CN116675538A - 一种联用选区激光3D打印/前驱体浸渍热解/液相烧结制备SiC陶瓷的方法 - Google Patents

一种联用选区激光3D打印/前驱体浸渍热解/液相烧结制备SiC陶瓷的方法 Download PDF

Info

Publication number
CN116675538A
CN116675538A CN202310627039.5A CN202310627039A CN116675538A CN 116675538 A CN116675538 A CN 116675538A CN 202310627039 A CN202310627039 A CN 202310627039A CN 116675538 A CN116675538 A CN 116675538A
Authority
CN
China
Prior art keywords
powder
liquid phase
phase sintering
ceramic
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310627039.5A
Other languages
English (en)
Other versions
CN116675538B (zh
Inventor
殷杰
王康龙
刘学建
黄政仁
陈忠明
姚秀敏
黄健
孙安乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202310627039.5A priority Critical patent/CN116675538B/zh
Publication of CN116675538A publication Critical patent/CN116675538A/zh
Application granted granted Critical
Publication of CN116675538B publication Critical patent/CN116675538B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种联用选区激光3D打印/前驱体浸渍热解/液相烧结制备SiC陶瓷的方法,包括:(1)将SiC粉体、液相烧结助剂和粘结剂混合,得到混合粉体;(2)将混合粉体经激光3D打印机成型得到陶瓷素坯,并进行排胶处理;(3)将排胶处理后的陶瓷件浸渍在有机前驱体溶液并取出,再经热固化处理、热解处理,得到陶瓷坯体;(4)在步骤(3)重复1~2次之后,将陶瓷坯体在埋粉中液相烧结,得到所述SiC陶瓷。

Description

一种联用选区激光3D打印/前驱体浸渍热解/液相烧结制备 SiC陶瓷的方法
技术领域
本发明涉及一种联用选区激光3D打印/前驱体浸渍热解(PIP)/液相烧结高效制备SiC陶瓷的方法,属于增材制造材料领域。
背景技术
SiC陶瓷具有低密高强、耐高温耐辐照、化学稳定性高,耐腐蚀性能优异等优异性能受到广泛关注,被认为是在极端环境下应用的理想材料,在航空航天、装甲、空间反射镜、核能、化工及半导体等国防与工业重大领域中得到了广泛应用。然而,现在国防与工业应用等场合要求使用复杂形状的SiC陶瓷,但SiC陶瓷由于其强共价键特征给产品的成型制造带来了极大难题与挑战。
对于复杂结构陶瓷构件,传统机械加工方法加工周期长、成本高且最终零部件的表面质量及尺寸精度难以得到保证,而凝胶注模成型或直接凝固注模成型等陶瓷近净成型工艺虽然可以简化或省去二次机械加工,但其对模具的依赖程度较高且在制造大尺寸整体零部件时往往存在气孔、翘曲及裂纹等问题,3D打印的出现有效解决了这些问题,其在异形构件的制备方面存在着天然优势。3D打印又称增材制造,是一种累积制造技术,先通过计算机建模软件建造所需三维模型,再将建成的三维模型“分区”成逐层的截面(即切片),从而指导打印机逐层打印。选择性激光烧结(SLS)是一种粉末床快速制造工艺,工作原理为:粉末床的预热,这可以减少热应力,从而有助于防止烧结构件裂纹的形成,预热完成后辊轮或刮刀在粉末床上铺粉,高能激光束(如CO2激光)选择性烧结粉末,首层制造完成,供粉缸和成型缸各自上升下降一层配合铺粉、成型,如此重复建造直至所需三维构件制造完成。SLS有着制备大尺寸复杂形状构件、无需支撑、材料利用率高、加工效率高等优势,能快速成型复杂结构零部件实现近净形制造,目前,SLS应用于陶瓷材料零件主要有直接、间接成型两种方式,直接SLS是以高能量密度的激光照射粉体实现成型—烧结一体化,间接SLS是激光照射在热塑性的聚合物粉末粘结陶瓷粉体实现复杂陶瓷部件成型,后经热处理方式烧结成陶瓷成品。直接SLS制造的陶瓷部件极易产生裂纹,这导致最终产品的机械性能不佳,因此,间接SLS方法,可以作为一种合适的方式,通过烧结成分中的低熔点聚合物粘结剂,然后以缓慢的加热速度去除粘结剂,随后进行炉内烧结,以提高最终密度,避免产品出现裂纹,从而形成无裂纹样品。
目前,间接选区激光3D打印制造陶瓷成型出的样品密度低、孔隙多、力学性能低,远远达不到服役时的性能,必须通过后续热处理来提升性能,主要的制备方法有化学气相渗透法(CVI)、液相渗硅法(LSI)和聚合物浸渍裂解法(PIP)三种,CVI工艺可以获得等化学计量比的SiC基体,但耗时长、成本高,在LSI工艺中,通过碳与熔融硅的反应可以原位生成SiC基体,然而,LSI工艺残留硅含量多,游离硅存在着低抗弯强度(≤100MPa)、高脆性(断裂韧性≤1MPa·m1/2),且当服役温度超过1410℃时,其力学性能大幅度降低,游离硅的存在也使得基体的耐酸碱腐蚀性能变差,影响耐酸碱腐蚀应用,PIP致密化热处理工艺需要循环重复6-8次以上才能得到密度可接受的材料,极大增加了工艺成本和制造周期,但在复杂形状的大尺寸构件制造和低成本等方面具有优势。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种联用选区激光3D打印/前驱体浸渍热解(PIP)与液相烧结高效制备SiC陶瓷的方法,包括:
(1)将SiC粉体、液相烧结助剂和粘结剂混合,得到混合粉体;
(2)将混合粉体经激光3D打印机成型得到陶瓷素坯,并进行排胶处理;
(3)将排胶处理后的陶瓷件浸渍在有机前驱体溶液并取出,再经热固化处理、热解处理,得到陶瓷坯体;
(4)在步骤(3)重复1~2次之后,将陶瓷坯体在埋粉中液相烧结,得到所述SiC陶瓷。
较佳的,以混合粉体的体积分数总和100vol%计,所述SiC粉体含量为70~80vol%、液相烧结助剂的含量为5~10vol%、粘结剂的含量为15~25vol%。
较佳的,所述液相烧结助剂为氧化铝粉体和氧化钇粉体;优选地,所述氧化铝粉体和氧化钇粉体的摩尔比可供选择的范围为(0.66~9):1(根据其二元相图最低熔点1760℃优选约为1.66:1);
所述粘结剂选自有机树脂,优选为酚醛树脂或/和聚乙烯醇缩丁醛树脂。
较佳的,将液态聚碳硅烷或/和液态聚硅氧烷作为有机前驱体,与交联固化剂混合并除泡处理,得到所述有机前驱体溶液;所述交联固化剂为过氧化二异丙苯DCP、Karstedt铂催化剂中的至少一种;
当交联固化剂为过氧化二异丙苯DCP,所述过氧化二异丙苯DCP的加入量为有机前驱体总质量的0.2~0.5wt%.;
当交联固化剂为Karstedt铂催化剂,所述Karstedt铂催化剂的加入量为有机前驱体总质量的0.002‰~0.005‰。
较佳的,所述排胶处理制度包括:温度为900~1000℃,保温时间为0.5~1h;
优选地,先以2℃/min~3℃/min的升温速率升温至200~300℃,再以1℃/min~2℃/min的升温速率升温至600~700℃,最后以2℃/min~3℃/min升温至900~1000℃并保温0.5~1h(例如0.5h)。
较佳的,所述热固化处理为:在烘箱中120~170℃热固化1~2小时;或者在管式炉惰性气氛中120~170℃下固化处理2~3小时;优选地,所述热固化处理的升温速率为1℃/min~5℃/min。
较佳的,所述热解处理的制度包括:在惰性气氛中1200~1400℃下保温1~2h;
优选地,在惰性气氛中,先以1℃/min~2℃/min的升温速率升温至200~300℃,再以0.5℃/min~1℃/min的升温速率升温至800~900℃,最后以2℃/min~3℃/min升温至1200~1400℃并保温1~2h(例如1h)。
较佳的,所述埋粉的方式为:将热解处理后的陶瓷样品置于石墨坩埚中,在其上/下表面分别先铺一层SiC粉体和液相烧结助剂粉体的混合粉体,再分别铺一层液相烧结助剂粉体,使其包埋热解处理后的陶瓷样品;
优选地,所述液相烧结助剂粉体为原料所用液相烧结助剂;
优选地,所述SiC粉体和液相烧结助剂的混合粉体中液相烧结助剂的含量不超过20wt%,更优选,所述SiC粉体和液相烧结助剂的混合粉体中SiC粉体:液相烧结助剂=80~90wt%:10~20wt%;
优选地,所述一层SiC粉体和液相烧结助剂的混合粉体的铺粉厚度≤5mm;
优选地,所述一层液相烧结助剂粉体的铺粉厚度≥1cm。
较佳的,所述液相烧结的制度包括:在惰性气氛中1800~1950℃下保温0.5~1h;
优选地,在惰性气氛中先以5℃/min~8℃/min的升温速率升温至1000~1100℃,再以3℃/min~5℃/min的升温速率升温至1600~1700℃,最后以2℃/min~3℃/min的升温速率升温至1800~1950℃并保温0.5~1h(例如1h)。
再一方面,本发明提供了一种根据上述的方法制备的SiC陶瓷,所述SiC陶瓷的抗弯强度达到150MPa,弹性模量高达385GPa,开口气孔率低至1.5%,密度为2.81~3.01g/cm3
有益效果:
1、本发明最显著的特征在于只需浸渍热解(PIP)前驱体PSO或PCS一次-两次后液相烧结,就可得到高致密的SiC陶瓷,与循环重复6~8次以上的PIP致密化工艺相比,大大降低了周期与成本,更具经济性与可操作性,与液相渗硅法(LSI)相比,无游离硅残留,可以制备更复杂结构的碳化硅陶瓷;
2、本发明中,激光3D打印结合前驱体浸渍热解(PIP)后液相烧结两步法制备SiC陶瓷中,浸渍热解前驱体PCS或PSO起到填堵激光成型样品中大孔的作用,液相烧结助剂氧化铝和氧化钇起到形成液相、颗粒重排、溶解析出致密化烧结作用;
3、本发明中,激光3D打印结合前驱体浸渍热解(PIP)后液相烧结两步法制备SiC陶瓷开气孔隙率为1.5%~7.8%,弹性模量为295~385Gpa,密度为2.81~3.01g/cm3,抗弯强度为90~150MPa。
附图说明
图1为激光3D打印结合前驱体浸渍热解(PIP)后液相烧结两步法制备SiC陶瓷致密机理图;
图2为聚碳硅烷(PCS)和聚硅氧烷(PSO)在1400℃下热解热分析图;
图3为实施例1制备的激光3D打印结合前驱体浸渍热解(PIP)后液相烧结两步法制备SiC陶瓷XRD图;
图4为实施例1制备的激光3D打印结合前驱体浸渍热解(PIP)后液相烧结两步法制备SiC陶瓷抛光面及断面SEM图;
图5为实施例1、2、3制备的激光3D打印结合前驱体浸渍热解(PIP)后液相烧结两步法制备SiC陶瓷的孔径分布图。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
在本公开中,将SiC粉体、液相烧结助剂(例如氧化铝粉体和氧化钇粉体)和粘结剂(例如,酚醛树脂粉体)按配比取料并混合(例如在50~100转/分钟下球磨3.5h)得到均匀的混合粉体。再经激光打印成型所需零件形状,在经排胶(例如排胶温度900℃)使得粘结剂(酚醛树脂)变成热解碳,排胶后抽真空浸渍PCS或PSO放烘箱热固化,热固化后在1200-1400℃温度下热解。使得前驱体PCS或PSO转变为陶瓷后液相烧结。浸渍热解前驱体PCS或PSO能起到填堵激光打印成型后样品中大孔的作用,液相烧结助剂氧化铝和氧化钇起到形成液相、颗粒重排、溶解析出致密化烧结作用。
以下示例性地说明本发明激光3D打印结合前驱体浸渍热解(PIP)后液相烧结两步法制备SiC陶瓷的方法。
称料。计算称量SiC粉体、氧化铝粉体、氧化钇粉体和酚醛树脂粉体混合所需原料质量,其中占体积百分比SiC含量可为70~80vol%、氧化铝和氧化钇总含量可为5~10vol%、酚醛树脂含量可为15~25vol%。更优选,SiC含量为77vol%、氧化铝和氧化钇含量为8vol%,酚醛树脂含量为15vol%。原料粒径优选控制在0.5~50μm。
混料。将称量好的粉料按球:料为1.5:1加入球磨罐中,研磨球可用SiC介质,球磨混合的转速在50~100转/分钟之间,球磨时间控制在2~4小时。需注意,酚醛树脂粉体需分两次加入,第一次加入酚醛的量为60wt%,在球磨2.5h后加入剩余40wt%,这有利于SLS打印时固态酚醛树脂更好粘结粉体,使得素坯强度较高。
过筛与成型。将混合粉料过50~70目筛,目的是为了控制球磨过程中颗粒团聚带来的大团聚体影响后续激光SLS打印质量。此时,混合粉体的粒径在0.5~50μm之间,使用激光打印成型所需的模型。
排胶。将激光打印成型的样品以2℃/min~3℃/min的升温速率升温至200~300℃,后以1℃/min~2℃/min的升温速率升温至600~700℃,后以2℃/min~3℃/min升温至900~1000℃并保温0.5h。
浸渍与热固化。将液态PSO或PCS(即液态聚硅氧烷和聚碳硅烷)与交联固化剂(DCP)超声混合均匀后,将排胶后的样品置于其中抽真空浸渍,浸渍后置于惰性气氛中于120~170℃下热交联2~3小时,优选地,所述热交联固化的升温速率可为1℃/min~5℃/min。
前驱体热解处理。以1℃/min~2℃/min的升温速率升温至200℃,后以0.5℃/min~1℃/min的升温速率升温至800℃,后以2℃/min~3℃/min升温至1200~1400℃并保温1h。
在埋粉中液相烧结。以5℃/min~8℃/min的升温速率升温至1000℃,后以3℃/min~5℃/min的升温速率升温至1600℃,最后以2℃/min~3℃/min的升温速率升温至1880℃并保温1h。所述埋粉的方式为:将热解处理后的陶瓷样品置于石墨坩埚中,在其上/下表面分别先铺一层SiC粉体和液相烧结助剂粉体的混合粉体,用于隔绝纯液相烧结助剂粉体层,防止与陶瓷样品烧结一体。然后再分别铺一层液相烧结助剂粉体,使其包埋热解处理后的陶瓷样品,用于抑制陶瓷样品在烧结过程中烧结助剂的挥发,进而避免强度等力学性能变劣。在可选的实施方式中,所述液相烧结助剂粉体为原料所用液相烧结助剂。优选地,所述SiC粉体和液相烧结助剂的混合粉体中液相烧结助剂的含量不超过20wt%,可以与陶瓷样品中液相烧结助剂形成浓度平衡,抑制烧结助剂挥发。优选地,所述一层SiC粉体和液相烧结助剂的混合粉体的铺粉厚度≤5mm。优选地,所述一层液相烧结助剂粉体液相烧结助剂粉体的铺粉厚度≥1cm。
采用阿基米德排水法测得激光3D打印结合前驱体浸渍热解(PIP)后液相烧结两步法制备SiC陶瓷的开气孔率为1.5%~7.8%,密度为2.81~3.01g/cm3
采用陶瓷材料弯曲强度测试所得激光3D打印结合前驱体浸渍热解(PIP)后液相烧结两步法制备SiC陶瓷三点抗弯强度为90~150MPa。
综上所述,本发明的激光3D打印结合前驱体浸渍热解(PIP)后液相烧结两步法制备SiC陶瓷,与需循环重复6~8次以上的PIP致密化工艺相比,大大降低了周期与成本,更具经济性与可操作性,与液相渗硅法(LSI)相比,无游离硅残留。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
(1)取2310g(77vol%)SiC粉体,267gAl2O3和334gY2O3粉体(共计8vol%),596g(15vol%)酚醛树脂粉体,共3507g,SiC磨球共5260g,酚醛树脂分两次加入,第一次加入酚醛树脂358g,球磨2.5h后加入剩余酚醛树脂238g,一共混合球磨3.5h,球磨混合的转速在75转/分钟,将球磨后的混合粉体过60目筛,使用SLS打印所需零件;
(2)取300g含乙烯基氢聚碳硅烷(KH-PCS-1S),加入1.2g(0.4wt%)DCP,超声分散10分钟后抽真空除泡;
(3)将打印好的零件排胶后置于前驱体聚碳硅烷(PCS)中抽真空浸渍,将浸渍后的零件件放入Al2O3瓷舟,然后在管式炉中Ar气氛下以2.5℃/min的升温速率升温至140℃并保温2h,将热固化后的样品放入石墨坩埚中在氩气气氛下进行热解,以2℃/min的升温速率升温至200℃,后以1℃/min的升温速率升温至800℃,后以3℃/min升温至1400℃并保温1h,热解完毕;
(4)取出样品放入石墨坩埚并进行埋粉(样品上下第一层为SiC+液相烧结助剂混合粉(烧结助剂含量为16wt%,厚度≤5mm(例如5mm));第二层为原料组分相同的烧结助剂粉,厚度为≥1cm(例如1mm))处理后,以8℃/min的升温速率升温至1000℃,后以3℃/min的升温速率升温至1600℃,后以2℃/min的升温速率升温至1880℃并保温1h,液相烧结完毕。所得烧结体的开气孔率为2.8%,抗弯强度为120MPa,密度为2.98g/cm3
实施例2
(1)取2310g(77vol%)SiC粉体,267gAl2O3和334gY2O3粉体(共计8vol%),596g(15vol%)酚醛树脂粉体,共3507g,SiC磨球共5260g,酚醛树脂分两次加入,第一次加入酚醛树脂358g,球磨2.5h后加入剩余酚醛树脂238g,一共混合球磨3.5h,球磨混合的转速在75转/分钟,将球磨后的混合粉体过60目筛,使用SLS打印所需零件;
(2)取300g含乙烯基氢聚硅氧烷(KH-PSO-1S),加入1.2g(0.4wt%)DCP,超声分散10分钟后抽真空除泡;
(3)将打印好的零件排胶后置于前驱体聚硅氧烷(PSO)中抽真空浸渍,将浸渍后的零件件放入Al2O3瓷舟,然后在管式炉中Ar气氛下以2.5℃/min的升温速率升温至170℃并保温2h,将热固化后的样品放入石墨坩埚中在氩气气氛下进行热解,以2℃/min的升温速率升温至200℃,后以1℃/min的升温速率升温至800℃,后以3℃/min升温至1200℃并保温1h,热解完毕;
(4)取出样品放入石墨坩埚并进行埋粉处理(样品上下第一层为SiC+烧结助剂混合粉,第二层为烧结助剂粉,埋粉方式和配方同实施例1)后,以8℃/min的升温速率升温至1000℃,后以3℃/min的升温速率升温至1600℃,后以2℃/min的升温速率升温至1880℃并保温1h,液相烧结完毕。所得烧结体的开气孔率为7.8%,抗弯强度为90MPa,密度为2.81g/cm3
实施例3
(1)取2310g(77vol%)SiC粉体,267gAl2O3和334gY2O3粉体(共计8vol%),596g(15vol%)酚醛树脂粉体,共3507g,SiC磨球共5260g,酚醛树脂分两次加入,第一次加入酚醛树脂358g,球磨2.5h后加入剩余酚醛树脂238g,一共混合球磨3.5h,球磨混合的转速在75转/分钟,将球磨后的混合粉体过60目筛,使用SLS打印所需零件;
(2)取300g含乙烯基氢聚硅氧烷(KH-PSO-1S),加入1.2g(0.4wt%)DCP,超声分散10分钟后抽真空除泡;
(3)将打印好的零件排胶后置于PSO中抽真空浸渍,将浸渍后的零件件放入Al2O3瓷舟,然后在管式炉中Ar气氛下以2.5℃/min的升温速率升温至170℃并保温2h,将热固化后的样品放入石墨坩埚中在氩气气氛下进行热解,以2℃/min的升温速率升温至200℃,后以1℃/min的升温速率升温至800℃,后以3℃/min升温至1200℃并保温1h,热解完毕;
(4)按以上浸渍固化热解步骤重复一次后,取出样品放入石墨坩埚并进行埋粉(样品上下第一层为SiC粉+液相烧结助剂混合粉体层,第二层为液相烧结助剂粉层,埋粉方式和配方同实施例1)处理后,以8℃/min的升温速率升温至1000℃,后以3℃/min的升温速率升温至1600℃,后以2℃/min的升温速率升温至1880℃并保温1h,液相烧结完毕。所得烧结体的开气孔率为1.5%,抗弯强度为150MPa,密度为3.01g/cm3
实施例4
本实施例4中激光3D打印结合前驱体浸渍热解(PIP)后液相烧结两步法制备SiC陶瓷的制备过程参见实施例1,区别在于:埋粉处理过程,样品上下仅埋一层液相烧结助剂粉。所得烧结体虽然可以抑制液相烧结助剂的挥发,实现烧结致密,但是烧结助剂粉与陶瓷体实现烧结连接,还需加工实现分离。
图1为激光3D打印结合前驱体浸渍热解(PIP)后液相烧结两步法制备SiC陶瓷致密机理图,激光打印成型排胶后的样品孔隙多,经过一次浸渍热解PCS后孔隙明显减少,液相烧结后达到致密化。
图2为聚碳硅烷(PCS)和聚硅氧烷(PSO)在1400℃下热解热分析图。
图3为实施例1制备的激光3D打印结合前驱体浸渍热解(PIP)后液相烧结两步法制备SiC陶瓷XRD图,液相烧结后XRD图谱出现钇铝石榴石(YAG)衍射峰。
图4为实施例1制备的激光3D打印结合前驱体浸渍热解(PIP)后液相烧结两步法制备SiC陶瓷抛光面及断面SEM和EDS图,抛光面光滑且缺陷少,从断面EDS图谱分析,存在钇铝石榴石(YAG)分布区域,但也有未反应残留的Y2O3,这是由于机械混合达不到分散均匀的效果所导致,残留的Y2O3只能作为颗粒骨架作用存在其中。
图5为实施例1、2、3制备的激光3D打印结合前驱体浸渍热解(PIP)后液相烧结两步法制备SiC陶瓷的孔径分布图,前驱体浸渍热解(PIP)后液相烧结孔径大小为纳米级,且纳米孔的含量少。
对比例1
本对比例1中激光3D打印结合前驱体浸渍热解(PIP)后液相烧结两步法制备高致密SiC陶瓷的制备过程参见实施例1,区别仅在于:激光打印成型的样品排胶后不做浸渍热解PCS,直接液相烧结。
对比例2
本对比例2中激光3D打印结合前驱体浸渍热解(PIP)后液相烧结两步法制备高致密SiC陶瓷的制备过程参见实施例1,区别在于:激光打印成型的样品排胶后浸渍热解PCS(一次),后续不参加液相烧结。
对比例3
本对比例3中激光3D打印结合前驱体浸渍热解(PIP)后液相烧结两步法制备SiC陶瓷的制备过程参见实施例1,区别在于:激光打印成型的样品排胶后浸渍热解PCS,进行不埋粉的前提下进行液相烧结。
对比例4
本对比例4中激光3D打印结合前驱体浸渍热解(PIP)后液相烧结两步法制备SiC陶瓷的制备过程参见实施例1,区别在于:埋粉处理过程,样品上下仅埋一层“SiC+液相烧结助剂”混合粉体。
表1激光3D打印结合前驱体浸渍热解(PIP)后液相烧结两步法制备SiC陶瓷:
抗弯强度(MPa) 弹性模量(Gpa) 开气孔率(%) 密度(g/cm3)
实施例1 120 367 2.3 2.98
实施例2 90 295 7.8 2.81
实施例3 150 385 1.5 3.01
实施例4 112 344 2.8 2.99
对比例1 36 39.6 2.01
对比例2 10 51.6 1.63
对比例3 46 36.7 2.11
对比例4 52 31.4 2.24

Claims (10)

1.一种联用选区激光3D打印/前驱体浸渍热解/液相烧结制备SiC陶瓷的方法,其特征在于,包括:
(1)将SiC粉体、液相烧结助剂和粘结剂混合,得到混合粉体;
(2)将混合粉体经激光3D打印机成型得到陶瓷素坯,并进行排胶处理;
(3)将排胶处理后的陶瓷件浸渍在有机前驱体溶液并取出,再经热固化处理、热解处理,得到陶瓷坯体;
(4)在步骤(3)重复1~2次之后,将陶瓷坯体在埋粉中液相烧结,得到所述SiC陶瓷。
2.根据权利要求1所述的方法,其特征在于,以混合粉体的体积分数总和100vol%计,所述SiC粉体含量为70~80vol%、液相烧结助剂的含量为5~10vol%、粘结剂的含量为15~25vol%。
3.根据权利要求2所述的方法,其特征在于,所述液相烧结助剂为氧化铝粉体和氧化钇粉体;优选地,所述氧化铝粉体和氧化钇粉体的摩尔比为(0.66~9):1;
所述粘结剂选自有机树脂,优选为酚醛树脂或/和聚乙烯醇缩丁醛树脂。
4.根据权利要求1所述的方法,其特征在于,将液态聚碳硅烷或/和液态聚硅氧烷作为有机前驱体,与交联固化剂混合并除泡处理,得到所述有机前驱体溶液;所述交联固化剂为过氧化二异丙苯DCP、Karstedt铂催化剂中的至少一种;
当交联固化剂为过氧化二异丙苯DCP,所述过氧化二异丙苯DCP的加入量为有机前驱体总质量的0.2~0.5wt%.;
当交联固化剂为Karstedt铂催化剂,所述Karstedt铂催化剂的加入量为有机前驱体总质量的0.002‰~0.005‰。
5.根据权利要求1所述的方法,其特征在于,所述排胶处理制度包括:温度为900~1000℃,保温时间为0.5~1h;
优选地,先以2℃/min~3℃/min的升温速率升温至200~300℃,再以1℃/min~2℃/min的升温速率升温至600~700℃,最后以2℃/min~3℃/min升温至900~1000℃并保温0.5~1h。
6.根据权利要求1所述的方法,其特征在于,所述热固化处理为:在烘箱中120~170℃热固化1~2小时;或者在管式炉惰性气氛中120~170℃下固化处理2~3小时;优选地,所述热固化处理的升温速率为1℃/min~5℃/min。
7.根据权利要求1所述的方法,其特征在于,所述热解处理的制度包括:在惰性气氛中1200~1400℃下保温1~2h;
优选地,在惰性气氛中、先以1℃/min~2℃/min的升温速率升温至200~300℃,再以0.5℃/min~1℃/min的升温速率升温至800~900℃,最后以2℃/min~3℃/min升温至1200~1400℃并保温1~2h。
8.根据权利要求1所述的方法,其特征在于,所述埋粉的方式为:将热解处理后的陶瓷样品置于石墨坩埚中,在其上/下表面分别先铺一层SiC粉体和液相烧结助剂粉体的混合粉体,再分别铺一层液相烧结助剂粉体,使其包埋热解处理后的陶瓷样品;
优选地,所述液相烧结助剂粉体为原料所用液相烧结助剂;
优选地,所述SiC粉体和液相烧结助剂的混合粉体中液相烧结助剂的含量不超过20wt%,更优选所述SiC粉体和液相烧结助剂的混合粉体中SiC粉体:液相烧结助剂=80~90wt%:10~20wt%;
优选地,所述一层SiC粉体和液相烧结助剂的混合粉体的铺粉厚度≤5mm;
优选地,所述一层相烧结助剂粉体的铺粉厚度≥1cm。
9.根据权利要求1-8中任一项所述的方法,其特征在于,所述液相烧结的制度包括:在惰性气氛中1800~1950℃下保温0.5~1h;
优选地,在惰性气氛中、先以5℃/min~8℃/min的升温速率升温至1000~1100℃,再以3℃/min~5℃/min的升温速率升温至1600~1700℃,最后以2℃/min~3℃/min的升温速率升温至1800~1950℃并保温0.5~1h。
10.一种根据权利要求1-9中任一项所述的方法制备的SiC陶瓷,其特征在于,所述SiC陶瓷的抗弯强度达到150MPa,弹性模量高达385GPa,开口气孔率低至1.5%,密度为2.81~3.01g/cm3
CN202310627039.5A 2023-05-30 2023-05-30 一种联用选区激光3D打印/前驱体浸渍热解/液相烧结制备SiC陶瓷的方法 Active CN116675538B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310627039.5A CN116675538B (zh) 2023-05-30 2023-05-30 一种联用选区激光3D打印/前驱体浸渍热解/液相烧结制备SiC陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310627039.5A CN116675538B (zh) 2023-05-30 2023-05-30 一种联用选区激光3D打印/前驱体浸渍热解/液相烧结制备SiC陶瓷的方法

Publications (2)

Publication Number Publication Date
CN116675538A true CN116675538A (zh) 2023-09-01
CN116675538B CN116675538B (zh) 2023-12-22

Family

ID=87786555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310627039.5A Active CN116675538B (zh) 2023-05-30 2023-05-30 一种联用选区激光3D打印/前驱体浸渍热解/液相烧结制备SiC陶瓷的方法

Country Status (1)

Country Link
CN (1) CN116675538B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278524A (ja) * 1996-04-17 1997-10-28 Nippon Cement Co Ltd 炭化けい素焼結体の製造方法
KR20040056561A (ko) * 2002-12-24 2004-07-01 재단법인 포항산업과학연구원 치밀한 탄화규소계 세라믹스의 제조방법
CN104326752A (zh) * 2014-09-28 2015-02-04 安徽德润工业设备有限公司 一种SiC陶瓷的低温常压液相烧结制备方法
CN105272262A (zh) * 2015-09-29 2016-01-27 中国科学院上海硅酸盐研究所 一种提高SiC/SiC陶瓷基复合材料致密度的方法
CN106007723A (zh) * 2016-05-20 2016-10-12 中国科学院上海硅酸盐研究所 一种SiC陶瓷素坯的制造方法
CN106083059A (zh) * 2016-06-15 2016-11-09 武汉理工大学 基于激光3d打印技术的复杂结构碳化硅陶瓷零件制造方法
CN106495699A (zh) * 2016-11-10 2017-03-15 哈尔滨理工大学 一种SLS技术与PIP技术相结合制备高强度耐高温SiC陶瓷导弹头外壳的方法
CN110655405A (zh) * 2019-09-30 2020-01-07 汕头大学 一种陶瓷基复合材料结构的制备方法
CN111170743A (zh) * 2020-01-19 2020-05-19 中国科学院上海硅酸盐研究所 一种碳化硅红外辐射陶瓷材料及其制备方法
CN112851354A (zh) * 2021-01-29 2021-05-28 汕头大学 一种多孔结构陶瓷及其制备方法
CN115724663A (zh) * 2022-11-04 2023-03-03 中国科学院上海硅酸盐研究所 一种全3d打印碳化硅陶瓷光学部件及其制备方法
CN115838290A (zh) * 2023-02-20 2023-03-24 南通三责精密陶瓷有限公司 一种无压液相烧结碳化硅陶瓷及其制备方法
CN115872771A (zh) * 2022-12-29 2023-03-31 中国科学院上海硅酸盐研究所 一种激光3D打印结合浸渍裂解工艺制备多孔SiOC基陶瓷膜支撑体的方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278524A (ja) * 1996-04-17 1997-10-28 Nippon Cement Co Ltd 炭化けい素焼結体の製造方法
KR20040056561A (ko) * 2002-12-24 2004-07-01 재단법인 포항산업과학연구원 치밀한 탄화규소계 세라믹스의 제조방법
CN104326752A (zh) * 2014-09-28 2015-02-04 安徽德润工业设备有限公司 一种SiC陶瓷的低温常压液相烧结制备方法
CN105272262A (zh) * 2015-09-29 2016-01-27 中国科学院上海硅酸盐研究所 一种提高SiC/SiC陶瓷基复合材料致密度的方法
CN106007723A (zh) * 2016-05-20 2016-10-12 中国科学院上海硅酸盐研究所 一种SiC陶瓷素坯的制造方法
CN106083059A (zh) * 2016-06-15 2016-11-09 武汉理工大学 基于激光3d打印技术的复杂结构碳化硅陶瓷零件制造方法
CN106495699A (zh) * 2016-11-10 2017-03-15 哈尔滨理工大学 一种SLS技术与PIP技术相结合制备高强度耐高温SiC陶瓷导弹头外壳的方法
CN110655405A (zh) * 2019-09-30 2020-01-07 汕头大学 一种陶瓷基复合材料结构的制备方法
CN111170743A (zh) * 2020-01-19 2020-05-19 中国科学院上海硅酸盐研究所 一种碳化硅红外辐射陶瓷材料及其制备方法
CN112851354A (zh) * 2021-01-29 2021-05-28 汕头大学 一种多孔结构陶瓷及其制备方法
CN115724663A (zh) * 2022-11-04 2023-03-03 中国科学院上海硅酸盐研究所 一种全3d打印碳化硅陶瓷光学部件及其制备方法
CN115872771A (zh) * 2022-12-29 2023-03-31 中国科学院上海硅酸盐研究所 一种激光3D打印结合浸渍裂解工艺制备多孔SiOC基陶瓷膜支撑体的方法
CN115838290A (zh) * 2023-02-20 2023-03-24 南通三责精密陶瓷有限公司 一种无压液相烧结碳化硅陶瓷及其制备方法

Also Published As

Publication number Publication date
CN116675538B (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
CN109265188B (zh) 一种碳纤维增强硼化铪-硼化钽-碳陶瓷基复合材料及其制备方法
CN111018537A (zh) 3D打印制备碳纤维增强SiC陶瓷基复合材料的方法
JP3483035B2 (ja) 炭化珪素強化炭化珪素複合材料
CN112341235B (zh) 超高温自愈合陶瓷基复合材料的多相耦合快速致密化方法
CN110317073B (zh) 一种多级纤维协同增韧抗氧化陶瓷基复合材料的制备方法
CN110627517B (zh) 一种梯度超高温陶瓷基复合材料及其制备方法
KR20160033614A (ko) 반응결합 탄화규소 부재의 제조방법
CN113061036A (zh) 一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法
CN110304923B (zh) 一种基于颗粒级配的碳化硼基陶瓷复合材料的制备方法
CN115286394A (zh) 一种粘结剂喷射打印碳化硅陶瓷材料的制备方法
CN113135742A (zh) 一种通过陶瓷前驱体骨架成型的精细陶瓷材料及其制备方法和应用
JP2000185977A (ja) セラミック系マトリックス複合材料の誘電特性の変更方法
CN113698215B (zh) 一种致密的层状碳化硅陶瓷及其制备方法
CN115557800A (zh) 一种多孔碳均匀陶瓷化制备碳化硅基复合材料的方法
KR20190048811A (ko) 우수한 열전도도 및 열내구성을 가지는 탄화규소 소결체의 제조방법
KR101122696B1 (ko) 섬유강화 탄화규소 복합체의 제조방법
CN117658641A (zh) 一种基于选区激光3D打印和两步烧结制备高致密SiC陶瓷的方法
CN114685169A (zh) 一种基于浆料叠层设计的纤维增强碳化硅陶瓷基复合材料的制备方法
CN116675538B (zh) 一种联用选区激光3D打印/前驱体浸渍热解/液相烧结制备SiC陶瓷的方法
EP0178753B1 (en) Process for producing a sintered silicon carbide/carbon composite ceramic body having ultrafine grain microstructure
CN115872771A (zh) 一种激光3D打印结合浸渍裂解工艺制备多孔SiOC基陶瓷膜支撑体的方法
CN112645713B (zh) 一种高强韧陶瓷复合材料及其制备方法
CN112694335B (zh) 金刚石-碳化硅基板及其制备方法与应用
CN109627691B (zh) 一种碳化硅/环氧树脂复合材料的制备方法
CN111892416A (zh) 一种碳陶刹车盘的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant