CN116590742A - Ni/C纳米多层膜催化剂及其制备方法和在电解水中的应用 - Google Patents

Ni/C纳米多层膜催化剂及其制备方法和在电解水中的应用 Download PDF

Info

Publication number
CN116590742A
CN116590742A CN202310550616.5A CN202310550616A CN116590742A CN 116590742 A CN116590742 A CN 116590742A CN 202310550616 A CN202310550616 A CN 202310550616A CN 116590742 A CN116590742 A CN 116590742A
Authority
CN
China
Prior art keywords
film catalyst
multilayer film
nano
target
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310550616.5A
Other languages
English (en)
Inventor
许明宇
高波
钱航
熊静茹
张铭
于佳豪
王明婷
杨振宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Technology
Original Assignee
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Technology filed Critical Qingdao University of Technology
Priority to CN202310550616.5A priority Critical patent/CN116590742A/zh
Publication of CN116590742A publication Critical patent/CN116590742A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • C25B11/053Electrodes comprising one or more electrocatalytic coatings on a substrate characterised by multilayer electrocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Ni/C纳米多层膜催化剂及其制备方法和在电解水中的应用,属于催化剂制备技术领域。Ni/C纳米多层膜催化剂按照以下步骤进行制备:对基板进行表面清洗和干燥处理,得到处理基板;将处理基板装到磁控溅射设备的真空室里,使用辉光溅射清洗后,以氩气为载气,使用Ni靶和C靶双靶共溅射,沉积得到Ni/C纳米多层膜催化剂。该催化剂具有低过电位、强导电性、高活性比表面积及优异的稳定性。

Description

Ni/C纳米多层膜催化剂及其制备方法和在电解水中的应用
技术领域
本发明涉及催化剂制备技术领域,更具体的涉及一种Ni/C纳米多层膜催化剂及其制备方法和在电解水中的应用。
背景技术
传统的化石能源资源不仅有限,而且在开采、运输和使用过程中会产生大量的污染物,对环境和人类健康造成严重影响。而新型绿色可再生能源,如风能、潮汐能、太阳能、生物能、氢能等被认为是传统的绿色可再生能源,不仅储量丰富,而且对环境友好,不会产生污染气体排放和其他环境问题,具有巨大的潜力,可以成为替代传统能源的重要选择。
目前,风能、潮汐能、太阳能、生物能和氢能被认为是传统的绿色可再生能源,其中氢能作为一种高能量密度、清洁无污染的能源,在可再生能源领域具有独特的优点。氢能具有很高的能量携带能力,比能量密度高达142.35KJ·Kg-1,相较于风能、潮汐能、太阳能等能源,氢能在单位质量的情况下储存更多的能量,从而具有更高的能源储存密度。这意味着氢能可以有效解决可再生能源间歇性和不稳定性的问题,提供可靠的能源供应。而电解水制氢作为一种生产氢能的技术,具有优越性。首先,电解水制氢可以使用电力作为驱动能源,而电力可以来自多种可再生能源,如风能、太阳能等,从而实现可再生能源向氢能的转化,进一步提高能源的可再生利用率。其次,电解水制氢过程中不需要使用任何化石燃料,不产生污染物,无二氧化碳、氮氧化物等温室气体的排放,对环境友好,有助于减少污染气体排放,降低空气和水源污染的风险。而且目前全球水资源及其丰富,水电解最重要的原料水资源储量丰富,则水电解制氢已日益成为最重要的制氢手段。
通过水电解制氢用来获取大量氢能作为清洁能源使用是目前最有效的解决能源短缺和环境污染等问题的方式。在水电解制氢的过程中,水的电解涉及到在阳极和阴极表面分别发生的氧化和还原反应。然而,由于反应动力学的限制,实际电催化析氢过程中所需的分解电压通常远高于理论分解电压,导致严重的电能损失。为了降低反应过电位,传统上使用铂等贵金属作为催化剂,因其具有优异的催化性能,被认为是最佳的析氢催化剂。然而,贵金属催化剂受限于其地球含量低和高昂的价格,限制了其在商业化中的应用。这促使研究者们寻找贵金属催化剂的替代品,并进一步提高催化剂的催化活性和稳定性。
近年来,Ni/C纳米多层膜催化剂因为它良好的催化活性而引起了社会上广泛的关注。Ni/C纳米多层膜相比于其他贵金属催化剂,Ni/C纳米多层膜催化剂在制备上更加的方便且价格低,拥有非常大的潜力来变成高效的电解水制氢催化剂,且传统方法难以实现这种层状材料的制备,怎么样制备高效的Ni/C纳米多层膜催化剂日渐成为众科学家的研究热点。
发明内容
针对以上问题,本发明提供了一种Ni/C纳米多层膜催化剂及其制备方法和在电解水中的应用,利用磁控溅射技术制备得到Ni/C纳米多层膜电解水制氢催化剂,该催化剂具有低过电位、强导电性、高活性比表面积及优异的稳定性。
本发明的第一个目的是提供一种Ni/C纳米多层膜催化剂的制备方法,包括以下步骤:
步骤1、对基板进行表面清洗和干燥处理,得到处理基板;
步骤2、Ni/C纳米多层膜催化剂的制备
将步骤1中的处理基板装到磁控溅射设备的真空室里,使用辉光溅射清洗后,以氩气为载气,使用Ni靶和C靶双靶共溅射,沉积得到Ni/C纳米多层膜催化剂。
优选的,步骤1中,基板=碳纤维纸、泡沫铜、单层石墨烯、单抛硅片、泡沫镍或碳纤维布。
优选的,步骤1中,清洗步骤是:将基板依次丙酮、无水乙醇、去离子水进行超声清洗。
优选的,步骤2中,辉光溅射清洗的步骤是:在真空室内抽气直到真空室内的气压低于5×10-4Pa之后再导进氩气,限制氩气的气压为0.4~1.6Pa,对处理基板施以-200~500V偏压,辉光的清洗时间为10~20min。
优选的,步骤2中,双靶共溅射的步骤是:对Ni靶和C靶均使用射频电源,Ni靶功率是40~300W,C靶功率是5~100W,沉积时间是5~20min,氩气流量为20-40sccm,本底真空度为3×10-4~6×10-4Pa,工作气压设置在0.2~1.0Pa。
本发明的第二个目的是提供上述制备方法制备得到的Ni/C纳米多层膜催化剂。
本发明的第三个目的是提供上述Ni/C纳米多层膜催化剂在电解水中的应用。
优选的,以饱和甘汞电极为参比电极,石墨棒为对电极,Ni/C纳米多层膜催化剂为工作电极,H2饱和的碱性溶液为电解液,进行电解处理。
与现有技术相比,本发明具有以下有益效果:
(1)本发明利用磁控溅射技术制备了一种高效的Ni/C纳米多层膜电解水制氢催化剂,利用电离的氩离子先对金属Ni进行轰击,靶材表面的Ni原子或原子团在基底表层重新形核长大,形成致密的金属Ni层,然后关闭Ni靶,开启C靶,C原子在Ni层表面形核长大,最终形成具有周期结构的Ni/C多层。该催化剂具有低过电位、强导电性、高活性比表面积及优异的稳定性,且制备过程简单,能够简化制备过程、降低生产成本、全程无污染,解决了传统水热、溶剂热、化学沉积等方法制备催化剂带来的工艺复杂、成本昂贵、过程烦琐精细、稳定性差等问题,将大幅度降低碱性电解水制氢的商业成本。
(2)Ni/C纳米多层膜催化剂在催化反应中表现出较高的催化活性。纳米多层膜结构提供了更大的比表面积和较短的传质路径,从而提高了催化剂的反应活性,使得反应可以在较低的温度或压力下进行,从而降低了催化剂的能耗和成本。Ni/C纳米多层膜催化剂在催化反应过程中表现出较高的稳定性。多层膜结构可以提供一定的抗氧化和抗腐蚀性能,从而减轻了催化剂在高温、高压或腐蚀性环境下的失活风险,延长了催化剂的使用寿命。Ni/C纳米多层膜催化剂的结构和组成可以通过调整制备条件进行精确控制,从而可以实现对催化剂性能的定制化设计。通过控制多层膜的层数、厚度、成分以及结构等参数,可以优化催化剂的催化性能,以满足不同反应的需求。
附图说明
图1为本发明实施例2制备得到的Ni/C纳米多层膜催化剂的扫描电子显微镜图;
图2为本发明实施例4(a)和实施例5(b)制备得到的Ni/C纳米多层膜催化剂的透射电子显微镜图;
图3为本发明制备的Ni/C纳米多层膜催化剂的电解水催化析氢性能图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明各实施例中所述实验方法,如无特殊说明,均为常规方法。
实施例1
利用磁控溅射技术在单层石墨烯表面溅射Ni/C纳米多层膜催化剂的制备方法,包括如下步骤:
(1)先后使用丙酮、无水乙醇、去离子水对单层石墨烯基板来进行超声清洗各10min,之后对其进行烘干处理,最终获得处理基板;
(1)Ni/C纳米多层膜催化剂的制备:
S1、把步骤(1)的处理基板装配于磁控溅射设备真空室里的工件转架上,把单质Ni靶与C靶依次装配于磁控溅射设备真空室里的靶位之上;
S2、把步骤(1)的处理基板首先对其进行辉光溅射清洗,辉光溅射清洗的步骤是:首先对磁控溅射真空室进行抽气直到真空室内的气压低于5×10-4Pa之后,导进氩气,把握真空室内气压为1.0Pa,对处理基板加以-200V的偏压,对其进行辉光清洗15min;之后往真空室之中导入氩气,氩气的流量为30sccm,本底真空度为5×10-4Pa,控制工作气压为0.55Pa,对镍使用射频电源,镍靶的功率把控为40W,对于碳靶也使用射频电源,碳靶的功率把控在100W,控制其沉积时间在5min,重复沉积多次,最终获得Ni/C纳米多层膜催化剂(Ni层和C层都为5nm),记为Ni-C(5);
实施例2
与实施例1的制备方法相同,区别在于,用单抛硅片来代替步骤(1)里的单层石墨烯基板。
实施例3
与实施例1的制备方法相同,区别在于,用泡沫镍基板来代替步骤(1)里的单层石墨烯基板。
实施例4
与实施例1的制备方法相同,区别在于,将步骤(2)中的沉积时间增加为10min,最终获得Ni/C纳米多层膜催化剂(Ni层和C层都为10nm),记为Ni-C(10)。
实施例5
与实施例1的制备方法相同,区别在于,将步骤(2)中的沉积时间增加为20min,最终获得Ni/C纳米多层膜催化剂(Ni层和C层都为20nm),记为Ni-C(20)。
实施例6
利用磁控溅射技术在单层石墨烯表面溅射Ni/C纳米多层膜催化剂的制备方法,包括如下步骤:
(1)先后使用丙酮、无水乙醇、去离子水对碳纤维纸基板来进行超声清洗各10min,之后对其进行烘干处理,最终获得处理基板;
(2)Ni/C纳米多层膜催化剂的制备:
S1、把步骤(1)的处理基板装配于磁控溅射设备真空室里的工件转架上,把单质Ni靶与C靶依次装配于磁控溅射设备真空室里的靶位之上;
S2、把步骤(1)的处理基板首先对其进行辉光溅射清洗,辉光溅射清洗的步骤是:首先对磁控溅射真空室进行抽气直到真空室内的气压低于5×10-4Pa之后,导进氩气,把握真空室内气压为0.4Pa,对处理基板加以500V的偏压,对其进行辉光清洗10min;之后往真空室之中导入氩气,氩气的流量为20sccm,本底真空度为5×10-4Pa,控制工作气压为0.1Pa,对镍使用射频电源,镍靶的功率把控为300W,对于碳靶也使用射频电源,碳靶的功率把控在5W,控制其沉积时间在20min,重复沉积多次,最终获得Ni/C纳米多层膜催化剂。
实施例7
利用磁控溅射技术在单层石墨烯表面溅射Ni/C纳米多层膜催化剂的制备方法,包括如下步骤:
(1)先后使用丙酮、无水乙醇、去离子水对泡沫铜基板来进行超声清洗各10min,之后对其进行烘干处理,最终获得处理基板;
(3)Ni/C纳米多层膜催化剂的制备:
S1、把步骤(1)的处理基板装配于磁控溅射设备真空室里的工件转架上,把单质Ni靶与C靶依次装配于磁控溅射设备真空室里的靶位之上;
S2、把步骤(1)的处理基板首先对其进行辉光溅射清洗,辉光溅射清洗的步骤是:首先对磁控溅射真空室进行抽气直到真空室内的气压低于5×10-4Pa之后,导进氩气,把握真空室内气压为1.6Pa,对处理基板加以100V的偏压,对其进行辉光清洗20min;之后往真空室之中导入氩气,氩气的流量为40sccm,本底真空度为6×10-4Pa,控制工作气压为1.0Pa,对镍使用射频电源,镍靶的功率把控为100W,对于碳靶也使用射频电源,碳靶的功率把控在50W,控制其沉积时间在10min,重复沉积多次,最终获得Ni/C纳米多层膜催化剂。
实施例8
利用磁控溅射技术在单层石墨烯表面溅射Ni/C纳米多层膜催化剂的制备方法,包括如下步骤:
(1)先后使用丙酮、无水乙醇、去离子水对碳纤维布基板来进行超声清洗各10min,之后对其进行烘干处理,最终获得处理基板;
(4)Ni/C纳米多层膜催化剂的制备:
S1、把步骤(1)的处理基板装配于磁控溅射设备真空室里的工件转架上,把单质Ni靶与C靶依次装配于磁控溅射设备真空室里的靶位之上;
S2、把步骤(1)的处理基板首先对其进行辉光溅射清洗,辉光溅射清洗的步骤是:首先对磁控溅射真空室进行抽气直到真空室内的气压低于5×10-4Pa之后,导进氩气,把握真空室内气压为1.0Pa,对处理基板加以-200V的偏压,对其进行辉光清洗15min;之后往真空室之中导入氩气,氩气的流量为30sccm,本底真空度为3×10-4Pa,控制工作气压为0.55Pa,对镍使用射频电源,镍靶的功率把控为50W,对于碳靶也使用射频电源,碳靶的功率把控在80W,控制其沉积时间在5min,重复沉积多次,最终获得Ni/C纳米多层膜催化剂。
对比例1
利用磁控溅射技术在单层石墨烯表面溅射Ni薄膜催化剂的制备方法,包括如下步骤:
步骤1、轮流使用丙酮、无水乙醇和去离子水对单层石墨烯基板进行超声清洗10min;把基板装配于磁控溅射设备真空室里的工件转架之上,将单质Ni靶装配于磁控溅射设备真空室里的靶位之上;
步骤2、首先对磁控溅射真空室进行抽气直到磁控溅射真空室内的气压低于5×10-4Pa之后,向内导进氩气,把气压控制在1.0Pa,对基材施以-200V的偏压,使用辉光对其进行清洗15min;
步骤3、往真空室内导进氩气,把氩气流量控制在30sccm,把工作气压控制为0.55Pa,镍使用直流电源,将靶材的功率把握在40W,沉积时间40min,最终获得Ni薄膜催化剂,记为Ni。
对比例2
使用磁控溅射技术于单层石墨烯表面溅射Pt薄膜催化剂的制备方法,包括如下步骤:
步骤1、轮流使用丙酮、无水乙醇和去离子水对单层石墨烯基板进行超声清洗10min;把基板装配于磁控溅射设备真空室里的工件转架之上,把单质Pt靶装配于磁控溅射设备真空室里的靶位之上;
步骤2、首先对磁控溅射真空室进行抽气直到磁控溅射真空室内的气压低于5×10-4Pa之后,向内导进氩气,把气压控制在1.0Pa,对基材施以-200V的偏压,使用辉光对其进行清洗15min;
步骤3、往真空室内导进氩气,把氩气流量控制在30sccm,把工作气压控制为0.50Pa,Pt使用直流电源,将靶材的功率把握在100W,沉积时间控制在20min,真空室内温度即为室温,最终获得Pt薄膜催化剂,记为Pt。
本发明实施例1至实施例3全部都制作获得了催化性能极好的Ni/C纳米多层膜催化剂,现以实施例1制作获得的Ni/C纳米多层膜催化剂作为例来研究,而且分别把实施例1制作获得的Ni/C纳米多层膜催化剂当作工作电极,具体的研究步骤和研究结果如下所示:
图1为实施例2制备的Ni/C纳米多层膜结构扫描电子显微镜图片,可看出Ni/C纳米多层膜为层状结构。
图2为实施例4(图2a)和实施例5(图2b)制备的Ni/C纳米多层膜催化剂的透射电子显微镜图,通过改变沉积时间,使得不同的调制周期制备的Ni/C纳米多层膜催化剂厚度不同。
图3为三电极体系的电化学工作站对所制备的样品进行HER性能测试获得的10mA下的过电位对比图;三电极工作站电解水催化反应的步骤是:把饱和甘汞电极当作参比电极,把石墨棒当作对电极,这两个电极与工作电极一并构成三电极体系,接入电化学检测设备之中,把H2饱和的碱性溶液当作电解液使用,然后对其进行电解过程;工作电极分别选自于实施例1的Ni/C纳米多层膜催化剂(Ni-C(5))、实施例4的Ni/C纳米多层膜催化剂(Ni-C(10))、实施例5的Ni/C纳米多层膜催化剂(Ni-C(20))、对比例1的Ni薄膜催化剂(Ni)、对比例2的Pt薄膜催化剂镀金属铂(Pt);
最终结果得出,通过磁控溅射制备的Ni/C纳米多层膜催化剂能够非常有效的降低HER的过电位,且当Ni层和C层都为10nm的时候过电位最接近Pt,降低过电位的效果最好。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (8)

1.一种Ni/C纳米多层膜催化剂的制备方法,其特征在于,包括以下步骤:
步骤1、对基板进行表面清洗和干燥处理,得到处理基板;
步骤2、Ni/C纳米多层膜催化剂的制备
将步骤1中的处理基板装到磁控溅射设备的真空室里,使用辉光溅射清洗后,以氩气为载气,使用Ni靶和C靶双靶共溅射,沉积得到Ni/C纳米多层膜催化剂。
2.根据权利要求1所述的Ni/C纳米多层膜催化剂的制备方法,其特征在于,步骤1中,基板包括碳纤维纸、泡沫铜、单层石墨烯、单抛硅片、泡沫镍或碳纤维布。
3.根据权利要求1所述的Ni/C纳米多层膜催化剂的制备方法,其特征在于,步骤1中,清洗步骤是:将基板依次丙酮、无水乙醇、去离子水进行超声清洗。
4.根据权利要求1所述的Ni/C纳米多层膜催化剂的制备方法,其特征在于,步骤2中,辉光溅射清洗的步骤是:在真空室内抽气直到真空室内的气压低于5×10-4Pa之后再导进氩气,限制氩气的气压为0.4~1.6Pa,对处理基板施以-200~500V偏压,辉光的清洗时间为10~20min。
5.根据权利要求1所述的Ni/C纳米多层膜催化剂的制备方法,其特征在于,步骤2中,双靶共溅射的步骤是:对Ni靶和C靶均使用射频电源,Ni靶功率是40~300W,C靶功率是5~100W,沉积时间是5~20min,氩气流量为20-40sccm,本底真空度为3×10-4~6×10-4Pa,工作气压设置在0.2~1.0Pa。
6.一种权利要求1-5任一项所述的制备方法制备得到的Ni/C纳米多层膜催化剂。
7.一种权利要求6所述的Ni/C纳米多层膜催化剂在电解水中的应用。
8.根据权利要求7所述的Ni/C纳米多层膜催化剂在电解水中的应用,其特征在于,以饱和甘汞电极为参比电极,石墨棒为对电极,Ni/C纳米多层膜催化剂为工作电极,H2饱和的碱性溶液为电解液,进行电解处理。
CN202310550616.5A 2023-05-16 2023-05-16 Ni/C纳米多层膜催化剂及其制备方法和在电解水中的应用 Pending CN116590742A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310550616.5A CN116590742A (zh) 2023-05-16 2023-05-16 Ni/C纳米多层膜催化剂及其制备方法和在电解水中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310550616.5A CN116590742A (zh) 2023-05-16 2023-05-16 Ni/C纳米多层膜催化剂及其制备方法和在电解水中的应用

Publications (1)

Publication Number Publication Date
CN116590742A true CN116590742A (zh) 2023-08-15

Family

ID=87595010

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310550616.5A Pending CN116590742A (zh) 2023-05-16 2023-05-16 Ni/C纳米多层膜催化剂及其制备方法和在电解水中的应用

Country Status (1)

Country Link
CN (1) CN116590742A (zh)

Similar Documents

Publication Publication Date Title
CN104894595B (zh) 一种高催化活性的非晶金属氧化物析氢电极及其制备方法
CN113430553A (zh) 基于过渡金属异质层状结构双功能催化电极及制备方法
CN109457269B (zh) 一种MoS2/石墨烯-泡沫镍阴极的制备方法及其在微生物电解池中的应用
CN113019398B (zh) 一种高活性自支撑oer电催化剂材料及其制备方法与应用
CN112090436B (zh) 一种镍基催化剂、制备方法及应用
CN113637999A (zh) 一种Cu基纳米阵列复合镍钼氧化物电极材料及其制备方法与应用
CN114411188B (zh) 一种电解水析氢阴极及其制备方法
CN113637986B (zh) 双相硒化镍双功能电解水催化剂及其制备方法和应用
CN115595617A (zh) 一种镍-含镍氮化物复合电极及其制备方法和应用
CN111939914B (zh) 一种利用废弃铜箔制备高活性三元金属析氧催化剂的方法
CN113308707A (zh) 用于电化学还原二氧化碳的气体扩散电极
CN114457388B (zh) 一种电解水析氧阳极及其制备方法
CN114045509B (zh) 一种钠离子导通的电解海水装置及其应用
CN114892206B (zh) 一种多元金属氮化物异质结纳米棒阵列复合电催化剂及其制备方法和应用
CN114150343B (zh) 一种纳米茸状NiMoCu催化剂及其制备方法
CN116590742A (zh) Ni/C纳米多层膜催化剂及其制备方法和在电解水中的应用
CN113529126B (zh) 一种催化活性物种含量可控的非晶硫化钼/石墨烯催化剂及其制备和应用
CN112501645B (zh) 一种氢氧化镍/镍网复合析氢析氧电极、制备方法及其应用
CN110227467B (zh) 一种三层同轴产氧电催化剂及其制备方法
CN112359318A (zh) 一种含1T相的MoS2薄膜及其制备工艺
CN117468014A (zh) 二硫化钼/镍层状薄膜催化剂及其制备方法和应用
CN111774071B (zh) 一种三元金属硫化物纳米片材料及其制备与电解水应用
CN114622236B (zh) 一种氧化物衍生的致密排列的铜阵列材料及其制备方法和应用
CN218729930U (zh) 一种应用于HER催化的Si-Ru/CNT/Ti复合自支撑电极
CN116536702A (zh) 非晶Mo-Si@Mo-O薄膜催化剂及其制备方法和在电解水中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination