CN116892037A - 一种碳纤维负载的铜镍钴合金颗粒硝酸根转氨催化剂的制备方法 - Google Patents

一种碳纤维负载的铜镍钴合金颗粒硝酸根转氨催化剂的制备方法 Download PDF

Info

Publication number
CN116892037A
CN116892037A CN202310859725.5A CN202310859725A CN116892037A CN 116892037 A CN116892037 A CN 116892037A CN 202310859725 A CN202310859725 A CN 202310859725A CN 116892037 A CN116892037 A CN 116892037A
Authority
CN
China
Prior art keywords
nickel
copper
carbon fiber
cobalt alloy
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310859725.5A
Other languages
English (en)
Inventor
高书燕
张坤
赵亚岭
黄金锐
赵子伟
陈野
陈鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN202310859725.5A priority Critical patent/CN116892037A/zh
Publication of CN116892037A publication Critical patent/CN116892037A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/089Alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/27Ammonia
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/065Carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种碳纤维负载的铜镍钴合金颗粒硝酸根转氨催化剂的制备方法,属于阴极电催化硝酸根8电子还原反应催化剂的制备技术领域。本发明以碳纤维纸为衬底,通过以水杨酸为络合剂在三元金属铜镍钴前驱体液体通过电沉积成功制备了铜镍钴合金催化剂,三元铜镍钴合金催化剂显示出了优异的电催化硝酸根还原为氨的性能。本发明的制备方法具有简单、绿色环保、成本低廉等突出优点,不仅为硝酸根转氨绿色能源体系研究提供了思路,而且为阴极电催化碳载金属催化剂的理性设计合成提供了借鉴意义。

Description

一种碳纤维负载的铜镍钴合金颗粒硝酸根转氨催化剂的制备 方法
技术领域
本发明属于碳纳米纤维负载的铜镍钴合金颗粒硝酸根(NO3 -)转氨催化剂的制备技术领域,涉及阴极电催化硝酸根8电子还原反应(NO3RR)的催化剂,具体涉及一种碳纤维负载的铜基三元合金硝酸根转氨催化剂的制备方法。
背景技术
基于我国是农业大国的基本国情,氮肥的增量使用使硝酸盐成为地下主要水污染物的其中一支。美国国家工程院(National Academy of Engineering)已将氮循环管理视为一项重大挑战,对地下水中积累的硝酸盐进行处理可以缓解人类对氮循环的影响。为到达低于美国环境保护局规定的最高限度(即百万分之10,<10ppm)标准,物理、生物和化学等各种处理方法已经被广泛研究。电催化硝酸盐还原(NO3RR)是一种很有前途的方法,具有可再生电力作为供能源、不产生二次污染等诸多优势。此外,相比于传统的热催化硝酸盐还原,NO3RR只需电子帮助还原而不需要H2或其他还原剂的供应。NO3RR的产物可以是N2、NH3、NO、N2O和NH2OH等。目前,高活性、高选择性和高稳定性的理想催化剂的缺乏是阻碍NO3RR广泛应用的主要原因。
N2和NH3是电催化还原硝酸过程两种主要的理想产物,一种是低污染的,另一种是可利用的。目前电还原硝酸的大多数研究聚焦于合成N2。事实上,对N2实现高的催化选择性具有动力学挑战性,因为N-N耦合反应相当困难,相比之下,NH4 +/NH3和H2(氢析反应(HER))的动力学相对温和。特别是NO3 到NO2 的反应,被认为是合成不同N物种的决速步骤,且被证实是极具挑战性的。此外,关于电催化还原硝酸盐合成N2的大多数报道,N2的选择性低于<30%,且是基于氮平衡估计(产生的N2=反应的NO3 –产生NO2 –NH4 +)。而这种间接量化N2的方法有很大的不准确性,比如(1)量化NO3 、NO2 、NH4 +时的实验误差;(2)除了N2,NO2 和NH4 +,还存在其他可能的氮氧化物中间体(NO、NO2、和N2O);(3)反应器的不完全密封使空气中的N2和样本混合,这可能很大程度上干扰准确量化N2。因此,建立准确的氮和电子平衡是必要的,但由于一系列可能的含N中间体的存在(+V(NO3 )延伸到-III(NH3),例如,NO2、NO、N2O、N2、NH2OH、NH4 +等等,这仍然具有挑战性。
最近的研究报道了NO3 向NH4 +(特别是来自富含硝酸盐的废物流)的电化学转化,这有望减缓人们通过能源密集型Haber-Bosch工艺生产NH3的需求。电化学还原硝酸合成盐氨,不仅帮助解决环境问题,而且还降低生产氨过程中的能源消耗。因此,设计和构筑理想的电催化剂并深入了解硝酸盐还原机制,以有效操纵NO3 还原途径以获得所需产品是一项很有意义的工作。
目前,已经有许多金属被探究用于电还原硝酸盐转氨体系,其中,铜无论是单独还是与其它金属结合的形式均表现出了出色的电催化还原硝酸盐性能。基于此,本发明通过电沉积技术将水溶液中的铜离子和镍离子还原为负载于碳纳米纤维的铜镍钴合金颗粒用于硝酸根电还原为氨的反应体系中。
发明内容
本发明解决的技术问题是提供了一种工艺简单、成本低廉且性能优异的碳纤维负载的铜镍钴合金颗粒硝酸根转氨催化剂的制备方法,该方法以常规的碳纤维纸为衬底,以包含一定浓度的三水硝酸铜、四水乙酸镍和四水乙酸钴混合溶液为金属前驱体沉积液,以水杨酸为络合剂,采用基于计时电流法的电沉积技术成功合成了碳纤维负载的铜镍钴合金颗粒硝酸根转氨催化剂。
本发明为解决上述技术问题采用如下技术方案,一种碳纤维负载的铜镍钴合金颗粒硝酸根转氨催化剂的制备方法,其特征在于具体步骤为:
步骤S1:将碳纤维纸裁成2cm×0.5cm的矩形,然后将其放入半导体蚀刻RIE反应离子蚀刻机内,随后将反应离子蚀刻机通入氧气,分别对矩形碳纤维纸的正反两面刻蚀10分钟;
步骤S2:配制镍金属原子摩尔浓度为0.1mol L-1的四水乙酸镍、铜金属原子摩尔浓度为0.1mol L-1的三水硝酸铜、钴金属原子摩尔浓度为0.1mol L-1的四水乙酸钴混合水溶液作为金属电沉积前驱体溶液,再加入0.3mol L-1的水杨酸作为络合剂;
步骤S3:以饱和甘汞电极(SCE)、铂片和2cm×0.5cm碳纸分别为参比、对和工作电极,在配置好的电沉积液中,通过计时电流法将沉积液中的Cu2+、Ni2+、Co2+电还原为铜镍钴合金颗粒负载于碳纸上,即可得到碳纤维负载的铜镍钴合金颗粒硝酸根转氨催化剂。该碳纤维负载的铜镍钴合金颗粒硝酸根转氨催化剂表现出令人满意的硝酸根转氨活性及稳定性,法拉第效率达96.31%,氨产率为303.49μmol h-1cm-2
进一步优选,步骤S1中所述在反应离子刻蚀机中氧气通入量控制在200sc cm。
进一步优选,步骤S3中所述电沉积过程中施加的电位为-1.15V、-1.20V和-1.25Vvs.SCE,持续沉积时间为300s。
本发明与现有技术相比具有以下优点和有益效果:
1、本发明涉及的电沉积法制备过程简便、省时、高效,避免了常规制备硝酸根转氨催化剂涉及的高温热解、水热反应等复杂的过程。本发明选用廉价易得的四水乙酸镍、三水硝酸铜、四水乙酸钴为金属前驱体盐,通过一步简单的电沉积法即可得到高活性的碳纤维负载的铜镍钴合金颗粒硝酸根转氨电催化剂,该方法具有大规模生产的潜力。
2、本发明在电沉积过程中通过优化施加电位,从而调控铜镍钴合金颗粒中铜镍钴配比,成功获得了富CuNiCo(111)晶面的铜镍钴合金颗粒催化剂。其中,相关研究表明Cu金属更有利于实现NO3 -到NO2 -转化的脱氧过程,Ni金属更易于通过发生析氢反应产生氢自由基,而Co金属对硝酸根转氨的吸附能较高,增加反应活性位点有利于反应的发生,从而促进NO*到NH3转化的加氢过程。因此,本发明开发的铜镍协同作用增强的铜镍钴合金颗粒催化剂是构建高性能NO3 -还原NH3电催化剂的有效策略。
附图说明
图1是制备的纯碳纤维样品E1(a,b)、铜镍钴合金颗粒E8(c,d)硝酸根转氨催化剂的扫描式电子显微镜(Scanning electron microscope,SEM)电镜图;E8的透射电子显微镜和高分辨透射电子显微镜图片(High-resolution transmission electron microscopeimage,HR-TEM,e和i)、选区电子衍射图(Selected electron diffraction pattern,SAED,i)和元素面扫图片(Energy Dispersive Spectroscopy,EDS,f-h);
图2是E2-E8电沉积曲线图;
图3是E1-E8的硝酸根转氨催化剂的线性扫描伏安曲线图;
图4是E8在纯Na2SO和Na2SO4+KNO3溶液中的LSV曲线;
图5是纯碳纤维样品E1和碳纤维负载的E2-E8的X射线衍射图;
图6是E8在Na2SO4+KNO3溶液中的电化学阻抗谱图;
图7是E8在NO3RR过程中展现不同电位下的硝酸根转氨法拉第效率和氨产率图;
图8是E8在稳定性测试过程中的硝酸根转氨法拉第效率和氨产率图;
图9是E8在14/15N硝酸根溶液中反应后获得的核磁共振图;
图10是E8在纯Na2SO4和Na2SO4+KNO3溶液中的氨产率图;
图11是E8的(a)的紫外可见吸收光谱曲线图和(b)CA曲线图。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
碳纤维纸样品E1具体制备步骤为
步骤:将碳纤维纸裁成2cm×0.5cm的矩形,在半导体蚀刻RIE反应离子蚀刻机通入氧气将裁剪好的碳纸正反两面各刻蚀10分钟,得到样品(对照样品)E1;
实施例2
步骤S1:将碳纤维纸裁成2cm×0.5cm的矩形,在半导体蚀刻RIE反应离子蚀刻机通入氧气将裁剪好的碳纸正反两面各刻蚀10分钟备用;
步骤S2:在铜金属原子摩尔浓度为0.1mol L-1的三水硝酸铜溶液中进行电沉积,为了控制单一变量,在硝酸铜溶液中也加入0.1mol L-1的水杨酸作为络合剂;
步骤S3:以饱和甘汞电极(SCE)、铂片和2cm×0.5cm碳纸分别为参比、对和工作电极,在配置好的电沉积液中,通过计时电流法将沉积液中的Cu2+电还原为铜金属负载于碳纸上,即可得到碳纤维负载的单金属铜硝酸根转氨催化剂E2,其中电还原铜的应用电位为-1.0V vs.SCE,持续还原时间为200s。
实施例3
E3具体制备步骤为
步骤S1:将碳纤维纸裁成2cm×0.5cm的矩形,在半导体蚀刻RIE反应离子蚀刻机通入氧气将裁剪好的碳纸正反两面各刻蚀10分钟备用;
步骤S2:在镍金属原子摩尔浓度为0.1mol L-1的四水乙酸镍溶液中进行电沉积,为了控制单一变量,在乙酸镍溶液中也加入0.1mol L-1的水杨酸作为络合剂;
步骤S3:以饱和甘汞电极(SCE)、铂片和2cm×0.5cm碳纸分别为参比、对和工作电极,在配置好的电沉积液中,通过计时电流法将沉积液中的Ni2+电还原为镍金属负载于碳纸上,即可得到碳纤维负载的单金属镍硝酸根转氨催化剂E3,其中电还原镍的应用电位为-1.2V vs.SCE,持续还原时间为300s。
实施例4
E4具体制备步骤为
步骤S1:将碳纤维纸裁成2cm×0.5cm的矩形,在半导体蚀刻RIE反应离子蚀刻机通入氧气将裁剪好的碳纸正反两面各刻蚀10分钟备用;
步骤S2:在钴金属原子摩尔浓度为0.1mol L-1的四水乙酸钴溶液中进行电沉积,为了控制单一变量,在乙酸钴溶液中也加入0.1mol L-1的水杨酸作为络合剂;
步骤S3:以饱和甘汞电极(SCE)、铂片和2cm×0.5cm碳纸分别为参比、对和工作电极,在配置好的电沉积液中,通过计时电流法将沉积液中的Co2+电还原为镍金属负载于碳纸上,即可得到碳纤维负载的单金属镍硝酸根转氨催化剂E4,其中电还原镍的应用电位为-1.2V vs.SCE,持续还原时间为300s。
实施例5
E5具体制备步骤为
步骤S1:将碳纤维纸裁成2cm×0.5cm的矩形,在半导体蚀刻RIE反应离子蚀刻机通入氧气将裁剪好的碳纸正反两面各刻蚀10分钟备用;
步骤S2:配制铜金属原子摩尔浓度为0.1mol L-1的三水硝酸铜与镍金属原子摩尔浓度为0.1mol L-1的乙酸镍混合溶液作为金属电沉积前驱体溶液,再加入0.2mol L-1的水杨酸作为络合剂;
步骤S3:以饱和甘汞电极(SCE)、铂片和2cm×0.5cm碳纸分别为参比、对和工作电极,在配置好的电沉积液中,通过计时电流法将沉积液中的Cu2+和Ni2+电还原为铜镍合金颗粒负载于碳纸上,即可得到碳纤维负载的铜镍钴合金颗粒硝酸根转氨催化剂E5,其中制备E5过程中的电沉积应用电位为-1.2V vs.SCE,持续还原时间为300s。
实施例6
E6具体制备步骤为
步骤S1:将碳纤维纸裁成2cm×0.5cm的矩形,在半导体蚀刻RIE反应离子蚀刻机通入氧气将裁剪好的碳纸正反两面各刻蚀10分钟备用;
步骤S2:配制铜金属原子摩尔浓度为0.1mol L-1的三水硝酸铜与钴金属原子摩尔浓度为0.1mol L-1的乙酸钴溶液作为金属电沉积前驱体溶液,加入0.2mol L-1的水杨酸作为络合剂;
步骤S3:以饱和甘汞电极(SCE)、铂片和2cm×0.5cm碳纸分别为参比、对和工作电极,在配置好的电沉积液中,通过计时电流法将沉积液中的Cu2+和Co2+电还原为铜钴合金颗粒负载于碳纸上,即可得到碳纤维负载的铜钴合金颗粒硝酸根转氨催化剂E6,其中制备E6过程中的电沉积应用电位为-1.2Vvs.SCE,持续还原时间为300s。
实施例7
E7具体制备步骤为
步骤S1:将碳纤维纸裁成2cm×0.5cm的矩形,在半导体蚀刻RIE反应离子蚀刻机通入氧气将裁剪好的碳纸正反两面各刻蚀10分钟备用;
步骤S2:配制镍金属原子摩尔浓度为0.1mol L-1的乙酸镍与钴金属原子摩尔浓度为0.1mol L-1的乙酸钴溶液作为金属电沉积前驱体溶液,也加入0.2mol L-1的水杨酸作为络合剂;
步骤S3:以饱和甘汞电极(SCE)、铂片和2cm×0.5cm碳纸分别为参比、对和工作电极,在配置好的电沉积液中,通过计时电流法将沉积液中的Co2+和Ni2+电还原为镍钴合金颗粒负载于碳纸上,即可得到碳纤维负载的镍钴合金颗粒硝酸根转氨催化剂E7,其中制备E7过程中的电沉积应用电位为-1.2V vs.SCE,持续还原时间为300s。
实施例8
样品E8具体制备步骤为
步骤S1:将碳纤维纸裁成2cm×0.5cm的矩形,在半导体蚀刻RIE反应离子蚀刻机通入氧气将裁剪好的碳纸正反两面各刻蚀10分钟备用;
步骤S2:配制铜金属原子摩尔浓度为0.1mol L-1的三水硝酸铜、镍金属原子摩尔浓度为0.1mol L-1的乙酸镍、钴金属原子摩尔浓度为0.1mol L-1的乙酸钴混合溶液作为金属电沉积前驱体溶液,再加入0.3mol L-1的水杨酸作为络合剂;
步骤S3:以饱和甘汞电极(SCE)、铂片和2cm×0.5cm碳纸分别为参比、对和工作电极,在配置好的电沉积液中,通过计时电流法将沉积液中的Cu2+,Ni2+和Co2+电还原为铜镍钴合金颗粒负载于碳纸上,即可得到碳纤维负载的铜镍钴合金颗粒硝酸根转氨催化剂E8,其中制备E8过程中的电沉积应用电位为-1.2V vs.SCE,持续还原时间为300s。
NO3RR活性测试过程:将制备好的NO3RR电催化剂(E1/E2/E3/E4/E5/E6/E7/E8置于Pt片电极夹内用作工作电极,以饱和甘汞电极(SCE)为参比电极,以Pt片为对电极,以0.5mol L-1Na2SO4+0.1mol L-1KNO3混合水溶液为电解液,构成三电极测试系统。首先,在电解液中通入氩气进行饱和,然后进行LSV测试获得E1-E8催化剂的LSV极化曲线,扫速为5mVs-1,电位区间为-0.65~-1.45V;在0.5mol L-1Na2SO4+0.1mol L-1KNO3混合水溶液进行计时电流响应测试,获得E8催化剂不同电位下的计时电流曲线,反应时间为1800s。通过紫外可见分光光度计对不同催化剂下的电解液进行靛酚蓝测试,最终得到它们的紫外可见分光曲线。
通过XRD对样品E8进行表征(图1d)。出现了衍射峰,它们与纯金属Co,Ni或Cu的衍射峰不完全匹配。很明显样品E8不是纯Co,Ni和Cu的混合物。在二元合金的情况下,衍射图案似乎介于两种纯金属的衍射图之间。然而,即使考虑二元合金,我们样品的衍射峰也是无法重叠二元合金衍射峰。此外,晶格间距的值彼此匹配。根据这一结果,结合Co、Ni和Cu的均匀分布,可以得出结论,我们成功合成了铜镍钴合金颗粒催化剂。
实施例1-8制备的E1-E8样品的NO3RR催化性能如下:如图1中(a)所示,铜镍钴合金沉积电流大于二元合金大于单金属。如图1中(b)所示从E1-E8样品的LSV曲线来看,E8样品的极限反应电流最大,证明了E8样品具有最出色NO3RR活性;如图1中(c)和(i)所示,E8样品分别在Na2SO4和Na2SO4+KNO3溶液测试LSV曲线和氨产率,在Na2SO4+KNO3溶液表现出优秀的NO3RR催化活性;如图1中(e)所示,E1-E8样品均表现出了较好的电子转移速率,其中,铜镍钴合金颗粒表现出了最好的电子转移速率,充分证明了E8样品具有出色的NO3RR催化活性;如图1中(f)所示,E8样品在不同点位下的氨产率和法拉第效率,在电压-1.25V vs.SCE时表现出最佳性能;如图1中(h)所示,当分别使用14NKNO315NKNO3作为反应氮源,然后将反应后的电解液进行核磁共振测试得到1H NMR光谱,结果表明当氮源为14NKNO3时,氨产物为14NNH3,当氮源为15NKNO3时,氨产物为15NNH3,充分表明了反应后得到氨产品确实来自于KNO3反应物。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (3)

1.一种碳纤维负载的铜镍钴合金颗粒硝酸根转氨催化剂的制备方法,其特征在于具体步骤为:
步骤S1:将碳纤维纸裁成2cm×0.5cm的矩形,然后将裁剪好的碳纸放入通有氧气的半导体蚀刻RIE反应离子蚀刻机内,分别将正反两面刻蚀10分钟;
步骤S2:配制镍金属原子摩尔浓度为0.1mol L-1的四水乙酸镍、铜金属原子摩尔浓度为0.1mol L-1的三水硝酸铜、钴金属原子摩尔浓度为0.1mol L-1的四水乙酸钴混合溶液作为金属电沉积前驱体溶液,再加入0.3mol L-1的水杨酸作为络合剂;
步骤S3:以饱和甘汞电极(SCE)、铂片和2cm×0.5cm碳纸分别为参比电极、对电极和工作电极,在配置好的电沉积液中,通过计时电流法将沉积液中的Cu2+、Ni2+、Co2+电还原为铜镍钴合金颗粒负载于碳纸上,即可得到碳纤维负载的铜镍钴合金颗粒硝酸根转氨催化剂。该碳纤维负载的铜镍钴合金颗粒硝酸根转氨催化剂表现出优异的硝酸根转氨活性及稳定性,法拉第效率达96.31%,氨产率为303.49μmol h-1cm-2
2.根据权利要求1所述的碳纤维负载的铜镍钴合金颗粒硝酸根转氨催化剂的制备方法,其特征在于:步骤S1中所述在反应离子刻蚀机中氧气通入量控制在200sc cm。
3.根据权利要求1所述的碳纤维负载的铜镍钴合金颗粒硝酸根转氨催化剂的制备方法,其特征在于:步骤S3中所述电沉积过程中施加的电位为-1.15V、-1.2V和-1.25Vvs.SCE,持续沉积时间为300s。
CN202310859725.5A 2023-07-13 2023-07-13 一种碳纤维负载的铜镍钴合金颗粒硝酸根转氨催化剂的制备方法 Pending CN116892037A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310859725.5A CN116892037A (zh) 2023-07-13 2023-07-13 一种碳纤维负载的铜镍钴合金颗粒硝酸根转氨催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310859725.5A CN116892037A (zh) 2023-07-13 2023-07-13 一种碳纤维负载的铜镍钴合金颗粒硝酸根转氨催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN116892037A true CN116892037A (zh) 2023-10-17

Family

ID=88313197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310859725.5A Pending CN116892037A (zh) 2023-07-13 2023-07-13 一种碳纤维负载的铜镍钴合金颗粒硝酸根转氨催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN116892037A (zh)

Similar Documents

Publication Publication Date Title
Lv et al. Encapsulating vanadium nitride nanodots into N, S-codoped graphitized carbon for synergistic electrocatalytic nitrogen reduction and aqueous Zn-N2 battery
Wang et al. Preparation of nanostructured Cu (OH) 2 and CuO electrocatalysts for water oxidation by electrophoresis deposition
EP2377971A1 (en) Amorphous transition metal sulphide films or solids as efficient electrocatalysts for hydrogen production from water or aqueous solutions
CN110129815B (zh) 改性的tm-ldh纳米材料、其制备方法及应用
KR101670860B1 (ko) 물 분해용 촉매 및 이의 제조방법
CN109811365A (zh) 一种基于碳布生长的镍铁基纳米片阵列及其制备和应用
CN113026047B (zh) 一种电化学催化转化二氧化碳合成甲醇的方法
CN110681404A (zh) 一种用于电解水阴极析氢反应的片状碳化钼催化剂及其制备方法和应用
CN113862701B (zh) 一种铜单原子催化材料与电极的制备方法及其在硝酸盐还原产氨中的应用
CN109999845A (zh) 一种全铁基析氧催化剂及其制备方法与应用
CN112076765B (zh) 一种二硒化物/层状双金属氢氧化物复合水电解催化材料及其制备方法和应用
CN112909271A (zh) 一种具有海胆状形貌的整体式过渡金属磷化物电催化剂及其制备方法与应用
CN115584531A (zh) 一种银修饰硫化锡催化剂的制备方法及其在二氧化碳电还原中的应用
Wang et al. High Faraday efficiency of Cu 1 Co 1–BCN based on a dodecahydro-closo-dodecaborate hybrid for electrocatalytic reduction of nitrate to ammonia
Sun et al. In situ formation of grain boundaries on a supported hybrid to boost water oxidation activity of iridium oxide
Wang et al. Boron nanoclusters endowed NiFe layered double hydroxides with efficient bifunction toward ammonia oxidation reaction and hydrogen evolution reaction
CN115449835A (zh) 一种碳纤维负载的铜镍合金纳米颗粒硝酸根转氨催化剂的制备方法
Bi et al. Nitrogen‐bridged Fe‐Cu Atomic Pair Sites for Efficient Electrochemical Ammonia Production and Electricity Generation with Zn‐NO2 Batteries
CN116145193B (zh) 一种电催化还原硝酸根为氨的铜基催化剂及其制备方法
CN111254461B (zh) 一种光还原二氧化碳的氧化钨/碘氧铋异质结材料及其制备方法和应用
CN111686812B (zh) 配体活化的过渡金属层状双羟基化合物、制备方法及用途
CN116892037A (zh) 一种碳纤维负载的铜镍钴合金颗粒硝酸根转氨催化剂的制备方法
CN114892206B (zh) 一种多元金属氮化物异质结纳米棒阵列复合电催化剂及其制备方法和应用
Yimeng et al. Ar-plasma enhanced copper-nickel alloy catalysis for ammonia synthesis
Zhao et al. Precise redox strategy to fabricate CuO/Cu2O hetero-electrodes for ultrafast electrochemical nitrate reduction into valuable ammonia resources

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination