CN116814262A - 一种基于铋基钙钛矿量子点荧光传感器的制备方法及其应用 - Google Patents

一种基于铋基钙钛矿量子点荧光传感器的制备方法及其应用 Download PDF

Info

Publication number
CN116814262A
CN116814262A CN202310790785.6A CN202310790785A CN116814262A CN 116814262 A CN116814262 A CN 116814262A CN 202310790785 A CN202310790785 A CN 202310790785A CN 116814262 A CN116814262 A CN 116814262A
Authority
CN
China
Prior art keywords
fluorescence sensor
solution
bismuth
fluorescence
quantum dot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310790785.6A
Other languages
English (en)
Inventor
高党鸽
张蔼琳
暴欣
吕斌
马建中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202310790785.6A priority Critical patent/CN116814262A/zh
Publication of CN116814262A publication Critical patent/CN116814262A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/74Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing arsenic, antimony or bismuth
    • C09K11/7428Halogenides
    • C09K11/7435Halogenides with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Immunology (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及一种基于铋基钙钛矿量子点荧光传感器的制备方法,本通过配体辅助再沉淀法制备了铋基钙钛矿量子点,并用于Cr(Ⅵ)的检测:首先将氯化铯、氯化铋、壳聚糖溶于1‑烯丙基‑3‑甲基‑氯化咪唑([AMIM]Cl)和二甲基亚砜的混合溶液中,用做前驱体;然后取适量前驱体滴入混合油酸的乙醇溶剂中,加热搅拌,离心过滤得上层清液,即为[AMIM]Cl/CS‑Cs3Bi2Cl9量子点荧光传感器,并将其应用于水中Cr(Ⅵ)的检测。本发明制备的[AMIM]Cl/CS‑Cs3Bi2Cl9量子点在370nm的激发波长下,于440nm处具有明亮蓝色发光。

Description

一种基于铋基钙钛矿量子点荧光传感器的制备方法及其应用
技术领域
本发明涉及环境检测、荧光传感等领域,具体涉及一种基于铋基钙钛矿量子点荧光传感器的制备方法及其应用。
背景技术
随着工业生产的不断发展,废弃污染物的不合理排放,造成的重金属污染已日趋严重,逐渐成为威胁人类生存与健康的环境问题。其中,Cr(Ⅵ)具有强毒性,极易通过空气、食物、水和土壤等环境进入人体,不仅会引起肝脏、肾脏等脏器损伤,还具有强致癌性,对人体健康造成了严重损伤。因此,实现Cr(Ⅵ)污染的检测对维护生态平衡以及人类自身健康具有重要意义。与电感耦合等离子质谱法、原子吸收分光光度法等检测方法相比,荧光传感法具有操作简单、灵敏度高、选择性好等优点,受到人们广泛关注。
钙钛矿量子点是一种新型光致发光材料,与传统的发光材料相比,具有荧光寿命长、颜色纯度高的优点,在传感器领域中有广泛的应用前景。其中,相对铅基、锡基等钙钛矿量子点而言,铋基钙钛矿量子点毒性低、稳定性强,在太阳能电池和光催化等领域中应用广泛,但较低的量子产率和仍需提高的稳定性限制了其进一步发展。
发明内容
本发明的目的是克服现有Cr(Ⅵ)检测技术操作复杂、灵敏度低等缺点,将铋基钙钛矿量子点应用于Cr(Ⅵ)检测,提供一种视觉可见、操作简单、高灵敏性的Cr(Ⅵ)检测方法。
本发明所采用的技术方案为:
一种基于铋基钙钛矿量子点荧光传感器的制备方法,由以下步骤实现,以下均以干质量份计:
1)取0.430-0.438份的氯化铯和0.608-0.616份的氯化铋放入20mL丝口瓶中,再加入0.259-0.271份二甲基亚砜、1.82-1.90份的壳聚糖和18.95-19.15份的1-烯丙基-3-甲基-卤化咪唑混合,50-80℃下搅拌10-30min形成前驱体溶液;
2)取0.5mL前驱体溶液,缓慢滴加到40.15-40.35份的无水乙醇和1.357-1.369份的油酸中,70-90℃下剧烈搅拌,反应10-30min,8000r/min离心,去除沉淀,得到[AMIM]Cl/CS-Cs3Bi2Cl9量子点荧光传感器。
进一步地,应用该荧光传感器进行Cr(Ⅵ)的识别和检测,具体方法为:将待测样品溶液加入所得荧光传感器中,然后在紫外灯下观察溶液的荧光淬灭情况,当溶液未出现荧光淬灭,则待测样品溶液中不含Cr(Ⅵ),当溶液出现荧光淬灭,则待测样品溶液中含有Cr(Ⅵ);
对Cr(Ⅵ)的线性检测范围是20-500μM,检测限为9μM。
进一步地,在365nm紫外灯下观察溶液荧光颜色的变化。
进一步地,将所得荧光传感器加入Cr(Ⅵ)浓度为0.01-2mM的水溶液,静置1-15min,检测其荧光强度做标准曲线,进而得到检测限及线性检测范围。
进一步地,所述荧光检测的激发波长为370nm,发射波长为440nm。
本发明具有以下优点:
1、本发明是一种基于铋基钙钛矿量子点荧光传感器检测水溶液中Cr(Ⅵ)的方法,对Cr(Ⅵ)的线性检测范围是20-500μM,检测限为9μM,在检测水环境中Cr(Ⅵ)的有很大的应用前景。
2、本发明制备的铋基钙钛矿量子点荧光传感器可以在水溶液中稳定存在,其表面的氨基和羟基可以与Cr(Ⅵ)进行结合,造成荧光强度的变化,进而实现对Cr(Ⅵ)的定量的检测和识别。
3、本发明利用生物质材料壳聚糖作为配体钝化铋基钙钛矿量子点,增强环境稳定性,提升量子产率,制备方法简单易行,成本低廉。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1:
一种基于铋基钙钛矿量子点荧光传感器的制备方法,由以下步骤实现,以下均以干质量份计:
1)取0.430份的氯化铯和0.608份的氯化铋放入20mL丝口瓶中,再加入0.259份二甲基亚砜、1.82份的壳聚糖和18.95份的1-烯丙基-3-甲基-氯化咪唑混合60℃下搅拌10min形成前驱体溶液;
2)取5mL前驱体溶液,缓慢滴加到40.15份的无水乙醇和1.357份的油酸中,80℃下剧烈搅拌,反应10min,自然冷却至室温,8000r/min离心,去除沉淀获得得到[AMIM]Cl/CS-Cs3Bi2Cl9量子点荧光传感器。
实施例2:
一种基于铋基钙钛矿量子点荧光传感器的制备方法,由以下步骤实现,以下均以干质量份计:
1)取0.434份的氯化铯和0.612份的氯化铋放入20mL丝口瓶中,再加入0.265份二甲基亚砜、1.86份的壳聚糖和19.05份的1-烯丙基-3-甲基-氯化咪唑混合,60℃下搅拌10min形成前驱体溶液;
2)取出5mL前驱体溶液,缓慢滴加到40.25份的无水乙醇和1.363份的油酸中,80℃下剧烈搅拌,反应10min,自然冷却至室温,8000r/min离心,去除沉淀获得[AMIM]Cl/CS-Cs3Bi2Cl9量子点荧光传感器。
实施例3:
一种基于铋基钙钛矿量子点荧光传感器的制备方法,由以下步骤实现,以下均以干质量份计:
1)取0.438份的氯化铯和0.616份的氯化铋放入20mL丝口瓶中,再加入0.271份二甲基亚砜、1.90份的壳聚糖和19.15份的1-烯丙基-3-甲基-氯化咪唑混合,60℃下搅拌10min形成前驱体溶液;
2)取出5mL前驱体溶液,缓慢滴加到40.35份的无水乙醇和1.369份的油酸中,80℃下剧烈搅拌,反应10min,自然冷却至室温,8000r/min离心,去除沉淀获得得到[AMIM]Cl/CS-Cs3Bi2Cl9量子点荧光传感器。
实施例4:
应用上述实施例中制得的荧光传感器进行Cr(Ⅵ)的识别和检测,具体方法为:将所得荧光传感器加入Cr(Ⅵ)浓度为0.01-2mM的水溶液,静置1-15min,检测其荧光强度做标准曲线,进而得到检测限及线性检测范围
将待测样品溶液加入所得荧光传感器中,然后在365nm的紫外灯下观察溶液的荧光淬灭情况,当溶液未出现荧光淬灭,则待测样品溶液中不含Cr(Ⅵ),当溶液出现荧光淬灭,则待测样品溶液中含有Cr(Ⅵ);得到对Cr(Ⅵ)的线性检测范围是20-500μM,线性相关方程为y=2.489c(Cr(Ⅵ))+0.149,线性相关系数为0.98603,检测限为9μM。所述荧光检测的激发波长为370nm,发射波长为440nm。
为评价本发明方法的特异性,选取水溶液中常见的离子如Cu2+、Al3+、Mg2+、Cr3+,Cl-、NO3 -,按照上述的检测步骤对这些离子进行测定,记录各自的荧光强度并进行比较。结果表明,其他离子几乎不会引起传感器荧光强度的变化,这说明基于铋基钙钛矿量子点荧光传感器检测Cr(Ⅵ)的方法具有高度选择性。

Claims (5)

1.一种基于铋基钙钛矿量子点荧光传感器的制备方法,其特征在于,由以下步骤实现,以下均以干质量份计:
1)取0.430-0.438份的氯化铯和0.608-0.616份的氯化铋放入20mL丝口瓶中,再加入0.259-0.271份二甲基亚砜、1.82-1.90份的壳聚糖和18.95-19.15份的1-烯丙基-3-甲基-卤化咪唑混合,50-80℃下搅拌10-30min形成前驱体溶液;
2)取0.5mL前驱体溶液,缓慢滴加到40.15-40.35份的无水乙醇和1.357-1.369份的油酸中,70-90℃下剧烈搅拌,反应10-30min,8000r/min离心,去除沉淀,得到[AMIM]Cl/CS-Cs3Bi2Cl9量子点荧光传感器。
2.根据权利要求1所述方法制备得到的荧光传感器的应用,其特征在于:
应用该荧光传感器进行Cr(Ⅵ)的识别和检测,具体方法为:将待测样品溶液加入所得荧光传感器中,然后在紫外灯下观察溶液的荧光淬灭情况,当溶液未出现荧光淬灭,则待测样品溶液中不含Cr(Ⅵ),当溶液出现荧光淬灭,则待测样品溶液中含有Cr(Ⅵ);
对Cr(Ⅵ)的线性检测范围是20-500μM,检测限为9μM。
3.根据权利要求2所述的荧光传感器的应用,其特征在于:在365nm紫外灯下观察溶液荧光颜色的变化。
4.根据权利要求3所述的荧光传感器的应用,其特征在于:将所得荧光传感器加入Cr(Ⅵ)浓度为0.01-2mM的水溶液,静置1-15min,检测其荧光强度做标准曲线,进而得到检测限及线性检测范围。
5.根据权利要求4所述的荧光传感器的应用,其特征在于,所述荧光检测的激发波长为370nm,发射波长为440nm。
CN202310790785.6A 2023-06-30 2023-06-30 一种基于铋基钙钛矿量子点荧光传感器的制备方法及其应用 Pending CN116814262A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310790785.6A CN116814262A (zh) 2023-06-30 2023-06-30 一种基于铋基钙钛矿量子点荧光传感器的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310790785.6A CN116814262A (zh) 2023-06-30 2023-06-30 一种基于铋基钙钛矿量子点荧光传感器的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN116814262A true CN116814262A (zh) 2023-09-29

Family

ID=88125502

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310790785.6A Pending CN116814262A (zh) 2023-06-30 2023-06-30 一种基于铋基钙钛矿量子点荧光传感器的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN116814262A (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104744714A (zh) * 2015-03-12 2015-07-01 华南理工大学 一种壳聚糖/钙钛矿纳米复合薄膜及其制备方法和应用
KR20150104911A (ko) * 2014-03-07 2015-09-16 고려대학교 산학협력단 암 진단용 마커 및 이를 이용한 암 진단 방법
CN105683172A (zh) * 2013-11-01 2016-06-15 埃克森美孚化学专利公司 对苯二甲酸的制备方法
CN105965636A (zh) * 2016-07-12 2016-09-28 南京林业大学 一种利用生物聚合物-壳聚糖改性木材、竹材的方法
CN107011890A (zh) * 2017-05-25 2017-08-04 华中科技大学 提高铋基钙钛矿纳米材料荧光产率和稳定性的方法及产物
US20180312754A1 (en) * 2015-11-08 2018-11-01 King Abdullah University Of Science And Technology Air-stable surface-passivated perovskite quantum dots (qds), methods of making these qds, and methods of using these qds
KR20190052222A (ko) * 2017-11-08 2019-05-16 한국기계연구원 더블 페로브스카이트 결정 구조를 갖는 비스무스계 양자점, 그 제조 방법 및 이를 포함하는 전자 소자
CN111500289A (zh) * 2020-04-21 2020-08-07 陕西科技大学 1-烯丙基-3-甲基-卤化咪唑/明胶协同稳定的锡卤钙钛矿量子点及其制备方法
CN112662393A (zh) * 2020-12-22 2021-04-16 陕西科技大学 一种采用全生物基材料稳定钙钛矿量子点的方法
CN114527109A (zh) * 2022-03-22 2022-05-24 陕西科技大学 一种基于锡基钙钛矿量子点荧光传感器检测水溶液中Fe3+的方法
WO2022249196A1 (en) * 2021-05-25 2022-12-01 INDIAN INSTITUTE OF TECHNOLOGY MADRAS (IIT Madras) Optical sensor for hexavalent chromium

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105683172A (zh) * 2013-11-01 2016-06-15 埃克森美孚化学专利公司 对苯二甲酸的制备方法
KR20150104911A (ko) * 2014-03-07 2015-09-16 고려대학교 산학협력단 암 진단용 마커 및 이를 이용한 암 진단 방법
CN104744714A (zh) * 2015-03-12 2015-07-01 华南理工大学 一种壳聚糖/钙钛矿纳米复合薄膜及其制备方法和应用
US20180312754A1 (en) * 2015-11-08 2018-11-01 King Abdullah University Of Science And Technology Air-stable surface-passivated perovskite quantum dots (qds), methods of making these qds, and methods of using these qds
CN105965636A (zh) * 2016-07-12 2016-09-28 南京林业大学 一种利用生物聚合物-壳聚糖改性木材、竹材的方法
CN107011890A (zh) * 2017-05-25 2017-08-04 华中科技大学 提高铋基钙钛矿纳米材料荧光产率和稳定性的方法及产物
KR20190052222A (ko) * 2017-11-08 2019-05-16 한국기계연구원 더블 페로브스카이트 결정 구조를 갖는 비스무스계 양자점, 그 제조 방법 및 이를 포함하는 전자 소자
CN111500289A (zh) * 2020-04-21 2020-08-07 陕西科技大学 1-烯丙基-3-甲基-卤化咪唑/明胶协同稳定的锡卤钙钛矿量子点及其制备方法
CN112662393A (zh) * 2020-12-22 2021-04-16 陕西科技大学 一种采用全生物基材料稳定钙钛矿量子点的方法
WO2022249196A1 (en) * 2021-05-25 2022-12-01 INDIAN INSTITUTE OF TECHNOLOGY MADRAS (IIT Madras) Optical sensor for hexavalent chromium
CN114527109A (zh) * 2022-03-22 2022-05-24 陕西科技大学 一种基于锡基钙钛矿量子点荧光传感器检测水溶液中Fe3+的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU WANG,ET AL.: "Surface termination passivation of imidazole-based diiodide enabling efficient inverted perovskite solar cells", 《CHEM. COMM.》, vol. 59, 28 April 2023 (2023-04-28), pages 6580 - 6583 *

Similar Documents

Publication Publication Date Title
Han et al. A dual-response ratiometric fluorescent sensor by europium-doped CdTe quantum dots for visual and colorimetric detection of tetracycline
Liu et al. Anthrax biomarker: An ultrasensitive fluorescent ratiometry of dipicolinic acid by using terbium (III)-modified carbon dots
Sun et al. High-efficient and pH-sensitive orange luminescence from silicon-doped carbon dots for information encryption and bio-imaging
CN106520116B (zh) 一种红色发光碳量子点及其制备方法和应用
CN105219376B (zh) Eu‑MOFs/CDs双色荧光材料及其制备与应用
Wang et al. Blue photoluminescent carbon nanodots prepared from zeolite as efficient sensors for picric acid detection
CN107345910B (zh) 一种用于可视化检测铜离子的荧光宽色度试纸及其制备方法和应用
Ye et al. Preparation of europium complex-conjugated carbon dots for ratiometric fluorescence detection of copper (II) ions
Chen et al. Ratiometric fluorescence detection of Cd2+ and Pb2+ by inner filter-based upconversion nanoparticle-dithizone nanosystem
CN109799217B (zh) 一种基于碲化镉量子点与铕离子复合体系的高灵敏度比率荧光探针及其制备方法和应用
Chen et al. Sensitive determination of chromium (VI) based on the inner filter effect of upconversion luminescent nanoparticles (NaYF4: Yb3+, Er3+)
CN108863922B (zh) 一种基于aie的可快速检测次氯酸的聚合物比率荧光传感器及其制备方法和应用
CN111690150B (zh) 一种网状结构稀土铕(iii)配位聚合物及其制备方法和应用
CN108949171B (zh) 一种稀土碳纳米粒子及其制备方法和基于荧光色度测定pH值的应用
CN106583747A (zh) 鱼精蛋白金纳米簇的制备及在模拟酶比色和荧光检测中的应用
Yu et al. Two new phosphorescent Ir (III) complexes as efficient selective sensors for the Cu2+ ion
CN110423606A (zh) 壳聚糖交联β-环糊精修饰氮掺杂碳量子点纳米复合材料及制备方法和应用
CN111440608A (zh) 一种双发射比率荧光探针和检测铜离子的方法
CN114774118B (zh) 一种双通道可视化多色荧光探针的制备及检测方法
CN110818646B (zh) 基于聚集诱导发光小分子荧光探针及其制备方法及应用
Ma et al. One high-nuclearity Eu 18 nanoring with rapid ratiometric fluorescence response to dipicolinic acid (an anthrax biomarker)
CN110698407A (zh) 一种裸眼或荧光Al3+探针及其制备方法和应用
Jiang et al. A rhodamine-based sensing probe excited by upconversion NaYF4: Yb3+/Er3+ nanoparticles: the realization of simple Cu (II) detection with high sensitivity and unique selectivity
CN116814262A (zh) 一种基于铋基钙钛矿量子点荧光传感器的制备方法及其应用
Dürkop et al. Nonenzymatic direct assay of hydrogen peroxide at neutral pH using the Eu 3 Tc fluorescent probe

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination