CN117012491A - 一种FeCoNiZrx中熵合金软磁薄膜、制备方法及其应用 - Google Patents

一种FeCoNiZrx中熵合金软磁薄膜、制备方法及其应用 Download PDF

Info

Publication number
CN117012491A
CN117012491A CN202310347175.9A CN202310347175A CN117012491A CN 117012491 A CN117012491 A CN 117012491A CN 202310347175 A CN202310347175 A CN 202310347175A CN 117012491 A CN117012491 A CN 117012491A
Authority
CN
China
Prior art keywords
target
soft magnetic
sputtering
film
magnetic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310347175.9A
Other languages
English (en)
Inventor
王方方
张虎
高明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202310347175.9A priority Critical patent/CN117012491A/zh
Publication of CN117012491A publication Critical patent/CN117012491A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/02Amorphous
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

本发明属于软磁薄膜技术领域,具体涉及一种FeCoNiZrx中熵合金软磁薄膜的制备方法及其应用。所述的中熵合金软磁薄膜包括Fe、Co、Ni和Zr,其中,Fe、Co、Ni和Zr的原子百分比为Fe:Co:Ni:Zr=1:1:1:x,x=0‑1,本发明通过在FeCoNi中熵合金中添加过渡元素Zr,大幅度提高了使中熵合金软磁薄膜的电磁学性能,软磁薄膜组织致密、与基底结合性好,具有良好软磁性和较高的电阻率的综合性能,本申请拓宽了中熵合金的制备和应用范围。

Description

一种FeCoNiZrx中熵合金软磁薄膜、制备方法及其应用
技术领域
本发明涉及软磁薄膜技术领域,具体涉及一种FeCoNiZrx中熵合金软磁薄膜及其制备方法和应用。
背景技术
软磁材料一般指具有低矫顽力和高磁导率的磁性材料,易于磁化,也易于退磁,广泛用于电工电子设备。对于应用于电子器件的软磁材料,一般需要具备高电阻率、低高频损耗、良好的磁导率、成本低廉、工艺简单等部分特点,但是现有技术很难同时具备诸多优良特点。目前,磁性薄膜的加工工艺有筛网印刷、溅射成膜等,筛网印刷一般要在1000℃下高温烧结,这与标准集成电路制造工艺和微细加工工艺不兼容;磁性薄膜溅射工艺耗时长,加工成本高。此外,商用软磁材料的性能存在如下缺点:脆性大、磁饱和强度较低,生产工艺复杂,铁镍合金低电阻率等,传统的合金难以满足需求。随着科学技术的发展,电子元器件趋于集成化及微型化,磁性材料的质量及其性能均需要不断地提高。
在现有技术中,高、中熵合金是近年来发展起来的一种新型合金材料。中熵合金(1.6R≥ΔSmix≥1R)的混合熵介于低熵合金与高熵合金之间,不仅具有优秀的力学性能,还更容易进行产业化,具有广阔的应用前景。当前人们对中熵合金的微观结构和力学性能的研究较多,而对于中熵合金的功能性能如磁饱和强度、磁热效应、电阻率等的研究较少。因为中熵合金大多含有一种或多种高磁矩的Fe、Co、Ni等铁磁性元素,所以中熵合金可以发挥优异的磁性能,同时,中熵合金和高熵合金中存在相似的拓扑失真及化学随机性使得它的可以获得电阻率增比较高的性能大。
但是,目前中熵合金的磁性能研究甚少,有关于此方面的文献也寥寥无几,现有的软磁中熵合金主要解决的是塑性差、屈服强度低的问题,例如专利CN115505812A公开了一种铁基中熵合金,通过在(FeCoNi)中加入Al、Mn提高了合金的屈服强度;专利CN114774785B一种铁基中熵合金,通过Fe、Cr、Ni、Al的加入优化合金的塑性,但是这种方法工艺相对复杂,生产成本高,不利于工业大规模生产。陈浩禹,张亦文,吴忠,等.金属含量对Co-Ti02纳米颗粒复合薄膜微观结构及其性能的影响[J]《表面技术》19(12):54-58公开了通过对Co靶功率参数的调整,薄膜金属含量逐渐增加,薄膜电阻率迅速降低。并没有公开同时满足高饱和磁化强度、低矫顽力、高电阻率性能的相关技术。
综上所述,本申请现提出一种FeCoNiZrx中熵合金软磁薄膜及其制备方法来解决上述出现的问题,进一步应用在航空航天、生物医疗、电子器件等领域存在广阔的应用空间。
发明内容
有鉴于此,本发明的第一个目的是针对现有技术中软磁材料高饱和磁化强度、低矫顽力、高电阻率不能同时满足的问题,提供一种中熵合金软磁薄膜,进一步拓展了中熵合金的应用范围,为中熵合金软磁薄膜在电子器件、航空航天、电磁屏蔽领域的应用提供了理论依据。
为实现上述目的,本发明一方面,提供了一种FeCoNiZrx中熵合金软磁薄膜,其特征在于:所述的中熵合金软磁薄膜包括Fe、Co、Ni和Zr,其中,Fe、Co、Ni和Zr的原子百分比为Fe:Co:Ni:Zr=1:1:1:x,x=0-1。
本发明的软磁薄膜的中熵合金化学通式为FeCoNiZrx,相较传统的一元或二元合金具有更大的混合熵、更大的晶格畸变,能够增加金属导电时声子的散射,从而极大地增加材料的电阻率。通过在FeCoNi系中熵合金中掺入过渡元素Zr,可以使中熵合金软磁薄膜发生从纳米晶到非晶态结构的转换变,从而大幅度提高薄膜的电磁学性能,制备得到的薄膜组织致密、与基底结合性好,具有良好的软磁性能,为中熵合金薄膜在电磁学方面的应用提供了理论依据。
进一步的,x的取值范围为0.2≤x≤0.6。
更进一步的,x的取值为0.4。
进一步的,所述软磁薄膜的厚度为500-1500nm。
所述软磁薄膜的结构随着Zr含量的增加发生从纳米晶到非晶态结构的转变,当x=0.4时,FeCoNiZrx软磁薄膜为非晶态结构,组织致密,颗粒最小,具有最优的电磁学性能,附图3。
本发明所述的Zr(0.1603nm)与Fe(0.1241nm)、Co(0.1251nm)、Ni(0.1264nm)具有大的原子半径差,使得溶质原子在形成固溶体时产生严重的晶格畸变,导致晶体的应变能增加固溶体相的稳定性变差,合金的非晶形成能力越强,增加组元间的错配度,使得合金的非晶态结构更趋于密堆,促进了合金原子的相互作用,使得合金更易表现为非晶态结构。其次,Zr与Fe、Co、Ni混合热值分别达到-25kJ·mol-1、-41kJ·mol-1、-49kJ·mol-1,本发明采用最负过渡族金属,增加了负混合焓的存在,使得元素之间有较强的相互作用,主元之间的缓慢扩散,有利于化学短程序的形成,导致薄膜呈现非晶态结构。
此外,本发明技术方案添加Zr元素,通过细化沉积薄膜颗粒尺寸达到降低矫顽力目的,适量添加Zr元素可以阻碍薄膜颗粒生长(Zr0.4),但Zr含量过多时会加大溅射功率,带来较多的能量热量促进元素扩散,反而促进薄膜颗粒生长加快,尺寸粗化。与此同时,Zr元素添加的薄膜存在非晶态结构,不存在磁晶各向异性,不存在位错、缺陷等阻碍磁化,使矫顽力大大降低。
本发明的第二个目的,提供了一种如上所述FeCoNiZrx中熵合金软磁薄膜的制备方法。通过改变磁控溅射的功率来获得不同Zr含量的中熵合金软磁薄膜,利于制备不同性能参数的薄膜,并且简化工艺流程。
为了实现上述目的,本发明采用如下技术方案:
一种如上所述的FeCoNiZrx中熵合金软磁薄膜的制备方法是基于磁控共溅射制备而得。
所述磁控共溅射技术具有高速低温的特点,镀膜效率高、基底升温慢,晶粒不易长大,有利于获得纳米晶甚至非晶结构,无序度的进一步增加对声子的散射,本发明技术方案中Zr元素加入后与FeCoNi进行很好的合金化,是一种中熵合金薄膜新材料,通过晶格畸变效应及非晶态的无序度增加来增加电阻率。该工艺可以灵活、精确的控制薄膜中Zr含量,节约制备成本。
优选的,所述制备步骤包括:
(1)靶材制备:将金属Fe、Co和Ni进行加工得到FeCoNi三元合金靶材,将金属Zr进行加工制备得到Zr靶材;
(2)基底准备:选择非磁性材料做为基底材料;
(3)共溅射功率标定:设定步骤(1)中所述FeCoNi三元合金靶材的溅射功率为P1的直流电源,所述Zr靶材分别使用溅射功率P2的射频电源,标定共溅射制备不同Zr含量薄膜所使用的溅射功率P2,获得薄膜Zr含量与Zr靶材溅射功率的变化曲线;
(4)薄膜制备:将步骤(1)中FeCoNi三元合金靶材、Zr靶材与基底材料放入工艺腔室,设定步骤(1)中所述FeCoNi三元合金靶材的溅射功率为溅射功率P1,同时依据步骤(2)所述变化曲线改变所述Zr靶材的溅射功率,通过共溅射制备不同Zr含量的中熵合金软磁薄膜。本发明所述的软磁薄膜的制备方法是获得非晶态结构的外部条件,受基体低温的影响,粒子的扩散能力较弱,容易形成非晶结构。
本发明技术方案保证了溅射气压不变,通过改变Zr靶材溅射功率来获得不同Zr含量薄膜,细化了薄膜颗粒的尺寸进一步减小矫顽力,带来了饱和磁化强度的变化,对于优化材料成分具有指导意义。进一步的,所述步骤(1)中金属Fe、Co、Ni选取纯金属单质或合金,所述金属Zr为单质。
进一步的,所述步骤(1)靶材的制备方式为真空感应熔炼,真空感应熔炼的靶材纯净度、组织和成分均匀性更好,有助于提升薄膜的组织成分均匀性。
进一步的,所述步骤(1)中制备的FeCoNi三元合金靶材的厚度H:
1.8~2mm。
所述FeCoNi三元合金靶材的厚度以确保强磁性靶材在溅射室顺利启辉,提高工作效率。
本发明的技术方案通过控制FeCoNi靶材的厚度可以解决强磁性靶材存在的磁屏蔽效果使控溅射时不能启辉的问题,给出了可用于磁控溅射的FeCoNi靶材的可用厚度。
进一步的,所述步骤(2)中非磁性材料为单晶Si、玻璃片或PDMS中的一种。
进一步的,所述步骤(3)FeCoNi靶材的溅射功率标定具体包括以下步骤:
1)将FeCoNi三元合金靶材和基底材料分别放入工艺腔室中;
2)将工艺腔室抽真空,并通入工作气体;
3)用工作气体离子轰击所述FeCoNi三元合金靶材的表面去除表面的杂质;
4)溅射功率标定:设定溅射功率P1,基底材料的温度设为20℃~25℃,设置完毕后启辉溅射,对FeCoNi三元合金靶材进行磁控溅射;
5)溅射完毕后测量薄膜的溅射厚度,计算单位时间内溅射的FeCoNi薄膜厚度,从而标定出FeCoNi靶材的溅射功率P1
进一步的,所述步骤2)中真空度为3.0~4.0×10-3Pa,所述工作气体为99.99%的氩气
进一步的,所述步骤4)中溅射功率P1=300w。
本发明技术方案中,FeCoNi系列薄膜采用300W左右的溅射功率,可以获得相对稳定的薄膜,在保证工作效率的前提下避免了Zr靶材“二次溅射效应”。
进一步的,所述步骤4)中磁控溅射的时间为1000s~1100s。
进一步的,所述步骤(3)中Zr靶材的溅射速率标定具体包括以下步骤:
1)将FeCoNi靶材、Zr靶材和基底材料放入工艺腔室中;
2)将工艺腔室抽真空,并通入工作气体;
3)用工作气体离子轰击所述Zr靶材的表面;
4)共溅射功率标定:设定溅射功率和工艺参数,设置完毕后启辉,对FeCoNi靶材和Zr靶材进行1000~1100s的共溅射;
5)溅射完毕后检测薄膜的Zr含量,计算薄膜Zr含量与Zr靶材溅射功率P2之间的关系,从而标定出薄膜Zr含量随Zr靶材功率变化曲线。
进一步的,所述步骤2)中真空度为3.0~4.0×10-3Pa,所述工作气体为99.99%的氩气。
进一步的,所述步骤4)中溅射功率P2=0~440w。
进一步的,所述步骤4)中磁控溅射的时间为1000s~1100s。
进一步的,所述步骤(4)中软磁薄膜的饱和磁化强度245.6-1678.9emu·cm-3,矫顽力0.96-9.4Oe,电阻率超过58.5-179.8μΩ·cm。
本发明的第三个目的是提供一种如上所述的中熵合金软磁薄膜的应用。
所述中熵合金软磁薄膜在磁存储器、磁传感器、磁感应器或纳米变压器的应用。
为了完整公开本发明所涉及的技术方案,特公开所述中熵合金软磁薄膜的一种制备方法,但该公开不应当视为对本发明所述的中熵合金软磁薄膜的应用限制,所有通过使用本发明所述的中熵合金软磁薄膜的制备方法都属于本发明保护范围。
与现有技术相比,本发明至少具有现如下有益效果:
1、本发明的中熵合金软磁薄膜同时具有良好的软磁性能、较低的矫顽力、较高的磁饱和强度和高电阻率,通过发明人的测试结果,所述软磁薄膜的饱和磁化强度为245.6-1678.9emu·cm-3,矫顽力为0.96-9.4Oe,电阻率为58.5-179.8μΩ·cm。与传统的软磁薄膜相比,在其软磁性能依然良好的前提下,电阻率得到了极大地提高,有利于减小使用时的涡流损耗。
2、本发明的软磁薄膜制备方法首先单独溅射FeCoNi靶材和Zr靶材,其次分别标定溅射速率,进一步可以确定出FeCoNi靶材和Zr靶材的溅射速率随功率变化的线性关系。
3、本发明的中熵合金软磁薄膜通过在FeCoNi系中熵合金中掺入过渡元素Zr,可以使FeCoNiZrx中熵合金薄膜发生从纳米晶到非晶态结构的转换变,从而大幅度提高薄膜的电磁学性能,为中熵合金薄膜在电磁学方面的应用提供了理论依据。
4、本发明的中熵合金软磁薄膜,通过共溅射制备不同Zr含量的FeCoNiZrx中熵合金软磁薄膜,通过改变Zr靶材的溅射功率可以灵活地控制薄膜的成分,从而优化薄膜性能,当0.2≤x≤0.6,在此区间内,薄膜同时具备高的软磁性能和较高的电阻率。
附图说明
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。另外,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
图1为实施例1-5和对比例所制备的中熵合金软磁薄膜的表面SEM图;
图2为实施例2所制备的中熵合金软磁薄膜的截面SEM图;
图3为实施例1-5所制备的中熵合金软磁薄膜的XRD图谱;
图4为实施例2所制备的中熵合金软磁薄膜的磁滞回线。
具体实施方式
以下结合实施例,对本发明的技术特征和优点作更详细的说明,以使本申请的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。本领域技术人员应当理解,没有某些具体细节,本申请同样可以实施。在实施例中,对于本领域技术人员熟知的一些方法、手段、仪器、设备等未作详细描述,以便凸显本申请的主旨。
实施例1
一种中熵合金软磁薄膜的制备方法,具体包括以下步骤:
(1)靶材制备:依据化学通式FeCoNiZrx的合金成分来选取Fe、Co、Ni、Zr金属单质粉,将Fe、Co、Ni进行真空熔炼,为保证靶材的成分均匀,至少熔炼四次得到等摩尔比的FeCoNi三元合金铸锭,采用线切割制备成直径101.6mm、厚度2mm的FeCoNi靶材;选取Zr金属粉真空熔炼制备Zr铸锭,再采用线切割制备直径101.6mm、厚度3mm的Zr靶材;优选地,Zr为纯Zr;
(2)基底准备:选用10×10mm和3×3mm的单晶Si片作为基底材料,依次经丙酮、酒精和去离子水超声清洗,用吹风机烘干;其中10×10mm薄膜用于组织结构形貌及电阻率表征,3×3mm薄膜用于磁性能分析。
(3)FeCoNi靶材的溅射功率标定:
3a、将FeCoNi靶材和基底材料放入溅射室中的对应位置;
3b、抽真空至低于3.0~4.0×10-3Pa,通入99.99%氩气作为工作气体;
3c、溅射工作气压为0.2~0.5Pa,开启直流电源,将基底的偏压调整至-400~410V,用Ar离子轰击FeCoNi靶材的表面15~20min,去除靶材表面的杂质;
3d、溅射功率标定:溅射功率设定为300W,基底材料温度为25℃,设置完毕后启辉,溅射时间1000s;将FeCoNi靶材溅射于基底材料的表面;
3e、溅射完毕后用台阶仪测量薄膜的溅射厚度,计算出单位时间内溅射的FeCoNi薄膜厚度,从而标定FeCoNi靶材的溅射功率。
(4)Zr靶材溅射功率标定:
4a、将Zr靶材和基底材料放入溅射室中的对应位置;
4b、抽真空度至低于4.0×10-3Pa,通入99.99%的氩气作为工作气体;
4c、溅射工作气压为0.2~0.5Pa,开启射频电源,将基底的偏压调整至-400-410V,用Ar离子轰击Zr靶材的表面15~20min,去除靶材表面的杂质;
4d、溅射功率标定:溅射功率分别设定为80W、160W,基底温度为20~25℃,设置完毕后启辉溅射,溅射时间1000-1100s;将Zr靶材溅射于基底材料的表面;
4e、溅射完毕后用台阶仪测量薄膜的溅射厚度,计算单位时间内溅射的Zr薄膜厚度,从而标定出Zr靶材的溅射功率。
(5)FeCoNiZrx软磁薄膜的制备:
5a、将FeCoNi靶材、Zr靶材和基地材料放入溅射室中的对应位置;
5b、抽真空至低于3.0~4.0×10-3Pa,通入99.99%的氩气作为工作气体,溅射工作气压为0.2~0.5Pa;
5c、固定FeCoNi靶材的直流溅射功率300W,同时固定Zr靶材的射频溅射功率120W,溅射得到Zr含量0.2的FeCoNiZr0.2中熵合金软磁薄膜。
实施例2
实施例2与实施例1的区别在于:实施例2中步骤5c、固定FeCoNi靶材的直流溅射功率300W,同时固定Zr靶材的射频溅射功率200W,溅射得到Zr含量0.4的FeCoNiZr0.4中熵合金软磁薄膜。
实施例3
实施例3与实施例1的区别在于:实施例3中步骤5c、固定FeCoNi靶材的直流溅射功率300W,同时固定Zr靶材的射频溅射功率300W,溅射得到Zr含量0.6的FeCoNiZr0.6中熵合金软磁薄膜。
实施例4
实施例4与实施例1的区别在于:实施例4中步骤5c、固定FeCoNi靶材的直流溅射功率300W,同时固定Zr靶材的射频溅射功率360W,溅射得到Zr含量0.8的FeCoNiZr0.8中熵合金软磁薄膜。
实施例5
实施例5与实施例1的区别在于:实施例5中步骤5c、固定FeCoNi靶材的直流溅射功率300W,同时固定Zr靶材的射频溅射功率440W,溅射得到Zr含量1的FeCoNiZr中熵合金软磁薄膜。
对比例1
对比例1与实施例1的区别在于:加入Cr即对比例1得到的是FeCoNiCr合金。
将上述实施例1-5和对比例制备得到的中熵合金软磁薄膜在相同的测试条件下、相同的测试参数进行磁学性能和电学性能测试,测试得到软磁薄膜的薄膜成分、饱和磁化强度、矫顽力、电阻率的数据,如下表1所示。
表1为实施例1-5和对比例软磁薄膜的性能参数示意表
由表1可以看出,当0.2≤x≤0.6时,在此区间内,软磁薄膜兼顾了较佳软磁性能和较高的电阻率;最佳薄膜性能的Zr含量为实施例2的FeCoNiZr0.4,薄膜的综合性能最佳。
性能测试
1.采用Hitachi公司的S4800场发射扫描电镜(SEM)对实施例1-5和对比例进行表面微区组织形貌表征,所得软磁薄膜的表面SEM图如图1所示。
由图1可知,薄膜的颗粒尺寸随Zr含量的增加呈现先减小后增加趋势。当x=0.4时,软磁薄膜的颗粒尺寸在整个Zr含量范围内最细,颗粒尺寸在20nm左右;当0.2≤x≤0.4时,随着Zr含量的增加,薄膜颗粒尺寸先减小,这是因为在Zr含量较低时,Zr能阻止薄膜元素扩散,导致颗粒生长困难,薄膜颗粒细化;当0.4≤x≤1时,Zr靶材功率增加,溅射功率增加导致激活氩离子的能力增强,从而使溅射速率增加。溅射功率大则轰击靶材的粒子能量越大,溅射原子交换得到的能量也就越大,因而沉积到基底表面时能量大则撞击产生的热量也大,使得基底温度间的积累,越来越多的原子与基底撞击产生积累变大的热量使得基底温度不断升高,因而颗粒尺寸也在不断增大。
2.取实施例2制得的软磁薄膜进行微观形貌扫描,采用Hitachi公司的S4800场发射扫描电镜进行微区组织形貌表征,所得软磁薄膜的截面SEM图如图2所示。
由图2可知,磁控溅射时薄膜呈柱状生长,薄膜厚度1000nm。薄膜在靠近基底以层状方式生长,远离基底以岛状方式生长,这是由于生长初期薄膜与基体晶格常数不匹配及内应力随着沉积时间增加而增大共同作用所致。薄膜与基体晶格常数不同使薄膜在生长初期以层状方式进行沉积,随着沉积时间的延长,由薄膜沉积产生的内应力也在持续增大,进而产生了内应力过大现象,此时,薄膜转变为岛状生长以减少这部分应变能。因此,薄膜的截面形貌表现为近基体部分为致密层,远基体部分为柱状结构。
3.取实施例1-5制备的软磁薄膜进行物相分析,采用掠入射,入射角度1°,扫描范围20-85°,扫描速度2°/min,所得软磁薄膜的XRD图谱如图3所示。
由图3可知,随Zr含量增加,薄膜由单相FCC变为非晶结构。可见溶质原子在形成固溶体时产生严重的晶格畸变,导致晶体的应变能增加固溶体相的稳定性变差,合金的非晶形成能力越强,Zr(0.1603nm)与Fe(0.1241nm)、Co(0.1251nm)、Ni(0.1264nm)具有大的原子半径差,增加组元间的错配度,使得合金的非晶态结构更趋于密堆,这便加剧了合金原子的相互作用,所以合金更易表现为非晶态结构。其次,Zr与Fe、Co、Ni混合热值分别达到-25kJ·mol-1、-41kJ·mol-1、-49kJ·mol-1,在过渡族金属中最负,负混合焓的存才表明元素之间有较强的相互作用,主元之间的缓慢扩散,有利于化学短程序的形成,导致薄膜呈现非晶态结构。最后,薄膜的制备方法是更易获得非晶态结构的外部条件,受基体低温的影响,粒子的扩散能力较弱,容易形成非晶结构。
4.取实施例2制得的软磁薄膜进行磁学性能测定,采用lakeshore公司的Lakeshore7410振动样品磁强计表征薄膜的饱和磁化强度Ms、矫顽力Hc,所得软磁薄膜的磁滞回线如图4所示。
由图4可知,薄膜具有良好的软磁特性,由于良好的结构特性,赋予了薄膜优异的磁学性能,饱和磁化强度1127.8emu·cm-3,矫顽力0.96Oe。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种FeCoNiZrx中熵合金软磁薄膜,其特征在于,所述中熵合金软磁薄膜包括Fe、Co、Ni和Zr,其中,Fe、Co、Ni和Zr的原子百分比为Fe:Co:Ni:Zr=1:1:1:x,x=0-1。
2.根据权利要求1所述的软磁薄膜,其特征在于,所述中熵合金软磁薄膜的电阻率为58.5-179.8μΩ·cm。
3.根据权利要求1所述的软磁薄膜,其特征在于,0.2≤x≤0.6。
4.根据权利要求1所述的软磁薄膜,其特征在于,x=0.4。
5.根据权利要求1所述的软磁薄膜,其特征在于,所述软磁薄膜的厚度为500~1500nm。
6.根据权利要求1所述的软磁薄膜,其特征在于:所述软磁薄膜通过共溅射工艺制备。
7.权利要求1-6任一项所述软磁薄膜的制备方法,其特征在于:包括以下步骤:
(1)靶材制备:将金属Fe、Co和Ni原料制备为FeCoNi三元合金靶材,将金属Zr原料制备为Zr靶材;
(2)共溅射功率标定:设定步骤(1)中所述FeCoNi三元合金靶材的溅射功率P1的直流电源,所述Zr靶材的使用溅射功率P2的射频电源,标定共溅射制备不同Zr含量薄膜所使用的溅射功率P2,获得薄膜Zr含量与Zr靶材溅射功率的变化曲线;
(3)薄膜制备:将步骤(1)中FeCoNi三元合金靶材、Zr靶材与基底材料放入工艺腔室,设定步骤(1)中所述FeCoNi三元合金靶材的溅射功率为溅射功率P1,同时依据步骤(2)所述变化曲线改变所述Zr靶材的溅射功率,通过共溅射制备不同Zr含量的中熵合金软磁薄膜。
8.根据权利要求7所述的制备方法,其特征在于,所述步骤(1)中制备的FeCoNi三元合金靶材的厚度0mm<H≤2mm。
9.根据权利要求7所述的制备方法,其特征在于,所述步骤(2)中Zr靶材的共溅射功率标定具体包括以下步骤:
1)将FeCoNi靶材、Zr靶材和基底材料放入工艺腔室中;
2)将工艺腔室抽真空,并通入工作气体;
3)用工作气体离子轰击所述Zr靶材的表面;
4)共溅射功率标定:设定溅射功率和工艺参数,设置完毕后启辉,对FeCoNi靶材和Zr靶材进行1000~1100s的共溅射;
5)溅射完毕后检测薄膜的Zr含量,计算薄膜Zr含量与Zr靶材溅射功率之间的关系,从而标定出薄膜Zr含量随Zr靶材功率变化曲线。
10.一种中熵合金软磁薄膜的应用,将权利要求1~5任一所述的中熵合金软磁薄膜用于磁存储器、磁传感器、磁感应器或纳米变压器。
CN202310347175.9A 2023-04-03 2023-04-03 一种FeCoNiZrx中熵合金软磁薄膜、制备方法及其应用 Pending CN117012491A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310347175.9A CN117012491A (zh) 2023-04-03 2023-04-03 一种FeCoNiZrx中熵合金软磁薄膜、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310347175.9A CN117012491A (zh) 2023-04-03 2023-04-03 一种FeCoNiZrx中熵合金软磁薄膜、制备方法及其应用

Publications (1)

Publication Number Publication Date
CN117012491A true CN117012491A (zh) 2023-11-07

Family

ID=88564307

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310347175.9A Pending CN117012491A (zh) 2023-04-03 2023-04-03 一种FeCoNiZrx中熵合金软磁薄膜、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN117012491A (zh)

Similar Documents

Publication Publication Date Title
JP4376487B2 (ja) 高純度ニッケル合金ターゲットの製造方法
Desai et al. Anomalous variation of coercivity with annealing in nanocrystalline NiZn ferrite films
CN105331942B (zh) 钇铁石榴石薄膜材料及其制备方法
JPWO2005091315A1 (ja) R−Fe−B系薄膜磁石及びその製造方法
CN105989983B (zh) 永久磁铁
TW200407450A (en) Fabrication of nanocomposite thin films for high density magnetic recording media
JP2019523984A (ja) Fe系磁性薄膜
CN108914080A (zh) 一种制备具有室温交换偏置效应锰铋合金薄膜的方法
CN109887706B (zh) 一种磁性纳米颗粒复合膜及其制备方法
CN117012491A (zh) 一种FeCoNiZrx中熵合金软磁薄膜、制备方法及其应用
Caltun Pulsed laser deposition of Ni-Zn ferrite thin films
CN112962024B (zh) 一种类Finemet型Fe基纳米晶软磁合金及其制备方法
JP4006620B2 (ja) 高純度ニッケルターゲットの製造方法及び高純度ニッケルターゲット
JP2019534562A (ja) Fe−Al系合金磁性薄膜
KR100270605B1 (ko) 철계연자성박막합금및그의제조방법
CN109234678B (zh) 一种铜掺杂钛酸钡/镍锌铁氧体复相薄膜材料及制备方法
JP4698779B2 (ja) 磁性体スパッタリングターゲット及びその製造方法
US20200058429A1 (en) Fe-Co-Si ALLOY MAGNETIC THIN FILM
JP2003213405A (ja) 高純度ニッケル又はニッケル合金ターゲット及びその製造方法
JP4582465B2 (ja) 高純度ニッケル又はニッケル合金ターゲット及びその製造方法
TW475946B (en) Co-Ti alloy sputtering target and manufacturing method thereof
CN112899629B (zh) 一种高熵氧化物薄膜及其制备方法和应用
CN110079760A (zh) 具有周期性微纳米级凹凸结构的金属软磁薄膜及其制备
US11585013B2 (en) Fe—Co—Al alloy magnetic thin film
CN110904417B (zh) 一种应力调控磁化强度的柔性外延Fe4N薄膜及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination