CN116666499B - 锗光电探测器及通过应力记忆提高其长波响应的方法 - Google Patents

锗光电探测器及通过应力记忆提高其长波响应的方法 Download PDF

Info

Publication number
CN116666499B
CN116666499B CN202310905207.2A CN202310905207A CN116666499B CN 116666499 B CN116666499 B CN 116666499B CN 202310905207 A CN202310905207 A CN 202310905207A CN 116666499 B CN116666499 B CN 116666499B
Authority
CN
China
Prior art keywords
germanium
layer
silicon
long
improving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310905207.2A
Other languages
English (en)
Other versions
CN116666499A (zh
Inventor
杨荣
余明斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Mingkun Semiconductor Co ltd
Original Assignee
Shanghai Mingkun Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Mingkun Semiconductor Co ltd filed Critical Shanghai Mingkun Semiconductor Co ltd
Priority to CN202310905207.2A priority Critical patent/CN116666499B/zh
Publication of CN116666499A publication Critical patent/CN116666499A/zh
Application granted granted Critical
Publication of CN116666499B publication Critical patent/CN116666499B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明提供一种锗光电探测器及通过应力记忆提高其长波响应的方法,属于锗光电探测器技术领域,包括以下步骤:在单晶硅衬底上以氧化硅开窗定义位置,选择性外延生长单晶锗层,然后沉积多晶硅层并刻蚀成覆盖锗层的图形,再沉积氮化硅,所述氮化硅将所述多晶硅层上方和四周全部包围;在高温下对此结构进行快速热退火;退火完成后去除氮化硅,再制成探测器。

Description

锗光电探测器及通过应力记忆提高其长波响应的方法
技术领域
本发明涉及锗光电探测器技术领域,具体涉及一种锗光电探测器及通过应力记忆提高其长波响应的方法。
背景技术
硅基外延锗光电探测器弥补了硅探测器长波截止波长为1.1微米左右的局限,将响应波长延伸进入短波红外波段(SWIR,1.1~2.5微米),覆盖了对光通信非常重要的红外O波段(1260nm~1360nm)、S波段(1460nm~1530nm)、C波段(1530nm~1565nm)。硅基锗外延探测器还具有同CMOS工艺兼容和易于集成的优点,成为迅速崛起的硅基光电集成芯片的关键器件之一,广泛用于光通信、光传感和光计算等领域。然而,锗对红外光波的吸收系数在1550nm以后急剧下降,使得锗光电探测器无法满足短波红外的更长波段乃至中红外波段的探测需求,而这些需求对于正在兴起的光传感(如激光雷达、生物医学检测等)和扩增的光通信波段 [如L波段(1565nm~1625nm)、U波段(1625-1675 nm)] 非常重要,因而锗光电探测器在这些领域的应用受到限制。
学术界和工业界持续努力提高锗光电探测器的长波响应,发现在锗中通过掺入一定杂质和/或制造拉伸应变减小禁带宽度,可以有效提升锗在长波段的吸收系数和增加截止波长,探测波长2微米甚至更长的红外光波。提高锗光电探测器长波响应的现有技术可以分为几类:
方法一,硅衬底和锗外延材料之间热膨胀系数存在差别,在硅衬底上高温外延锗而恢复到室温下使用时,由于锗的热膨胀系数大于硅,锗冷却后比硅产生更多收缩,因而在锗中产生拉伸应变;
方法二,锗作为吸收层的金属-半导体-金属(MSM)探测器中,利用金属或氮化硅等高应力源层的附着或邻近,在锗中产生拉伸应变(参见专利CN103985788B、CN106653940B);
方法三,利用外延锗时原位掺入锡、铅等杂质生长锗锡、锗铅合金,产生能带结构的变化和减小禁带宽带,可以探测更长波长的光波(参见专利CN112534590A、CN110729373B)。
以上方法都有效提升锗在长波段的吸收系数和扩展长波探测限,但又各有其局限性:方法一,由于锗熔点较低和外延锗经历高温容易产生缺陷带来外延的高温限制,产生的拉伸应变效果有限,一般在0.3%以下;方法二只适用于MSM探测器,这类探测器虽然具有较高的带宽,但暗电流巨大,金属对光的吸收较高,导致信噪比有限,应用场景受到限制;方法三的长波响应提升效果显著,但是生长高质量的锗锡、锗铅合金非常困难,其外延厚度受到限制、容易产生缺陷和高暗电流,器件性能受限,并且掺杂的实施需要额外的掺杂源,还对外延设备腔体造成污染。因此需要开发新的拉伸应变锗制造技术,克服以上方法的缺点,或作为以上方法的协同或补充,取得更好的提升长波响应效果。
发明内容
本发明的目的在于提供一种锗光电探测器及通过应力记忆提高其长波响应的方法,解决提升锗在长波段的吸收系数和扩展长波探测限的现有技术存在的问题。
本发明公开了一种通过应力记忆技术提高锗光电探测器长波响应的方法,包括以下步骤:
在单晶硅衬底上以氧化硅开窗定义位置,选择性外延生长单晶锗层,然后沉积多晶硅层并刻蚀成图形覆盖锗层,再沉积氮化硅,所述氮化硅将所述多晶硅层上方和四周全部包围;
在高温下对此结构进行快速热退火;
退火完成后去除氮化硅,再制成探测器。
在高温下快速热退火时,各种材料都会按照表1中的线性膨胀系数发生热膨胀,这一膨胀是可以恢复的弹性形变(Elastic deformation);从表1中各材料的杨氏模量可以比较材料的刚度(Stiffness),按照氮化硅>单晶硅(多晶硅杨氏模量可以认为和单晶硅相同)>单晶锗>氧化硅的顺序依次降低。坚硬的氮化硅从上方和四周包围了多晶硅,迫使多晶膨胀时主要向下挤压较软的锗外延层;类似地,硅衬底也向上膨胀挤压较软的锗外延层;而锗外延的刚度大于四周的氧化硅,因此可以向外膨胀挤压氧化硅。这样,锗外延层在高温退火时形成了在竖直方向上压缩而水平方向上拉伸的应变。
当温度继续上升到一定程度时,多晶硅的晶粒会产生再结晶(Recrystallization)现象,这时多晶的膨胀就同时包含了一部分不可恢复的塑性形变(Plastic deformation)和一部分可恢复的弹性形变;在温度下降到室温时,多晶的弹性形变消失,但这部分塑性形变得以保持,继续向下挤压锗层,因此锗在竖直方向上呈现压缩应变、在水平方向则呈现拉伸应变。总的效果就是,快速热退火使多晶硅再结晶产生的塑性形变,在恢复室温时得以保持,继续向下挤压锗外延层,并在其中产生竖直方向的压缩应变和水平方向的拉伸应变,降低了锗的禁带宽度而提升了对长波光的吸收系数,因此对长波光产生更强的响应,并增加了光电探测的截止波长。
进一步的,所述单晶硅衬底为SOI衬底或体硅衬底。
进一步的,所述单晶硅衬底为SOI衬底时,所述单晶硅衬底自下而上包含了硅衬底、埋氧化硅层和顶硅层三个部分。
进一步的,所述埋氧化硅层厚度为0.1~3微米。较厚的埋氧化层可以降低射频频段下衬底的寄生效应和提升有源器件带宽,但同时也会增加SOI衬底制造成本。
进一步的,所述顶硅层厚度大于0.2微米。确保硅基锗外延的质量和P型掺杂层的横向导电能力。
进一步的,所述顶硅层自下而上又包含了 P层、掺杂浓度渐次增高的P+层和P++层。
进一步的,所述氧化硅通过两次沉积,分别沉积第一氧化硅层和第二氧化硅层,所述第一氧化硅层用于定义锗外延窗口,所述第二氧化硅层用于定义接触孔。
进一步的,所述第一氧化硅层厚度为0.1-2微米。
进一步的,所述第二氧化硅层厚度为0.3-1微米。
进一步的,所述单晶锗层包括非掺杂外延锗层和掺杂外延锗层。
进一步的,所述单晶锗层厚度与所述第一氧化硅层厚度差距不超过0.1微米。确保锗外延后表面基本平坦,有利于同CMOS工艺兼容实现晶体管集成和多层技术连线。
进一步的,所述掺杂外延锗层厚度0.05~0.2微米,表面掺杂浓度为1x1018~5x1020cm-3
进一步的,所述氮化硅厚度为0.05~0.3微米。
进一步的,所述多晶硅层包括掺杂N+层和掺杂N++层。
进一步的,所述多晶硅层经光刻刻蚀后的图形略大于所述锗外延窗口的尺寸,即多晶硅层宽度比锗的上表面层宽度大0.5-1微米。
进一步的,所述多晶硅层厚度0.05~0.2微米,表面掺杂浓度为1x1018~5x1020cm-3
进一步的,所述氮化硅通过湿法腐蚀去除。
进一步的,所述高温快速热退火温度范围为700~900℃。略低于锗的熔点937℃避免熔化再结晶引起的形貌不可控和缺陷生成。
进一步的,所述高温快速热退火在惰性气氛下进行,退火时间为5~300秒。
高温退火有利于多晶硅再结晶产生不可恢复的塑性形变,从而在锗中产生并记忆应变,但时间上限应考虑避免高温下锗中掺杂的过度扩散和锗的结构缺陷产生。
进一步的,所述多晶硅也可以使用非晶硅或多晶硅与非晶硅的叠层代替,经过高温退火都会向多晶硅转化。
本发明第二个目的是保护一种锗光电探测器,使用上述方法制成。
进一步的,所述探测器上设置有钝化保护层。可以提高锗光电探测器的可靠性和使用寿命。
进一步的,所述探测器上设置有减反膜。减少光发射和取得更好的应用效果。
与现有技术相比,本发明具有的有益效果是:
利用不同半导体和介质材料之间的刚度(杨氏模量)、受热膨胀(线性热膨胀系数)、塑性形变等方面的差异,采用应力记忆的方法在硅基锗外延中产生拉伸应变,提升锗在更长波段的吸收系数和光电响应;采用应力记忆技术,通过应力源层氮化硅施加引力、多晶硅材料记忆和传递应力,在锗材料中获得水平方向拉伸应变效果,提升了红外长波方向下的光电响应和增加了截止波长;相较利用锗、硅热膨胀系数差别引起的应变效果更为显著,避免了现有掺杂方法的缺陷问题和高昂工艺设备成本,也没有MSM探测器中金属诱导应变的负效应,即较高的暗电流、光损耗及导致的信噪比受限问题;同时适用于垂直光入射的圆饼型探测器和水平光耦合的波导型PIN和PN型探测器,也可以用于雪崩光电二极管;不仅适合SOI衬底,也适合体硅衬底,具有高度的灵活性和良好的经济性;材料和工艺同CMOS兼容,结构简单,成本低廉。附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅表示出了本发明的部分实施例,因此不应看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它相关的附图。
图1为本发明锗光电探测器剖面结构示意图;
图2为本法明锗光电探测器制备过程中沉积氮化硅层后结构示意图。
图中箭头代表应变的方向。
图中:1-SOI衬底,2-硅衬底,3-埋氧化层,4-顶硅层,5-第一氧化硅层,6-锗层,7-多晶硅层,8-氮化硅层,9-第二氧化硅层。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。
实施例1
一种采用应力记忆法提升长波响应的垂直入射型锗PIN探测器,如图1-图2所示,其制备步骤包括:
1.选取8吋P(100) SOI衬底1,硅衬底2厚度725微米,电阻率约10欧姆∙厘米,埋氧化层3厚度3微米,顶硅层4厚度0.22微米;
2.以光刻胶掩蔽其他区域,对锗光电探测器区域的SOI顶硅层4进行中等剂量的P+型离子注入,后续用于横向传输载流子汇集光电流;
3.以光刻胶掩蔽其他区域,对锗光电探测器区域SOI顶硅层4进行环状的离子注入形成重掺杂的P++型离子注入,并高温快速热退火激活,后续用于同金属电极形成欧姆接触;
4.沉积0.6微米的第一氧化硅层5,并通过光刻和干法刻蚀第一氧化硅层5,定义选择性硅基锗外延的窗口;
5.硅基选择性锗外延0.6微米,采用先低温、再高温两步锗外延的方式减少缺陷密度;
6.低压化学气相沉积(LPCVD)多晶硅0.15微米,去掉衬底背面的多晶硅仅保留正面的多晶硅;
7.对多晶硅进行无掩蔽的N+离子注入掺杂,然后光刻多晶硅的重掺杂接触区进行N++离子注入掺杂,并退火激活;
8.光刻和干法刻蚀多晶硅,仅保留锗外延层上方的多晶硅,让保留的多晶硅层7比锗层6在截面图中左右各宽1微米,以确保多晶硅能够完整覆盖锗;
9.实施锗层6中应力生成和记忆工艺:采用低压化学气相沉积(LPCVD)或等离子增强化学气相沉积(PECVD)设备沉积氮化硅层8(此处氮化硅可以偏离标准的Si3N4配比,选择富氮或富硅的氮化硅、或者掺入氧的氮氧化硅均可),氮化硅层8厚度为0.05~0.3微米,去除背面沉积的氮化硅;进行氮气惰性氛围下的高温快速热退火:温度范围为700~900℃,应略低于锗的熔点937℃避免熔化再结晶引起的形貌不可控和缺陷生成;退火时间惰性气氛5~300秒,高温退火有利于多晶再结晶变形从而在锗中产生并记忆应变,但时间上限应考虑避免锗中掺杂的过度扩散和锗的结构缺陷产生;退火完成后以热磷酸湿法去除氮化硅。综合考虑以上方面,本实施例采用LPCVD沉积Si3N40.15微米并去除衬底背面的氮化硅,进行氮气/900℃/10秒条件快速热退火,然后以热磷酸155℃煮60分钟去除氮化硅。
10.沉积第二氧化硅层9,厚度0.5微米,作为金属前介质PMD(Pre-MetalDielectric)
11.光刻接触孔:此时探测器负极上方是第二氧化硅层9其厚度为0.5微米,正极区域上方则是第一氧化硅层5和第二氧化硅层9厚度叠加即0.6+0.5即厚度1.1微米,如此大的氧化层厚度落差情况下,应进行两次光刻分别刻蚀打开正极和负极的接触孔。这样可以避免一次光刻和刻蚀情形下正极接触孔打开时负极接触孔的严重过刻蚀,因为过刻蚀会造成高掺杂的多晶硅被大量刻蚀而降低欧姆接触质量。本实施例采用先光刻和刻蚀正极接触孔、后光刻和刻蚀负极接触孔的方式,以尽量减少较为复杂和脆弱的锗层6/多晶硅层7上负极接触孔的暴露。
12.采用常规的两步退火法形成低电阻的金属硅化物NiSi:1)溅射10纳米金属镍,接触孔中镍同正极接触区的P++硅、负极接触区的N++多晶硅接触,其余镍附着在第二氧化硅层9上面或接触孔的氧化硅侧壁上面;2)280℃/300秒/氮气气氛退火,与硅接触的镍反应生成高阻、富镍的硅化物NixSi相(x大于1,以Ni2Si为主),与氧化硅接触的镍不反应保持金属镍状态;3)在加热的浓硫酸中腐蚀180秒,去除尚未反应生成硅化物的金属镍;4)400℃/30秒/氮气气氛退火,将富镍的硅化物转变为稳定、低阻的NiSi相硅化物。
溅射0.6微米铝,光刻金属布线图形,以干法刻蚀形成接触孔填充和互连线,并在合成气体(氮气90%+氢气10%的混合)环境下,350℃/30min退火合金完成金属化步骤。
本发明采用多晶硅和氮化硅材料双重包裹锗外延层后,通过高温快速热退火在锗层6中生成和记忆水平拉伸应变,从而提高红外光长波方向的响应和增加截止波长。虽然本发明的技术方案和实施例只是针对垂直入射型的硅基锗PIN探测器,但是其技术原理和方法同样适用于横向耦合入光的波导型硅基锗PIN或PN型探测器,也适用于垂直入射或波导耦合横向入光的硅基锗雪崩光电二极管。除了锗外延层被多晶硅和氮化硅包裹退火生成并记忆应变的这一复合结构和工艺之外,其余结构和工艺在硅基锗光电探测器结构设计和制造中都是常规性的,此处不再赘述。
表1 相关材料的杨氏模量和线性热膨胀系数(室温)
以上即为本实施例列举的实施方式,但本实施例不局限于上述可选的实施方式,本领域技术人员可根据上述方式相互任意组合得到其他多种实施方式,任何人在本实施例的启示下都可得出其他各种形式的实施方式。上述具体实施方式不应理解成对本实施例的保护范围的限制,本实施例的保护范围应当以权利要求书中界定的为准,并且说明书可以用于解释权利要求书。

Claims (9)

1.一种通过应力记忆技术提高锗光电探测器长波响应的方法,其特征在于:包括以下步骤:
在单晶硅衬底上以氧化硅开窗定义位置,选择性外延生长单晶锗层,然后沉积多晶硅层并刻蚀成覆盖锗层的图形,再沉积氮化硅,所述氮化硅将所述多晶硅层上方和四周全部包围;
在高温下对此结构进行快速热退火;
退火完成后去除氮化硅,再制成探测器;
所述快速热退火中温度范围为700~900℃。
2.根据权利要求1所述的一种通过应力记忆技术提高锗光电探测器长波响应的方法,其特征在于:所述单晶硅衬底为SOI衬底或体硅衬底。
3.根据权利要求2所述的一种通过应力记忆技术提高锗光电探测器长波响应的方法,其特征在于:所述单晶硅衬底为SOI衬底时,所述单晶硅衬底自下而上包含了硅衬底、埋氧化硅层和顶硅层三个部分。
4.根据权利要求1所述的一种通过应力记忆技术提高锗光电探测器长波响应的方法,其特征在于:所述多晶硅层厚度0.05~0.2微米,表面掺杂浓度为1x1018~5x1020 cm-3
5.根据权利要求1所述的一种通过应力记忆技术提高锗光电探测器长波响应的方法,其特征在于:所述氮化硅厚度为0.05~0.3微米。
6.根据权利要求1所述的一种通过应力记忆技术提高锗光电探测器长波响应的方法,其特征在于:所述氧化硅通过两次沉积,分别沉积第一氧化硅层和第二氧化硅层,所述第一氧化硅层用于定义锗外延窗口,所述第二氧化硅层用于定义接触孔。
7.根据权利要求1所述的一种通过应力记忆技术提高锗光电探测器长波响应的方法,其特征在于:所述快速热退火在惰性气氛下进行,退火时间为5~300秒。
8.根据权利要求1所述的一种通过应力记忆技术提高锗光电探测器长波响应的方法,其特征在于:所述单晶锗层包括非掺杂外延锗层和掺杂外延锗层。
9.一种锗光电探测器,其特征在于:通过权利要求1-8中任一项所述的一种通过应力记忆技术提高锗光电探测器长波响应的方法制得。
CN202310905207.2A 2023-07-24 2023-07-24 锗光电探测器及通过应力记忆提高其长波响应的方法 Active CN116666499B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310905207.2A CN116666499B (zh) 2023-07-24 2023-07-24 锗光电探测器及通过应力记忆提高其长波响应的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310905207.2A CN116666499B (zh) 2023-07-24 2023-07-24 锗光电探测器及通过应力记忆提高其长波响应的方法

Publications (2)

Publication Number Publication Date
CN116666499A CN116666499A (zh) 2023-08-29
CN116666499B true CN116666499B (zh) 2023-10-20

Family

ID=87724374

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310905207.2A Active CN116666499B (zh) 2023-07-24 2023-07-24 锗光电探测器及通过应力记忆提高其长波响应的方法

Country Status (1)

Country Link
CN (1) CN116666499B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117476800B (zh) * 2023-12-27 2024-04-09 上海铭锟半导体有限公司 硅基光电探测器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014175526A (ja) * 2013-03-11 2014-09-22 Hitachi Ltd 半導体光素子およびその製造方法
CN105845616A (zh) * 2016-06-20 2016-08-10 西安电子科技大学 基于氮化硅应力薄膜与尺度效应的晶圆级单轴应变GeOI的制作方法
CN106098610A (zh) * 2016-06-20 2016-11-09 西安电子科技大学 基于氮化硅应力薄膜与尺度效应的AlN埋绝缘层上晶圆级单轴应变Ge的制作方法
CN111354816A (zh) * 2018-12-20 2020-06-30 西安科锐盛创新科技有限公司 一种半导体器件
CN111430499A (zh) * 2018-12-20 2020-07-17 西安科锐盛创新科技有限公司 光电集成器件及其制备方法
CN115763255A (zh) * 2022-11-21 2023-03-07 中国科学院微电子研究所 一种半导体结构的制备方法及半导体结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488670B2 (en) * 2005-07-13 2009-02-10 Infineon Technologies Ag Direct channel stress
US9780248B2 (en) * 2012-05-05 2017-10-03 Sifotonics Technologies Co., Ltd. High performance GeSi avalanche photodiode operating beyond Ge bandgap limits

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014175526A (ja) * 2013-03-11 2014-09-22 Hitachi Ltd 半導体光素子およびその製造方法
CN105845616A (zh) * 2016-06-20 2016-08-10 西安电子科技大学 基于氮化硅应力薄膜与尺度效应的晶圆级单轴应变GeOI的制作方法
CN106098610A (zh) * 2016-06-20 2016-11-09 西安电子科技大学 基于氮化硅应力薄膜与尺度效应的AlN埋绝缘层上晶圆级单轴应变Ge的制作方法
CN111354816A (zh) * 2018-12-20 2020-06-30 西安科锐盛创新科技有限公司 一种半导体器件
CN111430499A (zh) * 2018-12-20 2020-07-17 西安科锐盛创新科技有限公司 光电集成器件及其制备方法
CN115763255A (zh) * 2022-11-21 2023-03-07 中国科学院微电子研究所 一种半导体结构的制备方法及半导体结构

Also Published As

Publication number Publication date
CN116666499A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
JP6178400B2 (ja) ワイドバンドギャップ半導体材料含有のエミッタ領域を有する太陽電池
US7705235B2 (en) Photovoltaic device
US8698271B2 (en) Germanium photodetector and method of fabricating the same
US10686090B2 (en) Wafer bonded solar cells and fabrication methods
CN116666499B (zh) 锗光电探测器及通过应力记忆提高其长波响应的方法
JP2867983B2 (ja) フォトディテクタおよびその製造方法
TW201338020A (zh) 用於光電應用之使用矽上之局部應變鍺之雷射
US20130025659A1 (en) Multi-junction photovoltaic device and fabrication method
JP3578539B2 (ja) 太陽電池の製造方法および太陽電池構造
JP6091273B2 (ja) 半導体装置とその製造方法
CN105405916A (zh) 硅基宽光谱探测器及制备方法
CA2365499C (en) High speed and high efficiency si-based photodetectors using waveguides formed with silicides for near ir applications
CN116885040A (zh) 一种光探测器件及制备方法
JP2907125B2 (ja) 裏面照射型固体撮像素子の製造方法
TWI489647B (zh) 製作具有織化表面之半導體層之方法、製作太陽能電池之方法
CN116666500B (zh) 锗光电探测器及通过热失配应力提高其长波响应的方法
CN109256437B (zh) 一种低温键合光电探测器及其制备方法
JPS62291183A (ja) 多接合半導体光電変換素子の製造方法
CN116031265B (zh) 集成太阳能电池和cmos电路的光电探测器及制造方法
TWI286357B (en) Photodetector circuits
TW201108402A (en) Semiconductor photodetector structure and the fabrication method thereof
JP3088032B2 (ja) 半導体装置
JP3067821B2 (ja) 太陽電池およびその製造方法
JP3088033B2 (ja) 半導体装置
CN112563403A (zh) 一种低噪声热电堆器件的制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant