CN116479321A - 一种纳米晶软磁合金带材及其制备方法和应用 - Google Patents

一种纳米晶软磁合金带材及其制备方法和应用 Download PDF

Info

Publication number
CN116479321A
CN116479321A CN202310220629.6A CN202310220629A CN116479321A CN 116479321 A CN116479321 A CN 116479321A CN 202310220629 A CN202310220629 A CN 202310220629A CN 116479321 A CN116479321 A CN 116479321A
Authority
CN
China
Prior art keywords
strip
alloy
magnetically soft
magnetic field
nanocrystalline magnetically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310220629.6A
Other languages
English (en)
Other versions
CN116479321B (zh
Inventor
孙浩
韩钰
杨富尧
刘洋
高洁
王聪
祝志祥
马光
程灵
何承绪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Smart Grid Research Institute Co ltd
State Grid Corp of China SGCC
Original Assignee
State Grid Smart Grid Research Institute Co ltd
State Grid Corp of China SGCC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Smart Grid Research Institute Co ltd, State Grid Corp of China SGCC filed Critical State Grid Smart Grid Research Institute Co ltd
Priority to CN202310220629.6A priority Critical patent/CN116479321B/zh
Publication of CN116479321A publication Critical patent/CN116479321A/zh
Application granted granted Critical
Publication of CN116479321B publication Critical patent/CN116479321B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/04General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15325Amorphous metallic alloys, e.g. glassy metals containing rare earths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15391Elongated structures, e.g. wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/02Amorphous
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Continuous Casting (AREA)

Abstract

本发明公开一种纳米晶软磁合金带材,所述纳米晶软磁合金带材的材料为纳米晶软磁合金,所述纳米晶软磁合金的化学式为FeaSibBcNbdCueGefMg,M为稀土元素Tb或Gd;其中,a+b+c+d+e+f+g=100,76≤a≤82,3≤b≤7,9≤c≤12,1≤d≤3,0.5≤e≤1.5,0.5≤f≤2.5,0.5≤g≤2.5。本发明还公开上述纳米晶软磁合金带材的制备方法和应用。本发明通过限制特定的元素组分,同时在制备方法中采用双辊快淬和箔材轧制,提供了一种具有较高饱和磁感应强度、高的磁导率以及低损耗的超薄超宽纳米晶软磁合金带材,本发明的纳米晶软磁材料适用于高频变压器,无线充电等应用领域。

Description

一种纳米晶软磁合金带材及其制备方法和应用
技术领域
本发明涉及磁性功能材料领域,具体涉及一种纳米晶软磁合金带材及其制备方法和应用。
背景技术
自20世纪80年代铁基纳米晶软磁合金问世以来,其优异的软磁性能开创了软磁行业新篇章。相比于传统软磁材料如硅钢、铁氧体等,纳米晶软磁合金兼具高饱和磁感应强度和磁导率以及低的损耗,满足了电力电子器件不断向小型化、高效化发展的需求。然而目前只有牌号为FINEMET的纳米晶软磁合金具备产业化生产的能力,而其饱和磁感较低,限制了小型化的应用。因此开发出高性能纳米晶软磁合金对于能源的传输和转换具有重要意义,也符合当前节能减排和可持续发展的需求。
中国专利文件CN103060691A公开了一种铁基纳米晶薄带及其制备方法,其特征在于,所述铁基纳米晶薄带的化学分子式为:FeaCubNbcSidBe,通过原料混合、熔炼制钢锭、单辊极冷制薄带、热处理等流程制备出性能优异的纳米晶软磁带材,该方法以FINEMET软磁合金成分为基础,将国产铁基纳米晶带材的制备流程详细表现了出来,所制备的带材带厚为30~40μm,带宽3~10mm。但以目前电力电子器件发展速度来开,这种规格的纳米晶带材已不能满足更先进的需求。
中国专利文献CN112176249A公开了一种铁基纳米晶薄带及其制备方法,其特征在于,所述铁基纳米晶薄带化学成分表达式为:FeaSibBcCudNbeMf,所述M选自Mo和V中的至少一种。该合金通过优化合金成分含量制备的带材具有较好的非晶形成能力和良好的热稳定性,Mo元素和V元素的添加,有效的改善了软磁合金高频磁导率衰减快并且其值较低的缺点,同时提高了材料的电阻率,但该合金铁磁性元素含量较低会使得饱和磁感较低。
中国专利文献CN101792890A公开了一种具有超高饱和磁感应强度的铁基纳米晶薄带,其中,铁基纳米晶薄带成分按照原子个数百分比计,其化学成分表达方式为:FeaCubBcSid,该合金Fe元素含量高,类金属元素合理搭配,且不含贵金属元素,因而制造工艺简单,且成本低廉,得到的产品韧性好,并且具有超高饱和磁感应强度,生产出的铁基纳米晶薄带厚度为15~40微米,宽度为8~20毫米,饱和磁感应强度Bs不小于1.76T,但该发明没有考虑随着饱和磁感的提高,磁导率和损耗会变差,且没考虑合金在高频下的磁性能。
中国专利文献CN106086714A公开了一种宽度大于63.5mm,厚度在13到20微米之间,且具有由以下表达式表示的成分的铁基软磁合金:(Fe1-aMa)100-x-y-z-p-q-rCuxSiyBzM'pM"qXr其中,M是Co和/或Ni,M'是从由Nb、W、Ta、Zr、Hf、Ti和Mo组成的组合中选出的至少一种元素;M"是从由V、Cr、Mn、Al、铂系元素、Sc、Y、稀土元素、Au、Zn、Sn和Re组成的组合中选出的至少一种元素;并且a、x、y、z、p、q和r分别满足0≤a≤0.5,0.1≤x≤3,0≤y≤30,1≤z≤25,5≤y+z≤30,0.1≤p≤30,q≤10和r≤10,X是从由C、Ge、P、Ga、Sb、In、Be和As构成的组合中选出的至少一种元素,合金至少50%结晶,平均颗粒尺寸为100nm以下。该合金具有较好的软磁性能,但该专利并没有对合金成分进行详细的分析,并举例说明不同元素含量对合金软磁性能的影响,也没有将合金饱和磁感应强度、磁导率、损耗等软磁性能综合分析。
纳米晶软磁合金饱和磁感应强度与高频损耗是一对Trade-off关系,他们呈相互制约的关系,提高了饱和磁感应强度的同时会导致损耗增大,而在高频条件下,损耗会随着频率的提升急剧增大。当下关于纳米晶软磁合金的开发工作要么一方面通过提高铁磁性元素含量从而提高了饱和磁感应强度,但会导致非晶形成能力下降高频损耗增加,要么以降低高频损耗为目的但饱和磁感应强度却不高,因此需要开发出一种同时具有高饱和磁感应强度,高的高频磁导率和低的损耗的纳米晶带材,实现软磁行业的进一步发展。
发明内容
因此,本发明要解决的技术问题在于现有技术中饱和磁感应强度、非晶形成能力和高频损耗无法兼得的问题,从而提供一种纳米晶软磁合金带材及其制备方法和应用。
为此,本发明采用如下技术方案:
本发明提供一种纳米晶软磁合金带材,所述纳米晶软磁合金带材的材料为纳米晶软磁合金,所述纳米晶软磁合金的化学式为FeaSibBcNbdCueGefMg,M为稀土元素Tb或Gd;
其中,a、b、c、d、e、f、g为对应元素的原子百分数,a+b+c+d+e+f+g=100,76≤a≤82,3≤b≤7,9≤c≤12,1≤d≤3,0.5≤e≤1.5,0.5≤f≤2.5,0.5≤g≤2.5。
优选地,78≤a≤82,4≤b≤7,10≤c≤11,1≤d≤2,0.5≤e≤1,1≤f≤2,1≤g≤2。
进一步地,所述带材厚度为10~16μm,带材宽度为200~300mm,带材横向厚度偏差小于±0.001mm。
优选地,所述带材厚度为10~14μm,带材宽度为250~270mm,带材横向厚度偏差小于±0.001mm。
本发明还提供上述纳米晶软磁合金带材的制备方法,包括熔炼、双辊快淬、箔材轧制、磁场热处理。
进一步地,所述双辊快淬为,将熔炼后的液态熔融合金均匀地从石英喷嘴中喷出到旋转中的双辊辊缝中,熔融态合金以105~107℃/s冷却形成厚度为0.5mm、宽度为40mm的非晶态合金带材。
将双辊快淬得到的非晶态合金带材轧制4~6道次,总压下率为60%~70%之间,得到的轧制后带材的厚度为10~16μm,带材宽度为200~300mm。
所述磁场热处理为将轧制后带材以40~60℃/min的速度升到230~270℃左右,保温30~90min,在保温时加入磁场强度为40~60mT的横向磁场,保温结束后带材随炉冷却至150℃取出。
本发明还提供上述纳米晶软磁合金在高频变压器或无线充电的应用。
本发明技术方案,具有如下优点:
(1)在本发明中,纳米晶合金的化学式为:FeaSibBcNbdCueGefMg,M为稀土元素Tb或Gd,a、b、c、d、e、f、g为对应元素的原子百分数,a+b+c+d+e+f+g=100,76≤a≤82,3≤b≤7,9≤c≤12,1≤d≤3,0.5≤e≤1.5,0.5≤f≤2.5,0.5≤g≤2.5。合适的Fe元素含量可以确保合金具有较高的饱和磁感应强度,同时避免因Fe含量过高导致非晶形成能力下降,Si、B类金属元素确保合金能以非晶态形成,大尺寸Nb元素适量的添加能降低合金热处理后的矫顽力,同时扩大热处理窗口,Cu元素的添加有利于微观晶粒的析出和细化,但若添加过量会导致带材性能恶化,除了这几种典型的元素,还添加了少量的Ge元素和稀土元素Tb元素或Gd元素,少量Ge元素的作用是有效抑制了α-Fe晶粒的过度生长,提高了非晶形成能力同时可以提高非晶基体的热稳定性,表现出良好的延展性,但若添加过量,会导致饱和磁感的下降,稀土元素Tb和Gd元素少量的添加同样可以提高块体非晶合金的非晶形成能力和热稳定性,有利于轧制,且相比于其他稀土元素,Tb和Gd元素非晶形成能力和热稳定性更好,同时Tb和Gd元素在Fe基纳米晶中能促进异质形核,利于α-Fe晶粒的析出和细化,提高合金的软磁性能,但若添加过量,会导致饱和磁感的下降。
(2)本发明中,确定了合金成分之后将合金材料经过真空感应熔炼充分溶解均匀,利用加压的惰性气体(如氩气)将液态熔融合金均匀地从石英喷嘴中喷出到高速旋转的双辊辊缝中,熔融态合金以105~107℃/s高速冷却形成厚度为0.5mm、宽度为40mm的非晶态合金带材。传统的单辊快淬存在贴辊面和自由面,有温度梯度不均匀相比于单辊法,双辊法带材更厚一些,但均匀性较好、硬度较低、尺寸精度较好,也为了后面的箔材轧制、磁场热处理准备。
本发明利用氮气冷却装置控制轧制温度,避免带材因温度过高发生晶化,利用液压压下装置稳定地控制和改变轧辊每端的压力使得压下率在60%~70%之间,考虑到轧制压下率过大会造成带材产生剪切带,对带材性能产生影响,压下率过小使得轧制效率过低,控制压下率在60%~70%之间可以确保轧制后的带材厚度均匀、表面有好的光洁度,同时防止因压下率过高产生晶化及位错等缺陷。随着轧制的进行,合金中原子无序性会降低,无序化向着有序化转变,使非晶前驱体带材向着易晶化的方向进行。利用X射线衍射仪对带材观察也呈现非晶材料具有的漫散射峰,说明轧制后的带材没有发生晶化。
(3)本发明在制备过程中DSC分析发现经过轧制后的带材晶化温度降低到200℃,这是由于轧制过程中合金内部各区域变形不均匀性,使其处于热力学不稳定的高自由能状态,在热处理过程中产生的储存能为结晶提供驱动力,提高了材料的晶化速率,因此热处理在200℃就提前发生了晶化。快速升温有利于形成高密度的纳米双相结构,使得纳米晶粒只形核不长大,加强了α-Fe晶粒间的铁磁交换耦合作用,轧制后带材因为结构的均匀性,使得其热处理窗口宽,较宽范围的加热温度和保温时间都能确保高密度小尺寸均匀的晶粒,软磁性能优异。加入的横向磁场应与带材的易磁化轴垂直,可以有效地改变磁畴方向,畴壁方向与磁场方向一致,磁畴结构简单,磁畴宽度加大,进一步降低铁损。
(4)本发明提供了一种具有较高饱和磁感应强度、高的磁导率以及低损耗的超薄超宽纳米晶软磁合金带材,带材厚度为10~16μm,带材宽度为200~300mm,带材横向厚度偏差小于±0.001mm,饱和磁感应强度Bs为1.51~1.63T,频率为1kHz条件下的损耗P1T/1kHz为0.8~1.54W/kg,频率为100kHz下的磁导率为25700~29100。本发明的纳米晶软磁材料适用于高频变压器,无线充电等应用领域。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例1中前驱体带材的X射线衍射图;
图2是本发明对比例1中前驱体带材的X射线衍射图;
图3是本发明实施例1中纳米晶软磁合金的磁导率与频率的变化曲线图;
图4是本发明对比例1中纳米晶软磁合金的磁导率与频率的变化曲线图。
具体实施方式
提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。
实施例1
本实施例提供一种纳米晶软磁合金,其成分为Fe78.5Si5B11Nb1Cu1Ge1.5Tb2,所需原材料包括工业纯铁、纯硅、硼铁合金、铌铁合金、纯铜、纯锗、稀土金属铽均为市场采购。对材料充分熔炼,利用快淬法将液态熔融合金均匀地从石英喷嘴中喷出到高速旋转的双辊辊缝中,熔融态合金高速冷却形成厚度为0.5mm、宽度为40mm的非晶态合金带材,再通过箔材轧制法轧制5道次形成厚度为11μm,宽度为260mm,带材横向厚度偏差小于±0.001mm的超薄超宽非晶态前驱体带材。本实施例前驱体带材是否晶化用X射线衍射仪(XRD)观察,同时对照标准PDF卡片可对物相进行分析,如图1可看出带材呈完全的非晶态,带材的热力学分析利用差示扫描量热仪(DSC)。随后将制备的非晶带材置入处于氮气气氛保护下的磁场热处理炉中,对非晶带材进行横向磁场热处理。磁场热处理将温度以50℃/min的速度快速升到260℃左右,此时为一次和二次结晶温度之间的温度,保温45min,保温开始的同时,对材料施加磁场大小为55mT的横向磁场,保温结束带材随炉冷却至150℃取出后关闭磁场。
实施例2
本实施例提供一种纳米晶软磁合金,其成分为Fe81.5Si4B10Nb1.5Cu1Ge1Tb1,所需原材料包括工业纯铁、纯硅、硼铁合金、铌铁合金、纯铜、纯锗、稀土金属铽均为市场采购。对材料充分熔炼,利用快淬法将液态熔融合金均匀地从石英喷嘴中喷出到高速旋转的双辊辊缝中,熔融态合金高速冷却形成厚度为0.5mm、宽度为40mm的非晶态合金带材,再通过箔材轧制法轧制5道次形成厚度为14μm,宽度为250mm,带材横向厚度偏差小于±0.001mm的超薄超宽非晶态前驱体带材。本实施例前驱体带材是否晶化用X射线衍射仪(XRD)观察,同时对照标准PDF卡片可对物相进行分析,带材的热力学分析利用差示扫描量热仪(DSC)。随后将制备的非晶带材置入处于氮气气氛保护下的磁场热处理炉中,对非晶带材进行横向磁场热处理。磁场热处理将温度以50℃/min的速度快速升到255℃左右,此时为一次和二次结晶温度之间的温度,保温60min,保温开始的同时,对材料施加磁场大小为55mT的横向磁场,保温结束带材随炉冷却至150℃取出后关闭磁场。
实施例3
本实施例提供一种纳米晶软磁合金,其成分为Fe80Si4B10Nb1Cu1Ge1.5Tb1.5,所需原材料包括工业纯铁、纯硅、硼铁合金、铌铁合金、纯铜、纯锗、稀土金属铽均为市场采购。对材料充分熔炼,利用快淬法将液态熔融合金均匀地从石英喷嘴中喷出到高速旋转的双辊辊缝中,熔融态合金高速冷却形成厚度为0.5mm、宽度为40mm的非晶态合金带材,再通过箔材轧制法轧制5道次形成厚度为13μm,宽度为270mm,带材横向厚度偏差小于±0.001mm的超薄超宽非晶态前驱体带材。本实施例前驱体带材是否晶化用X射线衍射仪(XRD)观察,同时对照标准PDF卡片可对物相进行分析,带材的热力学分析利用差示扫描量热仪(DSC)。随后将制备的非晶带材置入处于氮气气氛保护下的磁场热处理炉中,对非晶带材进行横向磁场热处理。磁场热处理将温度以50℃/min的速度快速升到260℃左右,此时为一次和二次结晶温度之间的温度,保温75min,保温开始的同时,对材料施加磁场大小为55mT的横向磁场,保温结束带材随炉冷却至150℃取出后关闭磁场。
实施例4
本实施例提供一种纳米晶软磁合金,其成分为Fe79Si5.5B10Nb1.5Cu1Ge1Tb2,所需原材料包括工业纯铁、纯硅、硼铁合金、铌铁合金、纯铜、纯锗、稀土金属铽均为市场采购。对材料充分熔炼,利用快淬法将液态熔融合金均匀地从石英喷嘴中喷出到高速旋转的双辊辊缝中,熔融态合金高速冷却形成厚度为0.5mm、宽度为40mm的非晶态合金带材,再通过箔材轧制法轧制5道次形成厚度为11μm,宽度为260mm,带材横向厚度偏差小于±0.001mm的超薄超宽非晶态前驱体带材。本实施例前驱体带材是否晶化用X射线衍射仪(XRD)观察,同时对照标准PDF卡片可对物相进行分析,带材的热力学分析利用差示扫描量热仪(DSC)。随后将制备的非晶带材置入处于氮气气氛保护下的磁场热处理炉中,对非晶带材进行横向磁场热处理。磁场热处理将温度以50℃/min的速度快速升到260℃左右,此时为一次和二次结晶温度之间的温度,保温60min,保温开始的同时,对材料施加磁场大小为55mT的横向磁场,保温结束带材随炉冷却至150℃取出后关闭磁场。
实施例5
本实施例提供一种纳米晶软磁合金,其成分为Fe77.5Si6B11Nb2Cu1Ge1.5Gd1,所需原材料包括工业纯铁、纯硅、硼铁合金、铌铁合金、纯铜、纯锗、稀土金属钆均为市场采购。对材料充分熔炼,利用快淬法将液态熔融合金均匀地从石英喷嘴中喷出到高速旋转的双辊辊缝中,熔融态合金高速冷却形成厚度为0.5mm、宽度为40mm的非晶态合金带材,再通过箔材轧制法轧制5道次形成厚度为10μm,宽度为270mm,带材横向厚度偏差小于±0.001mm的超薄超宽非晶态前驱体带材。本实施例前驱体带材是否晶化用X射线衍射仪(XRD)观察,同时对照标准PDF卡片可对物相进行分析,带材的热力学分析利用差示扫描量热仪(DSC)。随后将制备的非晶带材置入处于氮气气氛保护下的磁场热处理炉中,对非晶带材进行横向磁场热处理。磁场热处理将温度以50℃/min的速度快速升到250℃左右,此时为一次和二次结晶温度之间的温度,保温30min,保温开始的同时,对材料施加磁场大小为55mT的横向磁场,保温结束带材随炉冷却至150℃取出后关闭磁场。
实施例6
本实施例提供一种纳米晶软磁合金,其成分为Fe78Si6.5B10Nb1Cu1Ge2Gd1.5,所需原材料包括工业纯铁、纯硅、硼铁合金、铌铁合金、纯铜、纯锗、稀土金属钆均为市场采购。对材料充分熔炼,利用快淬法将液态熔融合金均匀地从石英喷嘴中喷出到高速旋转的双辊辊缝中,熔融态合金高速冷却形成厚度为0.5mm、宽度为40mm的非晶态合金带材,再通过箔材轧制法轧制5道次形成厚度为12μm,宽度为255mm,带材横向厚度偏差小于±0.001mm的超薄超宽非晶态前驱体带材。本实施例前驱体带材是否晶化用X射线衍射仪(XRD)观察,同时对照标准PDF卡片可对物相进行分析,带材的热力学分析利用差示扫描量热仪(DSC)。随后将制备的非晶带材置入处于氮气气氛保护下的磁场热处理炉中,对非晶带材进行横向磁场热处理。磁场热处理将温度以50℃/min的速度快速升到250℃左右,此时为一次和二次结晶温度之间的温度,保温45min,保温开始的同时,对材料施加磁场大小为55mT的横向磁场,保温结束带材随炉冷却至150℃取出后关闭磁场。
对比例1
本对比例的纳米晶软磁合金选用和实施例1类似的合金成分,为Fe78.5Si6B12Nb1Cu1Ge1.5,不同之处在于对比例不添加Tb元素,补充到了Si和B类金属元素上了。所需原材料包括工业纯铁、纯硅、硼铁合金、铌铁合金、纯铜、纯锗均为市场采购。对材料充分熔炼,利用快淬法将液态熔融合金均匀地从石英喷嘴中喷出到高速旋转的双辊辊缝中,熔融态合金高速冷却形成厚度为0.5mm、宽度为40mm的非晶态合金带材,再通过箔材轧制法轧制5道次形成厚度为12μm,宽度为260mm,带材横向厚度偏差小于±0.001mm的超薄超宽非晶态前驱体带材。本对比例前驱体带材是否晶化用X射线衍射仪(XRD)观察,由图2可以发现前驱体带材在2θ=65°附近出现明显的尖锐峰,说明相比于实施例1没有了Tb元素,轧制后的前驱体带材发生了晶化,会对软磁性能产生影响。随后将制备的非晶带材置入处于氮气气氛保护下的磁场热处理炉中,对非晶带材进行横向磁场热处理。磁场热处理将温度以50℃/min的速度快速升到260℃左右,此时为一次和二次结晶温度之间的温度,保温45min,保温开始的同时,对材料施加磁场大小为55mT的横向磁场,保温结束带材随炉冷却至150℃取出后关闭磁场。
图3和图4分别为实施例1和对比例1最终得到的纳米晶软磁合金的磁导率与频率的变化曲线图,实施例1在频率为1kHz测试条件下的磁导率为77900,在频率为100kHz测试条件下的磁导率为28500,对比例1在频率为1kHz测试条件下的磁导率为25600,在频率为100kHz测试条件下的磁导率为11200,同时实施例1相比于对比例1曲线更光滑,说明带材结构稳定,性能较好。
对比例2
本对比例的纳米晶软磁合金选用和实施例1类似的合金成分,为Fe75Si5B10Nb1Cu1Ge4Tb4,不同之处在于过量添加Ge元素和Tb元素,Fe元素降低。所需原材料包括工业纯铁、纯硅、硼铁合金、铌铁合金、纯铜、纯锗、稀土金属铽均为市场采购。对材料充分熔炼,利用快淬法将液态熔融合金均匀地从石英喷嘴中喷出到高速旋转的双辊辊缝中,熔融态合金高速冷却形成厚度为0.5mm、宽度为40mm的非晶态合金带材,再通过箔材轧制法轧制5道次形成厚度为12μm,宽度为260mm,带材横向厚度偏差小于±0.001mm的超薄超宽非晶态前驱体带材。本对比例前驱体带材是否晶化用X射线衍射仪(XRD)观察。随后将制备的非晶带材置入处于氮气气氛保护下的磁场热处理炉中,对非晶带材进行横向磁场热处理。磁场热处理将温度以50℃/min的速度快速升到260℃左右,此时为一次和二次结晶温度之间的温度,保温45min,保温开始的同时,对材料施加磁场大小为55mT的横向磁场,保温结束带材随炉冷却至150℃取出后关闭磁场。
对比例3
本对比例的纳米晶软磁合金选用和实施例2相同的合金成分,为Fe81.5Si4B10Nb1.5Cu1Ge1Tb1,不同之处在于轧制产生的前驱体带材厚度不同。所需原材料包括工业纯铁、纯硅、硼铁合金、铌铁合金、纯铜、纯锗、稀土金属铽均为市场采购。对材料充分熔炼,利用快淬法将液态熔融合金均匀地从0.2~0.5μm的石英喷嘴中喷出到高速旋转的双辊辊缝中,熔融态合金高速冷却形成厚度为0.5mm、宽度为40mm的非晶态合金带材,再通过箔材轧制法轧制5道次形成厚度为5μm,宽度为250mm的超薄超宽非晶态前驱体带材。本对比例前驱体带材是否晶化用X射线衍射仪(XRD)观察,通过观察发现前驱体带材在2θ=65°附近出现明显的尖锐峰,说明轧制法轧制过薄会导致带材出现晶化,同时产生剪切带对结构造成破坏对软磁性能产生影响。随后将制备的前驱体带材置入处于氮气气氛保护下的磁场热处理炉中,对非晶带材进行横向磁场热处理。磁场热处理将温度以50℃/min的速度快速升到255℃左右,此时为一次和二次结晶温度之间的温度,保温60min,保温开始的同时,对材料施加磁场大小为55mT的横向磁场,保温结束带材随炉冷却至150℃取出后关闭磁场。
对比例4
本对比例提供纳米晶软磁合金,采用和实施例1不同的稀土元素,其成分为Fe78.5Si5B11Nb1Cu1Ge1.5Nd2,所需原材料包括工业纯铁、纯硅、硼铁合金、铌铁合金、纯铜、纯锗、稀土金属钕均为市场采购。对材料充分熔炼,利用快淬法将液态熔融合金均匀地从石英喷嘴中喷出到高速旋转的双辊辊缝中,熔融态合金高速冷却形成厚度为0.5mm、宽度为40mm的非晶态合金带材,再通过箔材轧制法轧制5道次形成厚度为11μm,宽度为260mm,带材横向厚度偏差小于±0.001mm的超薄超宽非晶态前驱体带材。本实施例前驱体带材是否晶化用X射线衍射仪(XRD)观察,同时对照标准PDF卡片可对物相进行分析,带材的热力学分析利用差示扫描量热仪(DSC)。随后将制备的非晶带材置入处于氮气气氛保护下的磁场热处理炉中,对非晶带材进行横向磁场热处理。磁场热处理将温度以50℃/min的速度快速升到260℃左右,此时为一次和二次结晶温度之间的温度,保温45min,保温开始的同时,对材料施加磁场大小为55mT的横向磁场,保温结束带材随炉冷却至150℃取出后关闭磁场。
对比例5
本对比例的纳米晶软磁合金选用和实施例1相同的合金成分其成分,为Fe78.5Si5B11Nb1Cu1Ge1.5Tb2,不同之处在于制备时不采用双辊快淬+箔材轧制的技术方案,所需原材料包括工业纯铁、纯硅、硼铁合金、铌铁合金、纯铜、纯锗、稀土金属铽均为市场采购。对材料充分熔炼,采用单辊快淬法将液态熔融合金均匀地从石英喷嘴中喷出到高速旋转的铜辊上,形成厚度为15μm,宽度为260mm,带材横向厚度偏差小于±0.01mm的前驱体带材。随后将制备的非晶带材置入处于氮气气氛保护下的磁场热处理炉中,对非晶带材进行横向磁场热处理。磁场热处理将温度以50℃/min的速度快速升到460℃左右,此时为一次和二次结晶温度之间的温度,保温45min,保温开始的同时,对材料施加磁场大小为55mT的横向磁场,保温结束带材随炉冷却至150℃取出后关闭磁场。
试验例
对实施例1~6和对比例1~2得到的纳米晶软磁合金进行测试,使用振动样品磁强计(VSM)测量纳米晶软磁合金的饱和磁感应强度,使用阻抗分析仪测量纳米晶软磁合金的磁导率随频率的曲线,使用交流B-H仪测量纳米晶软磁合金的损耗,如表1所示。
表1为实施例1~6和对比例1~4的测试结果
由表1可知,对比例1相比于实施例1,Tb元素的添加使制备出的前驱体带材不易发生晶化,提高了非晶形成能力,有助于热调控;由对比例2可以看出,相比于实施例1,过量添加Ge元素和Tb元素,Fe元素降低,导致合金饱和磁感下降,同时磁导率和损耗都有所恶化,说明Ge元素和Tb元素过量的添加不利于带材纳米晶化,同理若是降低其他元素含量也会导致带材性能变差,说明元素用量在本发明提出的合适的范围内合金整体性能才能处于最优状态;由对比例3可以看出,相比于实施例2,轧制厚度进一步降低,却导致前驱体带材产生了表面晶化,说明轧制到一定厚度,会导致带材发生晶化,同时产生剪切带对结构造成破坏,恶化材料软磁性能;对比例4相比于实施例1,从软磁性能上看,添加Nd元素的带材稍弱于Tb元素的带材,这是因为相比于其他稀土元素,Tb和Gd元素非晶形成能力和热稳定性更好,更易于提高合金的软磁性能;对比例5相比于实施例1,采用传统的单辊快淬技术,制备出的带材随着厚度的降低难以实现横向厚度的一致性,因此厚度较厚,晶化温度也在400℃以上,综合磁性能不如实施例1。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (9)

1.一种纳米晶软磁合金带材,其特征在于,所述纳米晶软磁合金带材的材料为纳米晶软磁合金,所述纳米晶软磁合金的化学式为FeaSibBcNbdCueGefMg,M为稀土元素Tb或Gd;
其中,a、b、c、d、e、f、g为对应元素的原子百分数,a+b+c+d+e+f+g=100,76≤a≤82,3≤b≤7,9≤c≤12,1≤d≤3,0.5≤e≤1.5,0.5≤f≤2.5,0.5≤g≤2.5。
2.如权利要求1所述的纳米晶软磁合金带材,其特征在于,78≤a≤82,4≤b≤7,10≤c≤11,1≤d≤2,0.5≤e≤1,1≤f≤2,1≤g≤2。
3.根据权利要求1或2所述的纳米晶软磁合金带材,其特征在于,所述带材厚度为10~16μm,带材宽度为200~300mm,带材横向厚度偏差小于±0.001mm。
4.根据权利要求3所述的纳米晶软磁合金带材,其特征在于,所述带材厚度为10~14μm,带材宽度为250~270mm,带材横向厚度偏差小于±0.001mm。
5.权利要求1-4任一项所述的纳米晶软磁合金带材的制备方法,其特征在于,包括熔炼、双辊快淬、箔材轧制、磁场热处理。
6.根据权利要求5所述的制备方法,其特征在于,所述双辊快淬为,将熔炼后的液态熔融合金均匀地从石英喷嘴中喷出到旋转中的双辊辊缝中,熔融态合金以105~107℃/s冷却形成厚度为0.5mm、宽度为40mm的非晶态合金带材。
7.根据权利要求6所述的制备方法,其特征在于,所述箔材轧制为,将双辊快淬得到的非晶态合金带材轧制4~6道次,总压下率为60%~70%之间,得到的轧制后带材的厚度为10~16μm,带材宽度为200~300mm。
8.根据权利要求7所述的制备方法,所述磁场热处理为将轧制后带材以40~60℃/min的速度升到230~270℃左右,保温30~90min,在保温时加入磁场强度为40~60mT的横向磁场,保温结束后带材随炉冷却至150℃取出。
9.权利要求1-4任一项所述的纳米晶软磁合金或权利要求5-8任一项制备方法得到的纳米晶软磁合金在高频变压器或无线充电的应用。
CN202310220629.6A 2023-03-08 2023-03-08 一种纳米晶软磁合金带材及其制备方法和应用 Active CN116479321B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310220629.6A CN116479321B (zh) 2023-03-08 2023-03-08 一种纳米晶软磁合金带材及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310220629.6A CN116479321B (zh) 2023-03-08 2023-03-08 一种纳米晶软磁合金带材及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116479321A true CN116479321A (zh) 2023-07-25
CN116479321B CN116479321B (zh) 2024-01-16

Family

ID=87222113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310220629.6A Active CN116479321B (zh) 2023-03-08 2023-03-08 一种纳米晶软磁合金带材及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116479321B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117230361A (zh) * 2023-09-20 2023-12-15 国网智能电网研究院有限公司 一种铁基纳米晶带材及其制备方法和应用
CN117884622A (zh) * 2024-03-14 2024-04-16 朗峰新材料启东有限公司 一种软磁性高熵非晶纳米晶粉体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087833A (zh) * 2014-06-18 2014-10-08 安泰科技股份有限公司 高频性能优良的铁基纳米晶软磁合金及其制备方法
CN105861959A (zh) * 2016-05-26 2016-08-17 江苏奥玛德新材料科技有限公司 智能电表用低角差纳米晶软磁合金磁芯及其制备方法
CN109930080A (zh) * 2019-04-09 2019-06-25 中国科学院宁波材料技术与工程研究所 一种无铜纳米晶软磁合金及其制备方法
CN110257736A (zh) * 2019-07-19 2019-09-20 横店集团东磁股份有限公司 非晶纳米晶软磁材料及其制备方法和用途、非晶带材、非晶纳米晶带材及非晶纳米晶磁片
CN110387500A (zh) * 2018-04-17 2019-10-29 中国科学院宁波材料技术与工程研究所 一种高磁感高频铁基纳米晶软磁合金及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087833A (zh) * 2014-06-18 2014-10-08 安泰科技股份有限公司 高频性能优良的铁基纳米晶软磁合金及其制备方法
CN105861959A (zh) * 2016-05-26 2016-08-17 江苏奥玛德新材料科技有限公司 智能电表用低角差纳米晶软磁合金磁芯及其制备方法
CN110387500A (zh) * 2018-04-17 2019-10-29 中国科学院宁波材料技术与工程研究所 一种高磁感高频铁基纳米晶软磁合金及其制备方法
CN109930080A (zh) * 2019-04-09 2019-06-25 中国科学院宁波材料技术与工程研究所 一种无铜纳米晶软磁合金及其制备方法
CN110257736A (zh) * 2019-07-19 2019-09-20 横店集团东磁股份有限公司 非晶纳米晶软磁材料及其制备方法和用途、非晶带材、非晶纳米晶带材及非晶纳米晶磁片

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117230361A (zh) * 2023-09-20 2023-12-15 国网智能电网研究院有限公司 一种铁基纳米晶带材及其制备方法和应用
CN117230361B (zh) * 2023-09-20 2024-03-08 国网智能电网研究院有限公司 一种铁基纳米晶带材及其制备方法和应用
CN117884622A (zh) * 2024-03-14 2024-04-16 朗峰新材料启东有限公司 一种软磁性高熵非晶纳米晶粉体及其制备方法

Also Published As

Publication number Publication date
CN116479321B (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
CN116479321B (zh) 一种纳米晶软磁合金带材及其制备方法和应用
CN111850431B (zh) 一种含亚纳米尺度有序团簇的铁基非晶合金、制备方法及其纳米晶合金衍生物
CN105861958B (zh) 一种低成本的高导磁铁基非晶纳米晶软磁合金及其制备方法
CN104934179B (zh) 强非晶形成能力的铁基纳米晶软磁合金及其制备方法
CN111057970B (zh) 一种高磁导率的非晶纳米晶合金的制备方法
CN110387500B (zh) 一种高磁感高频铁基纳米晶软磁合金及其制备方法
CN109234628B (zh) 一种低损耗纳米晶软磁合金的制备方法
CN109930080B (zh) 一种无铜纳米晶软磁合金及其制备方法
CN106834930B (zh) 具有高磁感应强度高杂质兼容性的铁基纳米晶合金及利用工业原料制备该合金的方法
CN111739706B (zh) 一种纳米晶磁粉芯、纳米晶合金带材及其制备方法
Zheng et al. Enhanced Ms of Fe-rich Fe-B-Cu amorphous/nanocrystalline alloys achieved by annealing treatments
WO2023130689A1 (zh) 一种高磁感高频纳米晶软磁合金及其制备方法
CN115732160A (zh) 一种全金属铁基纳米晶软磁合金及其制备方法和磁芯
CN112962024B (zh) 一种类Finemet型Fe基纳米晶软磁合金及其制备方法
Kong et al. Enhancement of soft magnetic properties of FeCoNbB nanocrystalline alloys with Cu and Ni additions
Lee et al. Compositional effect on the magnetic and microstructural properties of Fe-based nano-crystalline alloys
CN114144851A (zh) 铁基软磁合金、其制造方法以及包括其的磁性部件
CN117230361B (zh) 一种铁基纳米晶带材及其制备方法和应用
CN116168914B (zh) 一种纳米晶软磁合金及其制备方法和应用
CN116344142B (zh) 一种铁基纳米晶软磁合金及其制备方法和应用
CN117265398B (zh) 一种铁基纳米晶带材及其制备方法和应用
CN115608996B (zh) 一种铁基纳米晶软磁合金粉体及其制备方法
Hosseini-Nasab et al. Kinetics of crystallization in FeB based nanocrystalline soft magnetic alloys
CN116344144A (zh) 一种纳米晶软磁合金及其应用
CN114864210A (zh) 铁基非晶纳米晶合金、其应用及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant