811 A CN202110000811 A CN 202110000811A CN 114716650 A CN114716650 A CN 114716650A
Authority
CN
China
Prior art keywords
aryl
sulfonated
polymer
isatin
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110000811.1A
Other languages
English (en)
Other versions
CN114716650B (zh
Inventor
汤红英
高健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Normal University
Original Assignee
Tianjin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Normal University filed Critical Tianjin Normal University
Priority to CN202110000811.1A priority Critical patent/CN114716650B/zh
Publication of CN114716650A publication Critical patent/CN114716650A/zh
Application granted granted Critical
Publication of CN114716650B publication Critical patent/CN114716650B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1428Side-chains containing oxygen containing acyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/42Non-organometallic coupling reactions, e.g. Gilch-type or Wessling-Zimmermann type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/72Derivatisation
    • C08G2261/722Sulfonation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一系列新型、具有螺旋结构的磺化聚靛红类芳基高分子结构、高效制备及该类聚合物在高温燃料电池、电化学氢泵以及反渗透等领域中的应用,属于离子交换膜材料制备工艺及燃料电池、电化学氢泵及水处理技术领域。本发明在系统调研文献的基础上,借鉴Xiuling Zhu和Whangi Kim课题组报道的合成方法,以2步,总收率>70%成功的合成了一系列新型、具有螺旋结构、磺化度可调控的磺化聚靛红类芳基高分子。将得到的磺化聚合物作为质子交换膜用于高温燃料电池,作为隔膜用于电化学氢泵,作为反渗透膜用于水处理。本发明涉及的浓硫酸磺化聚靛红类芳基聚合物制备条件温和简便,聚合物分子量高,成膜性能好,相应膜材料在高温燃料电池表现出较高的质子传电导率;在反渗透膜中表现出很好的除盐率及水通量。

Description

新型具有螺旋结构的磺化聚靛红类芳基高分子结构、高效制 备及其应用
技术领域
本发明属于高分子材料技术领域,涉及到燃料电池、化学氢泵及水处理等应用材料制备领域,特别涉及具有螺旋结构、不含醚键的磺化聚靛红类芳基新型高分子及其高效制备方法,以及其在水处理、燃料电池及氢泵等领域中的应用。
背景技术
当今世界的能源与环境问题日益突出,“节能减排”势在必行,同时,我国的石油资源对外依存度高达70%左右,严重影响我国能源安全,急需寻找并推动绿色且丰富的新能源。而基于燃料电池技术的氢能,被认为是21世纪最为清洁的能源之一,由于其氢气来源多样性,例如化石能源制氢、工业副产氢、电解水制氢等,近些年来,各国政府对氢能及燃料电池投入越来越多。燃料电池作为一种能源技术,具有燃料效率高、供应安全及环境友好等优势,它和太阳能、风能、水力发电、生物燃料等一起被认为是未来替代化石能源的重要选择。燃料电池分为碱性燃料电池、磷酸燃料电池、质子交换膜燃料电池(PEMFC)、熔融碳酸盐燃料电池、固体氧化物燃料电池以及阴离子交换膜燃料电池等。质子交换膜燃料电池是目前研究最多、实际应用最为广泛的,它是一种高效、高能量密度的清洁能源转换系统,在汽车、固定电源和移动电源等领域有着广泛的应用前景。中国、日本、美国等国家,比亚迪、丰田、本田等主要车企,都在全力推动质子交换膜燃料电池的商业化,越来越多的资金和人才投入到这个行业,但其大规模应用仍然受到成本和寿命等因素的制约。传统质子交换膜燃料电池,尤其是全氟磺酸
Figure RE-GSB0000193368260000011
系列为膜材料的PEMFC,具有化学稳定性好、高湿度下高质子传导性等优点,但其核心材料一全氟磺酸质子交换膜材料存在价格昂贵的缺点(PolymerReviews (2015)55:330-370)。
电化学氢泵具有很多优点,如:效率高、能耗低、产氢纯度高、模块化,结构简单、操作无噪声、气源无需高压、可高压输出等。其最大的优势是氢气的分离和压缩只需要一步完成,围绕氢能,其潜在的应用领域会非常广。利用电化学氢泵可以实现氢气的压缩,其可能达到的最高输出压力可达几百个大气压。在氢气量有限的情况下,电化学氢泵的优势会更明显(J Power Sources(2002)105:208-15,Electrochem Acta(1998)43(24):3841-3846)。目前,研究者们利用电化学氢泵已经成功从各种含氢混合气体中分离出氢气,其中包括乙稀、甲烷、氮气、二氧化碳、一氧化碳等。低温操作(小于100℃)的电化学氢泵主要基于全氟磺酸的质子交换膜(如美国杜邦公司的Nafion膜),其结构类似于质子交换膜燃料电池,但如上所述,该类材料价格昂贵。因此寻求价格低廉的新型质子交换膜材料已成为燃料电池和电化学氢泵科技领域最前沿的研究方向之一。
目前报道较多的是将磺酸基团引入到聚芳醚砜(PAES)、聚醚醚酮(PEEK)及聚苯乙烯等高分子材料中(Chem.Rev.(2004)104(10):4587-4612)。该类磺化聚合物亲水性强,磺化度过高易溶胀甚至溶解,从而导致膜机械性能下降,因此该类材料磺化度及离子交换容量不能过高,从而导致质子传导率偏低,实际应用比较困难(Joumal of Polymer Science:Part B: Polymer Physics(2006)44:2201-2225)。这类聚合物磺化的方式通常有两种,条件都比较苛刻,后磺化容易导致高分子中醚键的断裂;单体直接磺化需要分水,从而涉及到很多大量有毒有机溶剂如甲苯的处理、回收及应用(ZL 200910068665.5)。更重要的是,该类磺化聚合物中的醚键,在电池运行中易降解,不利于电池的长久运行(Journal of PowerSources(2020)475: 228521,Polym.Degrad.Stabil.(2012)97:264-272)。
目前,市场化的纳滤、反渗透膜产品主要基于醋酸纤维素和芳香聚酰胺。但是,醋酸纤维素膜易受微生物的攻击,高温或高压条件下易变形,而且只适于较窄的酸碱度(pH)范围;芳香聚酰胺复合膜对持续暴露于氧化剂如游离氯,显示出相当弱的抵抗力,因此增加了水处理过程的工艺,也提高了净水处理的成本。具有螺旋结构及磺酸基团的新型聚靛红类高分子聚合物不仅具有很好的质子传导性,而且具有较高热和化学稳定性(Polymers(2016)8(114): 6-11),尤其是在较宽的pH范围内具有超强的抗氯性能,因此也有望成为新型的纳滤、反渗透水处理膜材料。
发明内容
基于以上在质子交换膜燃料电池及电化学氢泵领域存在的困难以及在纳滤和反渗透膜水处理领域出现的新机遇,本发明的内容旨在合成一系列具有螺旋结构、不含醚键、新型的磺化聚靛红类芳基高分子材料,并将其应用于质子交换膜燃料电池、电化学氢泵领域及水处理膜材料中。
为实现上述目的本发明公开了如下的技术内容:
1、本发明公开的一系列新型、具有螺旋结构磺化聚靛红类芳基高分子结构如(I)所示:
Figure RE-GSB0000193368260000021
2、本发明公开的一系列新型、具有螺旋结构磺化聚靛红类芳基高分子高效制备方法,反应路线如(II)所示:靛红单体1,在
Figure RE-GSB0000193368260000022
超酸三氟甲磺酸(CF3SO3H,TFSA)和三氟乙酸 (CF3COOH,TFA)的共同催化下,与芳基单体2、3,室温下进行聚合反应,得到一系列具有螺旋结构的聚靛红类芳基聚合物4,5。将该系列聚合物溶于浓硫酸,在40℃反应一段时间后,反应混合物倒入到蒸馏水中得到黄色纤维状固体,过滤,固体用蒸馏水80℃煮三次,每次8h,然后再用蒸馏水反复洗涤,直至洗涤液为中性,得到的固体60℃真空干燥后得到一系列不含醚键、不含醚键、具有螺旋结构、聚合物主链被磺化、磺化度可控的磺化聚靛红类芳基系列聚合物6,7。
Figure RE-GSB0000193368260000031
2、本发明中所公开的合成的磺化聚靛红类芳基高分子,其特征在于不含醚键,具有螺旋结构,聚合物磺化度可控,具有很好的成膜性能。
3、本发明中合成磺化聚靛红类芳基高分子的方法,其特征在于:磺化试剂为浓硫酸,聚靛红类芳基聚合物可以溶于浓硫酸,无需其它有机溶剂,反应液固含量为5%,反应条件温和,反应温度为40℃,反应时间为5-10h,可以通过反应时间来调控聚芳基聚合物的磺化度,得到的磺化聚靛红类芳基聚合物的收率在85%以上。
4、本发明中合成磺化聚高分子的方法,其特征在于后处理简单,得到黄色纤维状固体用蒸馏水80℃煮三次,每次8h,然后再反复用蒸馏水洗涤,直至洗涤水呈中性。最后60℃真空干燥24h得到磺化的聚靛红类芳基聚合物。
5、本发明进一步公开了具有螺旋结构的磺化聚靛红类芳基高分子材料在制备质子交换膜燃料电池、化学氢泵及纳滤、反渗透水处理膜方面的应用,实验结果表明:
(1)在80℃,相对湿度100%的测试条件下,高分子聚合物用于燃料电池质子交换膜材料具有较好的质子传导率σ=60ms/cm。
(2)在25℃,2000ppm氯化钠溶液,流速3.0L min-1,压力400psi的测试条件下,高分子聚合物用于纳滤、反渗透水处理膜材料具有较好的除盐率及水通量。
相比于现有技术,本发明在系统调研文献的基础上,利用靛红类芳基聚合物4,5能很好的溶解于浓硫酸的特点,借鉴Xiuling Zhu(J.Mater.Chem.A(2019)7:6883-6893)和Whangi Kim(Polymers(2016)8(114):6-11)课题组报道的合成方法,以2步,70%以上的总收率实现了具有螺旋结构磺化度可控的新型聚靛红类芳基高分子材料的高效合成。其中聚合物中,不含醚键使该类聚合物具有很好的疏水性和稳定的机械性能,有高的化学稳定性,使其运行具有长的耐久性。该类聚合物表现出很好的质子传导性、除盐率和水通量。
附图说明
图1 100%湿度条件下质子传导率的测试方式及仪器设备;
图2磺化聚靛红类芳基高分子质子传导率随温度的变化(测试条件:100%湿度,温度20-80 ℃)。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
实施例1:具有螺旋结构磺化聚靛红类芳基聚合物(sPITP-0.60)的合成。
具有螺旋结构的聚靛红类芳基高分子(4 PITP)的合成:在一个装有机械搅拌器的50mL 的三口圆底烧瓶中,加入靛红单体1(0.81g,5.5mmol),三联苯单体2(1.15g,5.0mmol)和 TFA(4.0mL)。溶液冷却到0℃,搅拌反应1h,然后将(4.5mL)TFSA加入到反应液中,将反应混合物搅拌30min升温至20℃,并在此温度下搅拌反应20h,得到深绿色的高粘度的反应液。将反应混合液倒入蒸馏水中,过滤,滤渣用蒸馏水反复洗涤后,重新使用溶剂氮甲基吡咯烷酮(NMP)充分溶解后再沉入到蒸馏水中,得到白色的纤维状固体。过滤,白色的固体用蒸馏水再反复洗涤2-3次,然后在80℃的真空条件下干燥24h,得到具有螺旋结构的聚靛红类芳基高分子材料(4PITP)1.62g,收率90.0%,粘度0.75dL/g(使用乌氏粘度计在25℃测试,聚合物PITP的DMAc(氮氮二甲基乙酰胺)溶液,固含量0.5%)。
Figure RE-GSB0000193368260000051
磺化的聚靛红类芳基高分子(6 sPITP-0.60)的合成:在一个装有机械搅拌器的100mL 的三口圆底烧瓶中,将PITP(1.00g)溶解于30mL浓硫酸中,加热至40℃反应10小时。停止反应,将反应混合物缓慢小心的倒入到事先冷却好的蒸馏水中,得到浅棕色纤维状固体。过滤,固体用蒸馏水在80℃煮三次,每次8小时,然后再反复用蒸馏水洗涤,直至洗涤水呈中性。固体在60℃真空下干燥过夜,得到红棕色聚合物sPITP-0.60(IECcalculated值:1.51meq/g)1.00g,收率91.0%,粘度0.65dL/g(使用乌氏粘度计在25℃测试,聚合物sPITP-0.60的NMP溶液,固含量0.5%)。1H NMR(400MHz,DMSO-d6):δ7.10-7.90(b,m,15.4H,Ar-H),10.90(m,1H,-NH)。
Figure RE-GSB0000193368260000052
实施例2:具有螺旋结构磺化聚靛红类芳基聚合物(sPITP-0.80)的合成。
在一个装有机械搅拌器的100mL的三口圆底烧瓶中,将PITP(1.00g)溶解于30mL浓硫酸中,加热至40℃反应8小时。停止反应,将反应混合物缓慢小心的倒入到事先冷却好的蒸馏水中,得到黄色纤维状固体。过滤,固体用蒸馏水在80℃煮三次,每次8小时,然后再反复用蒸馏水洗涤,直至洗涤水呈中性。固体在60℃真空下干燥过夜,得到棕色聚合物sPITP-0.80(IECcalculated值:1.84meq/g)1.10g,收率91.0%,粘度0.69dL/g(使用乌氏粘度计在25℃测试,聚合物sPITP-0.80的NMP溶液,固含量0.5%)。1H NMR(400MHz,DMSO-d6):δ7.10-7.95(b,m,15.2H,Ar-H),10.96(m,1H,-NH)。
Figure RE-GSB0000193368260000061
实施例3:具有螺旋结构磺化聚靛红类芳基聚合物(sPIBP-0.70)的合成。
具有螺旋结构的聚靛红类芳基高分子(5PIBP)的合成:在一个装有机械搅拌器的50mL 的三口圆底烧瓶中,加入靛红单体1(0.81g,5.5mmol),联苯单体2(0.75g,5.0mmol)和TFA (4.0mL)。溶液冷却到0℃,搅拌反应1h,然后将(4.5mL)TFSA加入到反应液中,将反应混合物搅拌30min升温至20℃,并在此温度下搅拌反应20h,得到深绿色的高粘度的反应液。将反应混合液倒入蒸馏水中,过滤,滤渣用蒸馏水反复洗涤后,重新使用溶剂NMP充分溶解后再沉入到蒸馏水中,得到白色的纤维状固体。过滤,白色的固体用蒸馏水再反复洗涤2-3次,然后在80℃的真空条件下干燥24h,得到具有螺旋结构的聚靛红类芳基高分子材料(5PIBP)1.33g,收率94.0%,粘度0.73dL/g(使用乌氏粘度计在25℃测试,聚合物PIBP的 DMAc(N,N-二甲基乙酰胺)溶液,固含量0.5%)。
Figure RE-GSB0000193368260000062
在一个装有机械搅拌器的100mL的三口圆底烧瓶中,将PIBP(1.00g)溶解于30mL浓硫酸中,加热至40℃反应7小时。停止反应,将反应混合物缓慢小心的倒入到事先冷却好的蒸馏水中,得到黄色纤维状固体。过滤,固体用蒸馏水在80℃煮三次,每次8小时,然后再反复用蒸馏水洗涤,直至洗涤水呈中性。固体在60℃真空下干燥过夜,得到棕色聚合物sPIBP-0.70(IECcalculated值:2.00meq/g)1.14g,收率92.0%,粘度0.66dL/g(使用乌氏粘度计在25℃测试,聚合物sPIBP-0.70的NMP溶液,固含量0.5%)。1H NMR(400MHz,DMSO-d6):δ7.10-7.90(b,m,11.3H,Ar-H),11.00(m,1H,-NH)。
Figure RE-GSB0000193368260000071
实施例4:具有螺旋结构磺化聚靛红类芳基聚合物(sPIBP-0.52)的合成。
在一个装有机械搅拌器的100mL的三口圆底烧瓶中,将PIBP(1.00g)溶解于30mL浓硫酸中,加热至40℃反应5小时。停止反应,将反应混合物缓慢小心的倒入到事先冷却好的蒸馏水中,得到黄色纤维状固体。过滤,固体用蒸馏水在80℃煮三次,每次8小时,然后再反复用蒸馏水洗涤,直至洗涤水呈中性。固体在60℃真空下干燥过夜,得到浅棕色聚合物sPIBP-0.52(IECcalculated值:1.56meq/g)1.06g,收率90.0%,粘度0.66dL/g(使用乌氏粘度计在25℃测试,聚合物sPIBP-0.52的NMP溶液,固含量0.5%)。1H NMR(400MHz,DMSO-d6):δ7.10-7.91(b,m,11.5H,Ar-H),10.95(m,1H,-NH)。
Figure RE-GSB0000193368260000072
实施例5:
质子交换膜性能测试:
取实施例1制备的浅棕色聚合物(sPITP-0.60)溶于DMAc中,制得浓度为5wt%的溶液,过滤,赶走气泡后,浇到干净的玻璃板上,恒温25℃常压下干燥24小时,然后在恒温60℃的真空干燥箱里干燥48小时,彻底除去残余的溶剂,得到磺酸化质子交换膜。将膜切成1cm×4cm的样品,并夹在电导率测试池中,将组装好的测试池放入装有去离子水的烧杯中,置于控温箱中,调节温度,通过电化学工作站测试磺酸化的膜的升温电导率(如图1所示)。温度从室温逐渐升高到80℃,并计算电导率,电导率比较如图1所示,所有制备得到的磺酸化质子交换膜的质子传导率随温度的升高而升高。
实施例6:
质子交换膜性能测试:
取实施例2制备的棕色聚合物(sPITP-0.80)溶于DMAc中,制得浓度为5wt%的溶液,过滤,赶走气泡后,浇到干净的玻璃板上,恒温25℃常压下干燥24小时,然后在恒温60℃的真空干燥箱里干燥48小时,彻底除去残余的溶剂,得到磺酸化质子交换膜。将膜切成1cm×4cm的样品,并夹在电导率测试池中,将组装好的测试池放入装有去离子水的烧杯中,置于控温箱中,调节温度,通过电化学工作站测试磺酸化的膜的升温电导率(如图2所示)。温度从室温逐渐升高到80℃,并计算电导率,电导率比较如图2所示,所有制备得到的磺酸化质子交换膜的质子传导率随温度的升高而升高。
实施例7:
质子交换膜性能测试:
取实施例3制备的棕色聚合物(sPIBP-0.70)溶于DMAc中,制得浓度为5wt%的溶液,过滤,赶走气泡后,浇到干净的玻璃板上,恒温25℃常压下干燥24小时,然后在恒温60℃的真空干燥箱里干燥48小时,彻底除去残余的溶剂,得到磺酸化质子交换膜。将膜切成1cm×4cm的样品,并夹在电导率测试池中,将组装好的测试池放入装有去离子水的烧杯中,置于控温箱中,调节温度,通过电化学工作站测试磺酸化的膜的升温电导率(如图1所示)。温度从室温逐渐升高到60℃,并计算电导率,电导率比较如图2所示,所有制备得到的磺酸化质子交换膜的质子传导率随温度的升高而升高。
实施例8:
质子交换膜性能测试:
取实施例4制备的浅棕色聚合物(sPIBP-0.52)溶于DMAc中,制得浓度为5wt%的溶液,过滤,赶走气泡后,浇到干净的玻璃板上,恒温25℃常压下干燥24小时,然后在恒温60℃的真空干燥箱里干燥48小时,彻底除去残余的溶剂,得到磺酸化质子交换膜。将膜切成1cm×4cm的样品,并夹在电导率测试池中,将组装好的测试池放入装有去离子水的烧杯中,置于控温箱中,调节温度,通过电化学工作站测试磺酸化的膜的升温电导率(如图1所示)。温度从室温逐渐升高到50℃,并计算电导率,电导率比较如图2所示,所有制备得到的磺酸化质子交换膜的质子传导率随温度的升高而升高。
实施例9:
反渗透膜性能测试:
取实施例1制备的棕色聚合物(sPITP-0.60)溶于DMAc中,制得浓度为5wt%的溶液,过滤,赶走气泡后,浇到干净的玻璃板上,恒温25℃常压下干燥24小时,然后在恒温80℃的真空干燥箱里干燥48小时,彻底除去残余的溶剂,得到磺酸化致密平板膜。测试条件:25℃,2000ppm氯化钠溶液,流速3.0L min-1,压力400psi。测试结果:除盐率94.2%,水通量1.65Lμm m-2h-1bar-1
实施例10:
反渗透膜性能测试:
取实施例5制备的红棕色聚合物(sPITP-0.80)溶于DMAc中,制得浓度为5wt%的溶液,过滤,赶走气泡后,浇到干净的玻璃板上,恒温25℃常压下干燥24小时,然后在恒温80℃的真空干燥箱里干燥48小时,彻底除去残余的溶剂,得到磺酸化致密平板膜。测试条件:25℃,2000ppm氯化钠溶液,流速3.0L min-1,压力400psi。测试结果:除盐率95.7%,水通量1.59Lμm m-2h-1bar-1
实施例11:
反渗透膜性能测试:
取实施例6制备的红棕色聚合物(sPIBP-0.52)溶于DMAc中,制得浓度为5wt%的溶液,过滤,赶走气泡后,浇到干净的玻璃板上,恒温25℃常压下干燥24小时,然后在恒温80℃的真空干燥箱里干燥48小时,彻底除去残余的溶剂,得到磺酸化致密平板膜。测试条件:25℃,2000ppm氯化钠溶液,流速3.0L min-1,压力400psi。测试结果:除盐率95.5%,水通量1.67L μm m-2h-1bar-1
上述实施例中所涉及的原料和试剂均由商购或参考文献方法制备获得,化学反应工艺是本技术领域的技术人员所能掌握的。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (6)

1.本发明公开了一系列新型、具有螺旋结构的磺化聚靛红类芳基高分子结构、制备及其应用。靛红单体1,在
Figure FSA0000229449430000012
超酸三氟甲磺酸(CF3SO3H,TFSA)和三氟乙酸(CF3COOH,TFA)的共同催化下,与芳基单体2、3,室温下进行聚合反应,得到一系列螺旋、不含醚键的聚靛红类芳基聚合物4,5。该系列聚合物以浓硫酸(H2SO4)为溶剂,在主链引入磺酸基,得到一系列不含醚键、具有螺旋结构、磺化度可控的磺化聚靛红类芳基系列聚合物6,7。
Figure FSA0000229449430000011
2.权利要求1所述的合成的磺化聚靛红类芳基高分子,其特征在于不含醚键,含有靛红基团,磺化度高,具有很好的成膜性能。
3.权利要求1所述的合成主链含磺酸基的磺化聚靛红类芳基高分子的方法,其特征在于:磺化试剂为浓硫酸,聚靛红类芳基聚合物可以溶于浓硫酸,可以通过调节反应时间来调控聚靛红类芳基聚合物主链的磺化度。
4.权利要求1所述的合成主链含磺酸基的磺化聚靛红类芳基高分子的方法,其特征在于:反应条件温和,反应温度为40℃,无需其它有机溶剂,反应液固含量为5%,反应时间一般为5-10h,得到的磺化聚合物的收率在85%以上。
5.权利要求1所述的合成磺化聚靛红类芳基高分子的方法,其特征在于后处理简单,得到深棕色沉淀物用蒸馏水80℃煮三次,每次8h,(最后一次洗涤水PH值为7左右),然后再用蒸馏水反复洗涤,直至洗涤水呈中性,最后60℃真空干燥24h得到磺化聚靛红类芳基高分子。
6.权利要求1所述的磺化聚靛红类芳基高分子材料的应用是指在水处理、燃料电池、氢泵等领域中的应用,具有很好的离子传导能力,较好的除盐率及水通量。
CN202110000811.1A 2021-01-04 2021-01-04 具有螺旋结构的磺化聚靛红类芳基高分子结构、高效制备及其应用 Active CN114716650B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110000811.1A CN114716650B (zh) 2021-01-04 2021-01-04 具有螺旋结构的磺化聚靛红类芳基高分子结构、高效制备及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110000811.1A CN114716650B (zh) 2021-01-04 2021-01-04 具有螺旋结构的磺化聚靛红类芳基高分子结构、高效制备及其应用

Publications (2)

Publication Number Publication Date
CN114716650A true CN114716650A (zh) 2022-07-08
CN114716650B CN114716650B (zh) 2023-12-22

Family

ID=82234115

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110000811.1A Active CN114716650B (zh) 2021-01-04 2021-01-04 具有螺旋结构的磺化聚靛红类芳基高分子结构、高效制备及其应用

Country Status (1)

Country Link
CN (1) CN114716650B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115627072A (zh) * 2022-11-01 2023-01-20 河北科技大学 一种聚苯并咪唑/磺化聚亚芳基靛红复合质子交换膜的制备和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102807668A (zh) * 2011-05-30 2012-12-05 现代自动车株式会社 聚亚芳基类聚合物、该聚合物的制备方法、以及使用该聚合物的燃料电池用聚合物电解质膜

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102807668A (zh) * 2011-05-30 2012-12-05 现代自动车株式会社 聚亚芳基类聚合物、该聚合物的制备方法、以及使用该聚合物的燃料电池用聚合物电解质膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOONHO LEE ET AL: "Synthesis and properties of grafting sulfonated polymer containing isatin by super acid-catalyzed polyhydroxyalkylation reaction for PEMFC", 《RENEWABLE ENERGY》, vol. 79, pages 72 - 77, XP029145001, DOI: 10.1016/j.renene.2014.08.023 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115627072A (zh) * 2022-11-01 2023-01-20 河北科技大学 一种聚苯并咪唑/磺化聚亚芳基靛红复合质子交换膜的制备和应用
CN115627072B (zh) * 2022-11-01 2023-10-10 河北科技大学 一种聚苯并咪唑/磺化聚亚芳基靛红复合质子交换膜的制备和应用

Also Published As

Publication number Publication date
CN114716650B (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
CN110224166B (zh) 一种磷酸掺杂交联型聚苯并咪唑高温质子交换膜及其制备方法
Lee et al. Enhanced ion conductivity of sulfonated poly (arylene ether sulfone) block copolymers linked by aliphatic chains constructing wide-range ion cluster for proton conducting electrolytes
Yang et al. Benzimidazole grafted polybenzimidazoles for proton exchange membrane fuel cells
AU2009324261B2 (en) Polymer blend proton exchange membrane and method for manufacturing the same
CN102146204B (zh) 一种酸碱交联质子交换膜及其制备
Yao et al. Highly sulfonated co-polyimides containing hydrophobic cross-linked networks as proton exchange membranes
CN104098896A (zh) 一种燃料电池用芳香族磺化聚苯并咪唑质子交换膜及其制备方法
CN110993998A (zh) 一种含萘环聚苯并咪唑型质子交换膜及其制备方法和应用
CN113851683A (zh) 一种咔唑类聚芳烃哌啶阴离子交换膜的制备方法
CN105418921A (zh) 一种高磺化度可交联聚酰亚胺、制备方法及其在质子交换膜方面的应用
CN101205308B (zh) 磺化聚苯砜对苯二甲酰胺质子交换膜及其制备方法
JP2005133099A (ja) ポリ(2,5−ベンズイミダゾール)の製造方法,ポリ(2,5−ベンズイミダゾール),ポリ(2,5−ベンズイミダゾール)高分子電解質膜の製造方法,ポリ(2,5−ベンズイミダゾール)高分子電解質膜,およびポリ(2,5−ベンズイミダゾール)高分子電解質膜を含む燃料電池
Yu et al. Polymeric ionic liquids and MXene synergistically improve proton conductivity and mechanical properties of polybenzimidazole-based high-temperature proton exchange membranes
KR20140017213A (ko) 카르도 구조를 갖는 황산화 고분자 전해질막 및 이를 포함하는 연료전지
CN114716650B (zh) 具有螺旋结构的磺化聚靛红类芳基高分子结构、高效制备及其应用
CN106543439A (zh) 燃料电池用交联型含氨基磺化聚芴醚砜腈质子交换膜材料、制备方法及其应用
Kim PBI derivatives: polymer electrolyte fuel cell membrane for high temperature operation
KR101379361B1 (ko) 술폰산 기를 갖는 이온성 액체가 함유된 고분자 전해질 막 및 이의 제조방법
Ninivin et al. Sulfonated derivatives of polyparaphenylene as proton conducting membranes for direct methanol fuel cell application
CN115536885B (zh) 一种亚微相分离阴离子交换膜的制备方法
KR101654830B1 (ko) 연료전지용 고분자 전해질막, 이의 제조방법 및 이를 포함하는 연료전지
CN112820921A (zh) 一种Nafion/g-C3N4复合膜及其制备方法与应用
CN103724648B (zh) 一种强碱性聚芳醚离聚物阴离子交换膜及其制备和应用
CN112708155B (zh) 一种基于氰基结构侧链磺化聚芳醚离子交换膜及其制备方法
CN114716649B (zh) 含氟的磺化聚芳基高分子结构、高效制备及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant