CN116751073B - 具有多级孔结构的轻质隔热硼酸铝多孔陶瓷的制备方法 - Google Patents

具有多级孔结构的轻质隔热硼酸铝多孔陶瓷的制备方法 Download PDF

Info

Publication number
CN116751073B
CN116751073B CN202311061319.0A CN202311061319A CN116751073B CN 116751073 B CN116751073 B CN 116751073B CN 202311061319 A CN202311061319 A CN 202311061319A CN 116751073 B CN116751073 B CN 116751073B
Authority
CN
China
Prior art keywords
aluminum borate
powder
porous ceramic
freeze
pore structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311061319.0A
Other languages
English (en)
Other versions
CN116751073A (zh
Inventor
刘礼龙
刘津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Nanji Star Insulating Material Co ltd
Original Assignee
Tianjin Nanji Star Insulating Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Nanji Star Insulating Material Co ltd filed Critical Tianjin Nanji Star Insulating Material Co ltd
Priority to CN202311061319.0A priority Critical patent/CN116751073B/zh
Publication of CN116751073A publication Critical patent/CN116751073A/zh
Application granted granted Critical
Publication of CN116751073B publication Critical patent/CN116751073B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0605Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances by sublimating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

本发明属于硼酸铝多孔陶瓷领域,公开了一种具有多级孔结构的轻质隔热硼酸铝多孔陶瓷的制备方法,包括下述步骤:称取B4C粉体和Al2O3粉体,并采用球磨机将两种粉体混合均匀,得B4C与Al2O3混合粉体;称取琼脂糖、水、B4C与Al2O3混合粉体,搅拌混合得混合浆料;将混合浆料倒入模具中,并迅速转移至超低温冰箱中进行冷冻,得湿凝胶;将冷冻后的湿凝胶放入冷冻干燥机中冷冻干燥,得到干燥坯体;将干燥坯体放入箱式炉中,经高温煅烧获得具有多级孔结构的硼酸铝多孔陶瓷。本发明获得的硼酸铝多孔陶瓷具有由冰晶升华形成的宏孔和由硼酸铝晶须搭接形成的微孔,这种多级孔结构赋予了材料轻质隔热的特点。

Description

具有多级孔结构的轻质隔热硼酸铝多孔陶瓷的制备方法
技术领域
本发明属于硼酸铝多孔陶瓷领域,尤其是涉及一种具有多级孔结构的硼酸铝多孔陶瓷的制备方法。
背景技术
硼酸铝的化学式为xAl2O3·yB2O3,其常见的几种晶型有9Al2O3·2B2O3、2Al2O3·B2O3和Al2O3·B2O3,其中9Al2O3·2B2O3晶体具有良好的热稳定性且应用最为广泛。在硼酸铝的所有晶面中{001}面的面间距最小,这意味着硼酸铝晶体沿{001}面生长的速度最快,因此硼酸铝晶体倾向于沿C轴生长形成硼酸铝晶须。
硼酸铝晶须具有高抗拉强度(8GPa)、高弹性模量(400GPa)、高中子吸收率和良好的耐腐蚀性等特性。硼酸铝晶须的弹性媲美Si3N4晶须,硬度仅次于碳化硅晶须,而价格却仅为碳化硅晶须的1/10。因此从商业角度出发,硼酸铝晶须具有极高的性价比,是碳化硅晶须和Si3N4晶须的优良替代品。
由于其高长径比,硼酸铝晶须在原位生长过程中非常容易形成交织的三维网络结构,从而为硼酸铝多孔陶瓷的制备提供了基础。例如,Hernández等人以氧化铝和硼酸为起始材料,通过干压法成功制造了孔隙率为47%的硼酸铝多孔陶瓷。此外,其他科研人员也采用了诸如添加造孔剂法、发泡法等工艺制备了硼酸铝多孔陶瓷。但上述研究所制备出的硼酸铝多孔陶瓷的密度过高,气孔率过低,从而不利于其在高温隔热领域的进一步应用。
发明内容
本发明的目的在于克服现有技术的不足,提供一种具有多级孔结构的轻质隔热硼酸铝多孔陶瓷的制备方法,能够克服现有技术中硼酸铝多孔陶瓷孔结构简单、密度过大、气孔率过低、热导率过高的缺点。
本发明是通过如下技术方案予以实现:
一种具有多级孔结构的轻质隔热硼酸铝多孔陶瓷的制备方法,包括下述步骤:
(1)按照B、Al摩尔比为6~8:9称取B4C粉体和Al2O3粉体,并采用球磨机将两种粉体混合均匀,获得B4C与Al2O3混合粉体;
(2)按照质量比为1~10:80:2的比例称取琼脂糖、水、B4C与Al2O3混合粉体置于容器中,加热至80~95℃进行搅拌混合,直至琼脂糖完全溶解在水中,得混合浆料,随后将混合浆料倒入模具中,并迅速转移至温度为-20~-60℃超低温冰箱中进行冷冻,得湿凝胶;
(3)将冷冻后的湿凝胶放入冷冻干燥机中冷冻干燥45~50h,冷冻干燥温度为-20~-60℃,压强为1~10kPa,进而得到干燥坯体;
(4)将获得的干燥坯体放入箱式炉中,经高温煅烧获得具有多级孔结构的硼酸铝多孔陶瓷。
优选地,所述的琼脂糖、水、B4C与Al2O3混合粉体的质量比为2~6:80:2。
优选地,步骤(2)冷冻温度为-30~-50℃。
优选地,步骤(3)冷冻干燥温度为-30~-50℃。
优选地,步骤(3)冷冻干燥压强为4~8kPa。
优选地,所述高温煅烧的温度为1200~1400℃,升温速率为2~10℃/min,保温时间为1~3h。
本发明的优点和积极效果是:
针对目前硼酸铝多孔陶瓷的密度过高,气孔率过低的问题,本申请提出采用冷冻浇注成型工艺并结合高温固相反应工艺来制备具有高气孔率、低密度、低热导率的硼酸铝多孔陶瓷。其中在冷冻浇注过程中,混合液中的水在冷源的作用下会生长成片状冰晶,从而推动陶瓷颗粒进行重排。在冷冻干燥阶段,冰晶直接升华成蒸汽,进而在样品内部留下宏孔。在这一阶段,冰晶的生长促进了宏孔的形成,而琼脂糖的三维网络结构抑制了宏孔的形成。所以本申请创新性地通过调控冷冻温度(过冷度)和琼脂糖的含量来达到控制孔结构的目的。在煅烧阶段,混合粉体中的B4C可与Al2O3发生反应生成硼酸铝晶须,晶须和晶须之间会形成交织的网络结构,从而形成微孔,进一步提高整体硼酸铝多孔陶瓷的气孔率。其中要注意的是,硼酸铝的化学式为9Al2O3·2B2O3,其B、Al摩尔比为2:9。但在本申请中所用的硼源量为过量,选用的B、Al摩尔比增加到了6~8:9。过量的硼源可以生成液相,从而促进具有高长径比的晶须生成。此外,所用的硼源为B4C,其在氧化过程中会发生体积膨胀,也有利于晶须的生成。综上,本申请制备的硼酸铝多孔陶瓷具有两种不同的孔结构:一种是由冰晶生长、升华所形成的宏孔,另一种是由硼酸铝晶须交错搭接形成的微孔,这种多级孔结构保证了硼酸铝多孔陶瓷具有较低的密度,较高的气孔率和较低的热导率。
附图说明
图1:实施例1制备的硼酸铝多孔陶瓷放大50倍的SEM图;
图2:实施例1制备的硼酸铝多孔陶瓷放大5000倍的SEM图;
图3:实施例2制备的硼酸铝多孔陶瓷放大50倍的SEM图;
图4:实施例2制备的硼酸铝多孔陶瓷放大5000倍的SEM图;
图5:对比例2制备的硼酸铝多孔陶瓷放大100倍的SEM图;
图6:对比例3制备的硼酸铝多孔陶瓷放大100倍的SEM图;
图7:对比例4制备的硼酸铝多孔陶瓷放大5000倍的SEM图。
具体实施方式
为了更好的理解本发明,下面结合附图对本发明进行进一步详述。在不冲突的情况下,案例中的特征可以相互组合。以下实施例中所使用的原料均为市售的分析纯原料。
实施例1
一种具有多级孔结构的轻质隔热硼酸铝多孔陶瓷的制备方法,包括下述步骤:
(1)按照B、Al摩尔比为6:9称取B4C粉体和Al2O3粉体,并采用球磨机将两种粉体混合均匀,获得B4C与Al2O3混合粉体;
(2)称取0.2g琼脂糖、8 g去离子水、0.2 g B4C与Al2O3混合粉体置于烧杯中,加热至90℃进行搅拌混合,直到琼脂糖完全溶解在水中,得混合浆料;随后将混合浆料倒入模具中,并迅速放入温度为-50℃的超低温冰箱中进行冷冻,得湿凝胶;
(3)将冷冻后的湿凝胶放入冷冻干燥机进行冷冻干燥48h,冷冻干燥的温度为-50℃,压强为5kPa,进而得到干燥坯体;
(4)将获得的干燥坯体放入箱式炉中高温煅烧,煅烧温度为1300℃,升温速率为2℃/min,保温时间为1h,最终获得具有多级孔结构的硼酸铝多孔陶瓷。
实施例1制备的硼酸铝多孔陶瓷扫描电镜图如图1和图2所示。经测试,制备出的硼酸铝多孔陶瓷的密度为0.16g/cm3,气孔率为94.5%,热导率为0.065 W·m-1·K-1
实施例2
一种具有多级孔结构的轻质隔热硼酸铝多孔陶瓷的制备方法,包括下述步骤:
(1)按照B、Al摩尔比为7:9称取B4C粉体和Al2O3粉体,并采用球磨机将两种粉体混合均匀,获得B4C与Al2O3混合粉体;
(2)称取0.4g琼脂糖、8 g去离子水和0.2 g的B4C与Al2O3混合粉体置于烧杯中,加热至95℃进行搅拌混合,直到琼脂糖完全溶解在水中,得混合浆料;随后将混合浆料倒入模具中,并迅速放入温度为-30℃的超低温冰箱中进行冷冻,得湿凝胶;
(3)将冷冻后的湿凝胶放入冷冻干燥机进行冷冻干燥48h,冷冻干燥的温度为-30℃,压强为7kPa,进而得到干燥坯体;
(4)将获得的干燥坯体放入箱式炉中,煅烧温度为1200℃,升温速率为4℃/min,保温时间为2h,最终获得具有多级孔结构的硼酸铝多孔陶瓷。
实施例2制备的硼酸铝多孔陶瓷扫描电镜图如图3和图4所示。经测试,制备出的硼酸铝多孔陶瓷的密度为0.22g/cm3,气孔率为93.4%,热导率为0.072W·m-1·K-1
对比例1
一种具有多级孔结构的轻质隔热硼酸铝多孔陶瓷的制备方法,制备方法同实施例1,区别仅在于在步骤(2)中不加入琼脂糖。
由于在对比例1中没有加入琼脂糖,样品在冷冻干燥后没有足够的有机粘结剂来提供强度,所以样品干燥后直接发生粉化现象,无法形成硼酸铝多孔陶瓷。
对比例2
一种具有多级孔结构的轻质隔热硼酸铝多孔陶瓷的制备方法,制备方法同实施例1,区别仅在于,省去步骤(2)中的冷冻步骤,直接将模具置于空气中室温冷却。
对比例2制备的硼酸铝多孔陶瓷扫描电镜图如图5所示。经测试,制备出的硼酸铝多孔陶瓷的密度为0.61g/cm3,气孔率为78.3%,热导率为0.285W·m-1·K-1
对比例3
一种具有多级孔结构的轻质隔热硼酸铝多孔陶瓷的制备方法,制备方法同实施例1,区别仅在于,省去步骤(3)的冷冻干燥过程,采用烘箱来对湿凝胶进行干燥。
对比例3制备的硼酸铝多孔陶瓷扫描电镜图如图6所示。经测试,制备出的硼酸铝多孔陶瓷的密度为0.56g/cm3,气孔率为80.5%,热导率为0.202W·m-1·K-1
对比例4
一种具有多级孔结构的轻质隔热硼酸铝多孔陶瓷的制备方法,制备方法同实施例1,区别仅在于,步骤(1)中按照B、Al摩尔比为2:9称取B4C粉体和Al2O3粉体。
对比例4制备的硼酸铝多孔陶瓷扫描电镜图如图7所示。经测试,制备出的硼酸铝多孔陶瓷的密度为0.43g/cm3,气孔率为85.4%,热导率为0.156W·m-1·K-1
评价与表征
图1为实施例1制备的硼酸铝多孔陶瓷放大50倍的SEM图,图2为实施例1制备的硼酸铝多孔陶瓷放大5000倍的SEM图。经测试,制备出的硼酸铝多孔陶瓷的密度为0.16g/cm3,气孔率为94.5%,热导率为0.065 W·m-1·K-1。图3为实施例2制备的硼酸铝多孔陶瓷放大50倍的SEM图,图4为实施例2制备的硼酸铝多孔陶瓷放大5000倍的SEM图。经测试,制备出的硼酸铝多孔陶瓷的密度为0.22g/cm3,气孔率为93.4%,热导率为0.072W·m-1·K-1。此外,从上述四幅图中都可以看出,整个硼酸铝多孔陶瓷呈现一个典型的多级孔结构,其中大孔主要由冰晶生长推动颗粒形成的,而小孔主要由硼酸铝晶须搭接而成。这种多级孔结构赋予了材料较低的密度、较高的气孔率和较低的热导率。
图5为对比例2制备的硼酸铝多孔陶瓷放大100倍的SEM图。由于对比例2中省略了冷冻过程,在成型阶段,水溶液无法形成可以推动纤维定向排布的冰晶。所以,与图1和图3相比较可知,样品内部没有由于冰晶升华所形成的大孔。这导致对比例2制备出的硼酸铝多孔陶瓷的气孔率较低,密度和热导率较大。
图6为对比例3制备的硼酸铝多孔陶瓷放大100倍的SEM图。由于对比例3将冷冻干燥替换成了普通烘箱干燥,坯体内形成的冰晶会先变成液体,而后再变成水蒸气排除体外。在这一过程中,坯体会由于水分的挥发而发生严重收缩,所以其内部也无法形成冰晶升华后留下的大孔。因此,对比例2制备出的硼酸铝多孔陶瓷的气孔率也较低,密度和热导率也较大。
图7为对比例4制备的硼酸铝多孔陶瓷放大5000倍的SEM图。对比例4的所述B、Al摩尔比为2:9。由于加入的B4C过少,在煅烧过程中无法形成足够的液相来促进硼酸铝晶须的生成,所以对比例4制备出的硼酸铝多孔陶瓷内部主要形成了片状硼酸铝而非硼酸铝晶须,导致整体材料的气孔率较低,密度和热导率较大。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (5)

1.一种具有多级孔结构的轻质隔热硼酸铝多孔陶瓷的制备方法,其特征在于,包括下述步骤:
(1)按照B、Al摩尔比为6~8:9称取B4C粉体和Al2O3粉体,并采用球磨机将两种粉体混合均匀,获得B4C与Al2O3混合粉体;
(2)按照质量比为1~10:80:2的比例称取琼脂糖、水、B4C与Al2O3混合粉体置于容器中,加热至80~95℃进行搅拌混合,直至琼脂糖完全溶解在水中,得混合浆料,随后将混合浆料倒入模具中,并迅速转移至温度为-20~-60℃超低温冰箱中进行冷冻,得湿凝胶,混合液中的水在冷源的作用下生长成片状冰晶;
(3)将冷冻后的湿凝胶放入冷冻干燥机中冷冻干燥45~50h,冷冻干燥温度为-20~-60℃,压强为1~10kPa,进而得到干燥坯体,在冷冻干燥阶段,冰晶直接升华成蒸汽,进而在样品内部留下宏孔;
(4)将获得的干燥坯体放入箱式炉中,经高温煅烧,B4C粉体和Al2O3粉体发生反应生成硼酸铝晶须,晶须和晶须之间形成交织的网络结构,从而形成微孔,获得具有多级孔结构的硼酸铝多孔陶瓷,所述高温煅烧的温度为1200~1400℃,升温速率为2~10℃/min,保温时间为1~3h。
2.根据权利要求1所述的制备方法,其特征在于,所述的琼脂糖、水、B4C与Al2O3混合粉体的质量比为2~6:80:2。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)冷冻温度为-30~-50℃。
4.根据权利要求1所述的制备方法,其特征在于,步骤(3)冷冻干燥温度为-30~-50℃。
5.根据权利要求1所述的制备方法,其特征在于,步骤(3)冷冻干燥压强为4~8kPa。
CN202311061319.0A 2023-08-23 2023-08-23 具有多级孔结构的轻质隔热硼酸铝多孔陶瓷的制备方法 Active CN116751073B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311061319.0A CN116751073B (zh) 2023-08-23 2023-08-23 具有多级孔结构的轻质隔热硼酸铝多孔陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311061319.0A CN116751073B (zh) 2023-08-23 2023-08-23 具有多级孔结构的轻质隔热硼酸铝多孔陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN116751073A CN116751073A (zh) 2023-09-15
CN116751073B true CN116751073B (zh) 2023-10-24

Family

ID=87948322

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311061319.0A Active CN116751073B (zh) 2023-08-23 2023-08-23 具有多级孔结构的轻质隔热硼酸铝多孔陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN116751073B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240480A (ja) * 2000-02-29 2001-09-04 Kyocera Corp 多孔質セラミック構造体およびその製造方法並びに流体透過部材
CN1730427A (zh) * 2005-06-20 2006-02-08 武汉科技大学 一种硼酸铝复合多孔陶瓷及其制备方法
CN108409331A (zh) * 2018-03-22 2018-08-17 佛山市熙华科技有限公司 一种层状多孔陶瓷骨架材料的制备方法
WO2021199509A1 (ja) * 2020-03-30 2021-10-07 株式会社ノリタケカンパニーリミテド 高気孔率ビトリファイド砥石の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041174A1 (ja) * 2004-10-12 2006-04-20 Ibiden Co., Ltd. セラミックハニカム構造体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240480A (ja) * 2000-02-29 2001-09-04 Kyocera Corp 多孔質セラミック構造体およびその製造方法並びに流体透過部材
CN1730427A (zh) * 2005-06-20 2006-02-08 武汉科技大学 一种硼酸铝复合多孔陶瓷及其制备方法
CN108409331A (zh) * 2018-03-22 2018-08-17 佛山市熙华科技有限公司 一种层状多孔陶瓷骨架材料的制备方法
WO2021199509A1 (ja) * 2020-03-30 2021-10-07 株式会社ノリタケカンパニーリミテド 高気孔率ビトリファイド砥石の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Novel method of fabricating ultra-light aluminum borate foams with hierarchical pore structure;Han Luo等;《Materials Letters》;第243卷;第92–95页 *
硼酸铝纳米纤维多孔陶瓷的制备与性能研究;董野;《中国学位论文全文数据库》;第1-76页 *

Also Published As

Publication number Publication date
CN116751073A (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
CN101037345B (zh) 凝胶冷冻干燥法制备莫来石多孔陶瓷的方法
CN106565245B (zh) 一种微波原位烧结技术制备碳化硅多孔陶瓷的方法
CN101050128A (zh) 冷冻干燥法制备多孔材料的改进
Xu et al. Investigation on the influence factors for preparing mullite-whisker-structured porous ceramic
CN108863394A (zh) 一种凝胶浇注结合冷冻干燥制备多孔陶瓷的方法
CN101508592B (zh) 多孔Si3N4陶瓷的制备方法
CN105198478A (zh) 一种莫来石晶须增强钙长石多孔陶瓷及其制备方法
CN110937920A (zh) 一种超轻高强钙长石多孔陶瓷及其制备方法
JP6614505B2 (ja) セラミックス多孔体の製造方法及びセラミックス多孔体
CN110078425B (zh) 一种轻质隔热的莫来石纳米纤维气凝胶的制备方法
Chen et al. Evolution of mullite texture on firing tape‐cast kaolin bodies
CN108516814A (zh) 一种低温制备高强度莫来石陶瓷的方法
Xie et al. High porosity Ca-α-SiAlON ceramics with rod-like grains fabricated by freeze casting and pressureless sintering
CN111056846B (zh) 一种采用冷冻干燥和燃烧合成法快速制备的定向多孔氮化铝蜂窝陶瓷及其方法
JP7048055B2 (ja) 高純度炭酸カルシウム焼結体及びその製造方法、並びに高純度炭酸カルシウム多孔質焼結体及びその製造方法
CN104926355B (zh) 基于明胶溶液冷冻干燥技术制备定向多孔氮化硅陶瓷的方法
CN114230948B (zh) 有机无机复合硅酸盐类气凝胶及其制备方法和应用
CN117185793B (zh) 具有类松木结构的莫来石纳米纤维基多孔陶瓷的制备方法
Luo et al. Novel method of fabricating ultra-light aluminum borate foams with hierarchical pore structure
Zhuang et al. Fabrication of gel cast BN/Si3N4 composite ceramics from surface-coated BN powder
Liu et al. Thermally insulating magnesium borate foams with controllable structures
CN116751073B (zh) 具有多级孔结构的轻质隔热硼酸铝多孔陶瓷的制备方法
CN117735994A (zh) 一种具有蜂窝状定向结构的AlN多孔陶瓷制备方法
CN104496521B (zh) 一种制备Si3N4/BAS泡沫陶瓷材料的方法
CN111116209B (zh) 一种定向多孔氮化硅蜂窝陶瓷及其快速制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant