WO2023130689A1 - 一种高磁感高频纳米晶软磁合金及其制备方法 - Google Patents

一种高磁感高频纳米晶软磁合金及其制备方法 Download PDF

Info

Publication number
WO2023130689A1
WO2023130689A1 PCT/CN2022/103259 CN2022103259W WO2023130689A1 WO 2023130689 A1 WO2023130689 A1 WO 2023130689A1 CN 2022103259 W CN2022103259 W CN 2022103259W WO 2023130689 A1 WO2023130689 A1 WO 2023130689A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
alloy
soft magnetic
nanocrystalline soft
frequency
Prior art date
Application number
PCT/CN2022/103259
Other languages
English (en)
French (fr)
Inventor
黎嘉威
孙宇
贺爱娜
董亚强
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Priority to JP2023504528A priority Critical patent/JP2024506431A/ja
Publication of WO2023130689A1 publication Critical patent/WO2023130689A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/04General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline

Definitions

  • the invention belongs to the technical field of iron-based nanocrystalline soft magnetic alloy materials, and in particular relates to a high magnetic induction and high frequency nanocrystalline soft magnetic alloy and a preparation method thereof.
  • Soft magnetic materials are commonly used materials to suppress magnetic field interference. Due to the small skin effect and low wave impedance of low-frequency electromagnetic waves (frequency below 300kHz), the absorption and reflection loss of materials for low-frequency magnetic field radiation becomes very small, so the problem of low-frequency magnetic shielding has always been a difficult research point. High-permeability materials can confine the magnetic force lines in a channel with very low reluctance, so that the protected device is free from magnetic field interference, so high-permeability soft magnetic materials are the most effective materials for reducing low-frequency electromagnetic radiation.
  • Magnetic anisotropy plays an important role in this series of problems. Furthermore, magnetic anisotropy has a close influence on soft magnetic properties and magnetic domains as a result of magnetization. Therefore, how to adjust the magnetic anisotropy to improve the high-frequency soft magnetic properties of iron-based amorphous nanocrystals is an important topic in related fields.
  • the Chinese patent document with publication number CN101796207A discloses a FeSiBMCu nanocrystalline alloy system, and M is at least one element among Ti, V, Zr, Nb, Mo, Hf, Ta and W.
  • the nanocrystalline alloy has low magnetic anisotropy, high magnetic permeability and low coercivity, but the saturation magnetic induction of standard components is only 1.24T, which needs to be further improved.
  • a high magnetic induction high frequency nanocrystalline soft magnetic alloy the molecular formula is Fe a Si b B c M d Cu e P f , wherein, M is one or more of Nb, Mo, V, Mn, Cr, and The mole percentage of elements is 6 ⁇ b ⁇ 15, 5 ⁇ c ⁇ 12, 0.5 ⁇ d ⁇ 3, 0.5 ⁇ e ⁇ 1.5, 0.5 ⁇ f ⁇ 3, and the balance is Fe and impurities, which induce anisotropy
  • the difference between the value (K u ) and the average magnetocrystalline anisotropy value ( ⁇ K 1 >) is 0.1-1J/m 3 .
  • Both the induced anisotropy value and the average magnetocrystalline anisotropy value are greater than 5J/m 3 and less than 20J/m 3 .
  • the saturation magnetic induction B s of the high magnetic induction high frequency nanocrystalline soft magnetic alloy is greater than 1.45T, and the coercive force is less than 2A/m.
  • the magnetic permeability of the high magnetic induction and high frequency nanocrystalline soft magnetic alloy is above 20000 at a frequency below 100 kHz.
  • the loss of the high magnetic induction high frequency nanocrystalline soft magnetic alloy is less than 250kW/m 3 when the frequency is below 100kHz and the transverse magnetic field is below 0.2T.
  • the composition of the present invention improves the nucleation rate of crystal grains and suppresses the growth rate of grains by doping the FeSiBMCu alloy with a small amount of P element under the condition of ensuring the saturation magnetic induction intensity, so that the grain size and its distribution can be maintained at high temperature for a long time.
  • the thermal stability and soft magnetic properties of the alloy are improved, and the nanocrystalline alloy with proper ⁇ K 1 > is obtained, and the K u value is regulated by transverse magnetism, so that the K u value is close to the ⁇ K 1 > value , so as to obtain higher high-frequency soft magnetic properties.
  • the present invention also provides a preparation method of the high magnetic induction high frequency nanocrystalline soft magnetic alloy, comprising:
  • Step (2) is repeated 1-5 times to obtain a high magnetic induction and high frequency nanocrystalline soft magnetic alloy.
  • the magnetic core is cylindrical.
  • the magnetic core is cylindrical with an outer diameter of 21-23mm and an inner diameter of 18-20mm.
  • the rotating speed of the cooling copper roller is 25m/s-40m/s.
  • the grain size of the magnetic core is 10-20nm.
  • the present invention aims to obtain Ku and ⁇ K1> values close to and greater than 5J/m 3 and less than 20J/m 3 by adjusting the magnetic anisotropy, thereby obtaining high saturation magnetic induction, high magnetic permeability at high frequencies and low permeability Lossy iron-based nanocrystalline cores.
  • the present invention obtains saturation magnetic induction intensity Bs greater than 1.45T, magnetic permeability at 100kHz above 20,000, loss at 100kHz and 0.2T less than 250kW/m 3 , and coercive force less than 2A after heat treatment under the combined action of thermal field and magnetic field. /m.
  • the present invention utilizes the thermal field, magnetic field and magnetic cold field to adjust the grain microstructure and magnetic anisotropy in real time, so that Ku and ⁇ K1> are adapted, domain wall movement and rotation cooperate to suppress eddy current loss at high frequencies, and optimize high frequency performance.
  • the nanocrystalline alloy magnetic core prepared by the present invention has excellent high-frequency performance. When applied to 5G+common-mode inductors, wireless charging and other equipment, it can realize the effects of miniaturization, high efficiency, low energy consumption and green energy saving. Broaden the product market and application prospects of power electronic devices.
  • Fig. 1 is a comparison diagram of the average magnetocrystalline anisotropy and induced magnetic anisotropy of Fe 77.8 Si 10 B 8 Nb 2.6 Cu 0.6 P 1 prepared in Comparative Examples 1 and 2, Example 2 and Comparative Examples 3 and 4;
  • Figure 2 shows the magnetic permeability ⁇ , coercive force H c and loss P s soft magnetic properties of Fe 77.8 Si 10 B 8 Nb 2.6 Cu 0.6 P 1 prepared in Comparative Examples 1 and 2, Example 2 and Comparative Examples 3 and 4 able to compare graphs;
  • Fig. 3 is a transmission electron micrograph, a selected diffraction pattern and a statistical distribution diagram of grain size (D) of samples prepared in Example 1, Example 2, Comparative Example 1 and Comparative Example 5.
  • the molecule of the iron-based nanocrystalline soft magnetic alloy material is Fe 76 Si 11 B 8 Nb 2 Cu 1 Mo 1 P 1 .
  • the concrete preparation method of this iron-based nanocrystalline alloy is as follows:
  • Fe, Si, FeB, FeP, Cu, FeMo and FeNb of industrial purity are used as raw materials according to the chemical formula of Fe 76 Si 11 B 8 Nb 2 Cu 1 Mo 1 P 1 for batching, master alloy smelting, and single-roll quenching technology
  • a quenched amorphous strip with a width of about 60 mm and a thickness of about 18 ⁇ m was obtained, and the rotational speed of the copper roll was 30 m/s. Cut the strip and wind it into an iron core with a width of 10mm, an inner diameter of 19.7mm and an outer diameter of 22.6mm.
  • the alloy iron core after heat treatment is divided into 8 parts, and the temperature is raised to 200°C at a heating rate of 10°C/min, and a transverse magnetic field of 0.08T is applied at the beginning. Cool in a liquid nitrogen environment for 0.5h, then take it out and place it in a 250°C environment for 0.5h. Repeat the hot and cold cycle 3 times.
  • the molecule of the iron-based nanocrystalline soft magnetic alloy material is Fe 77.8 Si 10 B 8 Nb 2.6 Cu 0.6 P 1 .
  • the concrete preparation method of this iron-based nanocrystalline alloy is as follows:
  • Fe, Si, FeB, FeP, Cu and FeNb of industrial purity are used as raw materials according to the chemical formula of Fe 77.8 Si 10 B 8 Nb 2.6 Cu 0.6 P 1 , the master alloy is smelted, and the technology of single-roll quenching is used to produce wide 60mm, 18 ⁇ m thick quenched amorphous strip, the copper roll speed is 30m/s. Cut the strip and wind it into an iron core with a width of 10mm, an inner diameter of 19.7mm and an outer diameter of 22.6mm.
  • the molecule of the iron-based nanocrystalline soft magnetic alloy material is Fe 77 Si 12 B 7 Nb 2 Cu 1 P 1 .
  • the concrete preparation method of this iron-based nanocrystalline alloy is as follows:
  • Fe, Si, FeB, FeP, Cu and FeNb of industrial purity are used as raw materials according to the chemical formula of Fe 77 Si 12 B 7 Nb 2 Cu 1 P 1 , the master alloy is smelted, and the technology of single-roll rapid cooling is used to obtain wide 60mm, 18 ⁇ m thick quenched amorphous strip, the copper roll speed is 30m/s. Cut the strip and wind it into an iron core with a width of 10mm, an inner diameter of 19.7mm and an outer diameter of 22.6mm.
  • the alloy iron core after heat treatment is divided into 8 parts, and the temperature is raised to 200°C at a heating rate of 10°C/min, and a 0.08T transverse magnetic field is started to be applied, and the heating rate of 10°C/min is kept at 380°C for 1 hour, and then placed In the liquid nitrogen environment for 0.5h, then take it out and place it in a 220°C environment for 0.5h. Repeat the hot and cold cycle 4 times.
  • the molecule of the iron-based nanocrystalline soft magnetic alloy material is Fe 73.7 Si 11 B 10 Nb 2.5 Cu 1 Mn 1 P 0.8 .
  • the concrete preparation method of this iron-based nanocrystalline alloy is as follows:
  • Fe, Si, FeB, FeP, Cu, Mn and FeNb of industrial purity are used as raw materials according to the chemical formula of Fe 73.7 Si 11 B 10 Nb 2.5 Cu 1 Mn 1 P 0.8 for batching, master alloy melting, and single-roll quenching technology
  • a quenched amorphous strip with a width of about 60 mm and a thickness of about 18 ⁇ m was obtained, and the rotational speed of the copper roller was 30 m/s. Cut the strip and wind it into an iron core with a width of 10mm, an inner diameter of 19.7mm and an outer diameter of 22.6mm.
  • the alloy iron core after heat treatment is divided into 8 parts, and the temperature is raised to 200°C at a heating rate of 10°C/min, and a 0.08T transverse magnetic field is started to be applied, and the heating rate of 10°C/min is kept at 380°C for 1 hour, and then placed In the liquid nitrogen environment for 0.5h, then take it out and place it in a 260°C environment for 1h. Repeat the hot and cold cycle 2 times.
  • the molecule of the iron-based nanocrystalline soft magnetic alloy material is Fe 77.5 Si 12 B 6 Nb 1 Cu 1.5 Mo 0.5 V 0.5 P 1 .
  • the concrete preparation method of this iron-based nanocrystalline alloy is as follows:
  • Fe, Si, FeB, FeP, Cu, V, FeMo and FeNb of industrial purity are used as raw materials according to the chemical formula of Fe 77.5 Si 12 B 6 Nb 1 Cu 1.5 Mo 0.5 V 0.5 P 1 for batching, master alloy melting, A quenched amorphous strip with a width of about 60 mm and a thickness of about 18 ⁇ m was produced by single-roll quenching technology, and the copper roll speed was 30 m/s. Cut the strip and wind it into an iron core with a width of 10mm, an inner diameter of 19.7mm and an outer diameter of 22.6mm.
  • the alloy iron core after heat treatment is divided into 8 parts, and the temperature is raised to 200°C at a heating rate of 10°C/min, and a 0.08T transverse magnetic field is started to be applied, and the heating rate of 10°C/min is kept at 380°C for 1 hour, and then placed In the liquid nitrogen environment for 0.5h, then take it out and place it in a 260°C environment for 0.5h. Repeat the hot and cold cycle 2 times.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the molecule of the iron-based nanocrystalline soft magnetic alloy material is Fe 76.5 Si 10 B 8 Nb 1 Cu 1.5 Cr 1 V 1 P 1 .
  • the concrete preparation method of this iron-based nanocrystalline alloy is as follows:
  • Fe, Si, FeB, FeP, Cu, V, Cr and FeNb of industrial purity are used as raw materials according to the chemical formula of Fe 76.5 Si 10 B 8 Nb 1 Cu 1.5 Cr 1 V 1 P 1 for batching, master alloy melting, A quenched amorphous strip with a width of about 60 mm and a thickness of about 18 ⁇ m was produced by single-roll quenching technology, and the copper roll speed was 30 m/s. Cut the strip and wind it into an iron core with a width of 10mm, an inner diameter of 19.7mm and an outer diameter of 22.6mm.
  • the alloy iron core after heat treatment is divided into 8 parts, and the temperature is raised to 200°C at a heating rate of 10°C/min, and a 0.08T transverse magnetic field is started to be applied, and the heating rate of 10°C/min is kept at 380°C for 1 hour, and then placed In the liquid nitrogen environment for 0.5h, then take it out and place it in a 280°C environment for 0.5h. Repeat the hot and cold cycle 2 times.
  • the chemical formula of the composition of Comparative Example 1 is Fe 77.8 Si 10 B 8 Nb 2.6 Cu 0.6 P 1.
  • the iron core obtained in step (1) in the above embodiment 1 is subjected to step (2) conventional nanocrystallization heat treatment, that is, The Fe 77.8 Si 10 B 8 Nb 2.6 Cu 0.6 P 1 alloy strip sample was heated to 560°C at a heating rate of 5°C/min, held for 0.5h, and cooled to room temperature with the furnace.
  • Add 0.08T transverse magnetic field to the iron core in the step (3) of the embodiment raise the temperature to 320°C for 1h, then place it in a liquid nitrogen environment for 0.5h, then take it out and place it in an environment of 280°C for 0.5h. Repeat the hot and cold cycle 3 times.
  • the average magnetic anisotropy ⁇ K 1 > value is 14.6J/m 3
  • the induced anisotropy Ku value is 8.9J/m 3
  • the difference between ⁇ K 1 > and Ku value is relatively large. big.
  • the composition chemical formula of Comparative Example 2 is Fe 77.8 Si 10 B 8 Nb 2.6 Cu 0.6 P 1.
  • the iron core obtained in step (1) in the above-mentioned embodiment 1 is subjected to step (2) conventional nanocrystallization Heat treatment, that is, the Fe 77.8 Si 10 B 8 Nb 2.6 Cu 0.6 P 1 alloy strip sample is heated up to 560°C at a heating rate of 5°C/min, kept for 0.5h, and cooled to room temperature with the furnace.
  • Add 0.08T transverse magnetic field to the iron core in step (3) of the embodiment raise the temperature to 360°C for 1 hour, then place it in a liquid nitrogen environment for 0.5 hour, then take it out and place it in an environment of 280°C for 0.5 hour. Repeat the hot and cold cycle 3 times.
  • the average magnetic anisotropy ⁇ K 1 > value is 15.1J/m 3
  • the induced anisotropy Ku value is 10.9J/m 3
  • the difference between ⁇ K 1 > and Ku value is relatively large. big.
  • the chemical formula of the composition of Comparative Example 3 is Fe 77.8 Si 10 B 8 Nb 2.6 Cu 0.6 P 1.
  • the iron core obtained in step (1) in the above-mentioned embodiment 1 is subjected to step (2) conventional nanocrystallization heat treatment, that is, The Fe 77.8 Si 10 B 8 Nb 2.6 Cu 0.6 P 1 alloy strip sample was heated to 560°C at a heating rate of 5°C/min, held for 0.5h, and cooled to room temperature with the furnace.
  • Add 0.08T transverse magnetic field to the iron core in step (3) of the embodiment raise the temperature to 440°C for 1 hour, then place it in a liquid nitrogen environment for 0.5 hour, then take it out and place it in an environment of 280°C for 0.5 hour. Repeat the hot and cold cycle 3 times.
  • the chemical formula of the composition of Comparative Example 4 is Fe 77.8 Si 10 B 8 Nb 2.6 Cu 0.6 P 1.
  • the iron core obtained in step (1) in the above-mentioned embodiment 1 is subjected to step (2) conventional nanocrystallization heat treatment, that is, The Fe 77.8 Si 10 B 8 Nb 2.6 Cu 0.6 P 1 alloy strip sample was heated to 560°C at a heating rate of 5°C/min, held for 0.5h, and cooled to room temperature with the furnace.
  • Add a 0.08T transverse magnetic field to the iron core in step (3) of the embodiment raise the temperature to 500°C for 1h, then place it in a liquid nitrogen environment for 0.5h, and then take it out and place it in an environment of 280°C for 0.5h. Repeat the hot and cold cycle 3 times.
  • the average magnetic anisotropy ⁇ K 1 > value is 20.1J/m 3
  • the induced anisotropy Ku value is 25.1J/m 3
  • the difference between ⁇ K 1 > and Ku value is relatively large. big.
  • the alloy composition of Comparative Examples 1-4 and Example 2 is Fe 77.8 Si 10 B 8 Nb 2.6 Cu 0.6 P 1 , and its preparation method and soft magnetic property testing method are basically the same as those of Comparative Example 2.
  • the difference from Example 2 is that the The heat treatment temperatures of the alloys in ratios 1 to 4 are 320°C, 360°C, 440°C and 480°C, and the specific results are shown in Table 1.
  • composition chemical formula of Comparative Example 5 is Fe 77 Si 12 B 7 Nb 2 Cu 1 Al 1
  • the concrete preparation method of this iron-based nanocrystalline alloy is as follows:
  • Fe, Si, FeB, Al, Cu and Nb of industrial purity are used as raw materials according to the chemical formula of Fe 77 Si 12 B 7 Nb 2 Cu 1 Al 1 , the master alloy is smelted, and the technology of single-roll quenching is used to produce wide 60mm, 18 ⁇ m thick quenched amorphous strip, the copper roll speed is 30m/s. Cut the strip and wind it into an iron core with a width of 10mm, an inner diameter of 19.7mm and an outer diameter of 22.6mm.
  • the alloy iron core after heat treatment is equally divided into 8 parts, and the temperature is raised to 200°C at a heating rate of 10°C/min, and a 0.08T transverse magnetic field is started to be applied, and the temperature is raised to 420°C at a heating rate of 10°C/min and kept for 1h , then placed in a liquid nitrogen environment for 0.5h, and then taken out and placed in a 200°C environment for 0.5h. Repeat the hot and cold cycle 2 times.
  • composition chemical formula of comparative example 6 is Fe 74 Si 13 B 6 P 4 Cu 2 C 1
  • the concrete preparation method of this iron-based nanocrystalline alloy is as follows:
  • Fe, Si, FeB, FeP, Cu and FeC of industrial purity are used as raw materials according to the chemical formula of Fe 74 Si 13 B 6 P 4 Cu 2 C 1 for batching, master alloy melting, and single-roll quenching technology to obtain wide 60mm, 18 ⁇ m thick quenched amorphous strip, the copper roll speed is 30m/s. Cut the strip and wind it into an iron core with a width of 10mm, an inner diameter of 19.7mm and an outer diameter of 22.6mm.
  • Nanocrystallization heat treatment is performed on the Fe 74 Si 13 B 6 P 4 Cu 2 C 1 alloy.
  • the alloy strip was heated to 540°C at a heating rate of 5°C/min and kept for 0.5h, and then cooled to room temperature with the furnace.
  • the alloy iron core after heat treatment is equally divided into 8 parts, and the temperature is raised to 200°C at a heating rate of 10°C/min, and a 0.08T transverse magnetic field is started to be applied, and the temperature is raised to 400°C at a heating rate of 10°C/min and kept for 1h , then placed in a liquid nitrogen environment for 0.5h, and then taken out and placed in an environment of 240°C for 1h. Repeat the hot and cold cycle 2 times. .
  • Comparative examples 5 and 6 their preparation methods and soft magnetic properties test methods are basically the same as those of Examples 1 to 6, the difference lies in the difference in alloy composition, and the best anisotropy value and Soft magnetic properties, the specific results are shown in Table 2.
  • the chemical formula of the composition of Comparative Example 7 is Fe 77 Si 12 B 7 Nb 2 Cu 1 P 1.
  • the iron core obtained in step (1) in the above example 1 is subjected to step (2) conventional nanocrystallization Heat treatment, that is, the Fe 77 Si 12 B 7 Nb 2 Cu 1 P 1 alloy strip sample is heated up to 580°C at a heating rate of 5°C/min, kept for 0.5h, and cooled to room temperature with the furnace.
  • Apply 0.08T transverse magnetic field to the iron core in the step (3) of the embodiment raise the temperature to 380° C. and keep it for 1 hour, and then cool to room temperature with the furnace.
  • the average magnetic anisotropy ⁇ K 1 > value is 10.6J/m 3
  • the induced anisotropy Ku value is 8.1J/m 3
  • the difference between ⁇ K 1 > and Ku value is relatively large. big.
  • the chemical formula of the composition of Comparative Example 7 is Fe 77 Si 12 B 7 Nb 2 Cu 1 P 1.
  • the iron core obtained in step (1) in the above example 1 is subjected to step (2) conventional nanocrystallization Heat treatment, that is, the Fe 77 Si 12 B 7 Nb 2 Cu 1 P 1 alloy strip sample is heated up to 580°C at a heating rate of 5°C/min, kept for 0.5h, and cooled to room temperature with the furnace.
  • Add 0.08T transverse magnetic field to the iron core in the step (3) of the embodiment raise the temperature to 380°C for 1h, then place it in a liquid nitrogen environment for 0.5h, then take it out and place it in an environment of 150°C for 1h. Repeat the hot and cold cycle 2 times.
  • the average magnetic anisotropy ⁇ K 1 > value is 11.5J/m 3
  • the induced anisotropy Ku value is 9.2J/m 3
  • the difference between ⁇ K 1 > and Ku value is relatively large. big.
  • Comparative examples 7 and 8 its composition, thermal field and magnetic field heat treatment are basically the same as embodiment 3, the difference is cold field process treatment, comparative example 7 does not carry out cold field treatment, comparative example 8 cold field treatment is not within the limited conditions, in different The anisotropy value and soft magnetic properties obtained under the treatment conditions and temperature are shown in Table 3.
  • Embodiment 1 ⁇ 6 and comparative example 1 ⁇ 8 performance test result analysis are identical to Embodiment 1 ⁇ 6 and comparative example 1 ⁇ 8 performance test result analysis:
  • H k anisotropy field
  • Examples 1-6 are doped with P element, which effectively reduces ⁇ K 1 >, and the value is less than 20J/m 3 .
  • the grain size is larger, As shown in Figure 3, the calculated ⁇ K 1 > is relatively large, with a value greater than 20J/m 3 , the value of Comparative Example 6 is too small, and the value of K u is not close to that of ⁇ K 1 >.
  • the doping of P element increases the nucleation rate of grains and inhibits the growth rate of grains under the condition of ensuring the saturation magnetic induction intensity, which is conducive to obtaining a fine and uniform nanocrystal structure and obtaining nanocrystals with low ⁇ K 1 > alloy, which is beneficial to adjust the ratio of Ku and ⁇ K 1 >, and improve the high-frequency soft magnetic properties of the alloy.
  • the low ⁇ K 1 > nanocrystalline alloys are annealed in a magnetic field, and the values of Ku and ⁇ K 1 > are similar.
  • Example 2 and Comparative examples 3 and 4 the alloy composition is Fe 77.8 Si 10 B 8 Nb 2.6 Cu 0.6 P 1 , the temperature of the magnetic field heat treatment is 320°C, 360°C, 400°C, 440°C and 480°C, the anisotropy value is shown in Figure 1. As the annealing temperature increases, the values of Ku and ⁇ K 1 > increase, but the trend of Ku increasing is larger than ⁇ K 1 >. It is obvious that when the annealing temperature is 400°C (Example 2), K u is nearly equal to ⁇ K 1 >.
  • Comparative examples 7 and 8, and Example 3 the alloy composition is Fe 77 Si 12 B 7 Nb 2 Cu 1 P 1 , the thermal field and magnetic field heat are the same, the difference lies in the cold field process, and the comparative example 7 is not cold field Treatment, comparative example 8 The cold field treatment is not within the limited conditions, and the values of K u and ⁇ K 1 > are not similar.
  • Vibrating sample magnetometer (Lakeshore7410), DC B ⁇ H instrument (EXPH ⁇ 100) and impedance analyzer (Agilent 4294 A) were used to test the nanometers after heat treatment of Examples 1 ⁇ 6 and Comparative Examples 1 ⁇ 8 at different temperatures and times respectively.
  • the saturation magnetic induction B s , the coercive force P s and the magnetic permeability ⁇ of the crystal soft magnetic alloy are shown in Fig. 2 and Table 5.
  • Example 2 and Comparative examples 3 and 4 the alloy composition is Fe 77.8 Si 10 B 8 Nb 2.6 Cu 0.6 P 1 , and the magnetic field heat treatment temperature is 320°C, 360°C, 400°C, 440°C and 480°C, its soft magnetic properties are shown in Figure 2.
  • the annealing temperature is 400°C (Example 2), the soft magnetic properties are the best.
  • Example 1 Fe 76 Si 11 B 8 Nb 2 Cu 1 Mo 1 P 1
  • Example 1 2 Fe 77.8 Si 10 B 8 Nb 2.6 Cu 0.6 P 1 -400°C
  • Comparative Example 1 Fe 77.8 Si 10 B 8 Nb 2.6 Cu 0.6 P 1 -320°C
  • Comparative Example 5 Fe 77 Si 12 B 7 Nb 2 Cu 1 Al 1 sample microstructure analysis.
  • the crystal phases are composed of amorphous phase and nano- ⁇ -Fe grains.
  • the addition of a trace amount of P element reduces the anisotropy of the magnetic crystal and inhibits the growth of the crystal grains.
  • the topography diagram and the selected area diffraction diagram show that at the optimal annealing temperature, fine and uniform crystal grains are precipitated and embedded in the amorphous On the substrate, the grains are ⁇ -Fe grains, and the grain sizes (D) are 11.7nm and 12.1nm, respectively.
  • Comparing Comparative Example 1 with Example 2 they are nanocrystals obtained from alloys with the same composition at different magnetic field annealing temperatures, and D in Example 2 is 12.6 nm, indicating that the grain size of the magnetic field annealing is basically unchanged.
  • the D of Comparative Example 5 is 15.5nm, the grain size is slightly larger, the magnetic crystal anisotropy is large, and the soft magnetic performance is poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种高磁感高频纳米晶软磁合金,分子式为Fe aSi bB cM dCu eP f,其中,M为Nb、Mo、V、Mn、Cr中的一种或多种,且元素的摩尔百分含量为6≤b≤15,5≤c≤12,0.5≤d≤3,0.5≤e≤1.5,0.5≤f≤3,余量为Fe和杂质。其感生各向异性值和平均磁晶各向异性值差值为0.1-1J/m 3。该软磁合金在高频下具有较高的磁导率,较低的磁损耗。一种高磁感高频纳米晶软磁合金的制备方法,利用热场和横向磁场,以及冷场的循环反复使得感生各向异性值(K u)和平均磁晶各向异性值(<K 1>)接近,从而提高了高频软磁性能。

Description

一种高磁感高频纳米晶软磁合金及其制备方法 技术领域
本发明属于铁基纳米晶软磁合金材料技术领域,具体涉及一种高磁感高频纳米晶软磁合金及其制备方法。
背景技术
随着5G通讯和无线充电等技术的快速发展,电磁波辐射产生的电磁干扰和健康危害等问题日益严重。软磁材料是抑制磁场干扰的常用材料。低频电磁波(频率为300kHz以下)由于趋肤效应小、波阻抗低,使得材料对低频磁场辐射的吸收和反射损耗变得很小,所以低频磁屏蔽问题一直是研究的难点。高磁导率材料可将磁力线约束在一条磁阻很低的通道内,使被保护的器件免受磁场的干扰,所以高磁导率的软磁材料是减小低频电磁辐射最有效的材料。与传统的低频磁屏蔽材料(低碳钢、硅钢片、坡莫合金等)相比,FeSiBMCu系列纳米晶合金兼具较高的饱和磁感应强度和高的磁导率,在电磁兼容、电力电子等领域应用广泛。
随着电力电子设备朝着小型化、高频化方向的发展,对磁屏蔽材料提出了新的挑战,传统纳米晶软磁材料已不完全满足市场需求。研制铁基纳米晶软磁合金具有优良的高频性:即其在保持高饱和磁感应强度、高频磁导率和低损耗的同时,还要具有高的截止频率,是未来发展的趋势。目前,国内外研发人员基于经典的FeSiBMCu系列纳米晶合金展开了大量的研发和产业化工作,取得了一系列的进展。晶粒尺寸约为10-12nm的细小均匀的纳米晶晶粒镶嵌在非晶基体上的结构,使得磁晶各向异性被平均化;低平均磁晶各向异性和近零磁弹各向异性共同作用,获得了低矫顽力、高饱和磁感应强度、高磁导率的铁基纳米晶合金。
但是,在高频下磁导率衰减过快,截止使用频率大多仅为几十kHz,且高频下损耗严重,不利于电力电子设备向小型化,节能化,高频化方向发展。因此提高具有高饱和磁感应强度纳米晶合金高频性能已成为当务之急。磁各向异性在这一系列问题中扮演着重要的角色。而且磁各向异性对软磁性能和作为能表现磁化结果的磁畴有紧密的影响。因此,如何调控磁各向异性来改善铁基非晶纳米晶的高频软磁性能是相关领域的重要课题。
公开号为CN101796207A的中国专利文献公布了一种FeSiBMCu纳米晶合金体系,M为Ti、V、Zr、Nb、Mo、Hf、Ta和W中的至少一种元素。该纳米晶合金磁各向异性低,具有高的磁导率和低的矫顽力,但是标准成分的饱和磁感应强度仅为1.24T,有待进一步提高。
公开号为CN112877615A的中国专利文献公布了一种FeSiBCuPC纳米晶合金体系,采用高Fe含量以来获得高饱和磁感应强度,通过添加Si、B、Cu、P、C元素以及优化含量解决高Fe含量合金系的非晶形成能力较低、带材的厚度和宽度受到限制的问题。但仍未解决磁各向异性高的问题,高频软磁性能差,应用范围受到限制。
发明内容
本发明提供了一种高磁感高频纳米晶软磁合金,该软磁合金在高频下具有较高的磁导率,较低的磁损耗。
一种高磁感高频纳米晶软磁合金,分子式为Fe aSi bB cM dCu eP f,其中,M为Nb、Mo、V、Mn、Cr中的一种或多种,且元素的摩尔百分含量为6≤b≤15,5≤c≤12,0.5≤d≤3,0.5≤e≤1.5,0.5≤f≤3,余量为Fe和杂质,其感生各向异性值(K u)和平均磁晶各向异性值(<K 1>)差值为0.1-1J/m 3
所述感生各向异性值和平均磁晶各向异性值均大于5J/m 3,小于20J/m 3
所述高磁感高频纳米晶软磁合金的饱和磁感应强度B s大于1.45T,矫顽力小于2A/m。
所述高磁感高频纳米晶软磁合金,在频率为100kHz以下的磁导率为20000以上。
所述高磁感高频纳米晶软磁合金,在频率为100kHz以下,横向磁场为0.2T以下的损耗小于250kW/m 3
本发明成分通过对FeSiBMCu合金微量P元素掺杂,在保证饱和磁感应强度的情况下,提高了晶粒的形核速率,抑制晶粒的生长速率,使晶粒尺寸及其分布在长时间高温条件下基本保持不变,从而提高了合金的热稳定性和软磁性能,得到适当<K 1>的纳米晶合金,并通过横向磁性调控K u值,使得K u值与<K 1>值相近,从而获得较高的高频软磁性能。
本发明还提供了所述高磁感高频纳米晶软磁合金的制备方法,包括:
(1)按照所述高磁感高频纳米晶软磁合金的原子百分比分子式进行配料得到母合金,所述母合金熔化后,喷射到旋转的冷却铜辊上,冷却凝固得到具有长程无序结构的非晶合金,即淬态合金带材,通过叠压切割、绕卷方法,将所述淬态合金带材制成磁芯;
(2)将所述磁芯放入480-640℃的热场中,保温0.5-1.5h,然后放入380-420℃的0-1T横向磁场中保温0.5-1.5h,冷却后放入液氮环境中0.5-1h,然后从而液氮环境中取出放入200-300℃环境中保温0.5-1h;
(3)重复步骤(2)的1-5次得到高磁感高频纳米晶软磁合金。
将所述磁芯置于热场中,480-640℃保温0.5-1.5h,降低淬态合金带材的应力和准位错偶极子的密度,降低磁晶各向异性,减少钉扎点形成均匀条状宽畴。再将晶粒尺寸约10-20nm的铁芯置于0-1T横向磁场中,在380-420℃保温0.5-1.5h,磁场与磁芯内原子相互作用,使得软磁合金具有特定的感生磁向异性。冷却时,置于液氮环境中0.5h,之后取出置于200-300℃环境中保温0.5-1h。反复冷热循环1-5次,诱导单轴K u,与<K 1>适配,共同作用提高高频磁导率、降低高频损耗。
所述的铁基纳米晶铁芯横向磁场热处理后,随着温度升高诱导更大数值的K u,磁滞回线斜率更大,在感生各向异性作用下,不单是磁畴移动和劈裂,K u与<K 1>相竞争,磁畴转动占主导地位影响高频磁化;<K 1>/K u约等于1时,高频下磁畴运动被抑制,有利于降低由此产生的涡流损耗,从而提高磁导率降低损耗。
所述的铁基纳米晶铁芯横向磁场热处理后,在高温下原子扩散速率加快,晶粒产生<100>织构,同时织构导致磁晶各向异性的平均化被减弱,诱导更长程和更大数值的磁晶各向异性,扰动易磁化方向改变和宏观磁各向异性改变,从而导致高频磁性能严重恶化,而本发明通过横向磁场后的液氮冷却和置于200-300℃环境中保温0.5-1h避免了上述情况的发生,保证了磁晶各向异性与感生各向异性较为相近,最终得到在高频下具有较好的软磁性能。
所述磁芯为圆筒状。
所述磁芯为外径21-23mm,内径18-20mm的圆筒状。
所述冷却铜辊的转速为25m/s-40m/s。
将所述磁芯放入横向磁场前,所述磁芯的晶粒尺寸为10-20nm。
与现有的技术相比,本发明的有益效果在于:
(1)本发明旨在通过调控磁各向异性,获得Ku与<K1>数值接近且大于5J/m 3,小于20J/m 3,从而获得高饱和磁感应强度、高频下高磁导率低损耗的铁基纳米晶磁芯。
(2)本发明经热场、磁场的共同作用热处理后得到饱和磁感应强度Bs大于1.45T,100kHz下的磁导率20000以上,100kHz和0.2T下损耗小于250kW/m 3,矫顽力小于2A/m。
(3)本发明利用热场、磁场和磁场冷场实时调控晶粒微观结构和磁各向异性,使Ku与<K1>适配,畴壁移动和转动相配合抑制高频下涡流损耗,优化高频性能。
(4)采用本发明制备的纳米晶合金磁芯的高频性能优异,应用于5G+共模电感、无线充电等设备中时,可以现实小型化、高效率、低能耗和绿色节能的效果,可拓宽电力电子器件的产品市场和应用前景。
附图说明
图1为对比例1、2,实施例2与对比例3、4制得的Fe 77.8Si 10B 8Nb 2.6Cu 0.6P 1的平均磁晶各向异性和感生磁各向异性对比图;
图2为对比例1、2,实施例2与对比例3、4制得的Fe 77.8Si 10B 8Nb 2.6Cu 0.6P 1的磁导率μ、矫顽力H c和损耗P s软磁性能对比图;
图3为实施例1、实施例2、对比例1和对比例5制得的样品透射电子显微图、选取衍射图和晶粒尺寸(D)统计分布图。
具体实施方式
下面结合实施例与附图对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
实施例1:
本实施例中,铁基纳米晶软磁合金材料的分子为Fe 76Si 11B 8Nb 2Cu 1Mo 1P 1
该铁基纳米晶合金的具体制备方法如下:
(1)将工业纯度的Fe,Si,FeB,FeP,Cu,FeMo和FeNb为原料按Fe 76Si 11B 8Nb 2Cu 1Mo 1P 1的化学式进行配料、母合金熔炼、单辊急冷技术制得宽约60mm、厚约18μm的淬态非晶带材,铜辊转速为30m/s。将带材切割,卷绕成铁芯,宽10mm,内径19.7mm,外径22.6mm。
(2)对Fe 76Si 11B 8Nb 2Cu 1Mo 1P 1合金进行纳米晶化热处理。将合金带材以5℃/min的升温速度升温至560℃保温0.5h,结束后随炉冷却至室温。
(3)热处理后的合金铁芯均分为8份,以10℃/min的升温速率升温至200℃,开始加0.08T横向磁场,以10℃/min的升温速度400℃保温1h,随后置于液氮环境中冷却0.5h,之后取出置于250℃环境中保温0.5h。反复冷热循环3次。
(4)测得磁环的初始磁化曲线;将初始磁化曲线阶段做切线并延长至饱和磁化,对应横坐标值为各向异性场(H k),根据公式K u=1/2H k B s,计算得到感生各向异性值。对(2)(3)热处理后,计算得纳米晶铁芯得K u值为12.8J/m 3。根据XRD和TEM结果分析得出晶化体积分数V cr和晶粒尺寸D,通过公式<K 1>=K 1V cr(D/L 0) 6(K 1是α-Fe(Si)相的磁晶各向异性,数值为8.2kJ/m 3;V cr是晶化体积分数;L 0是铁磁交换长度,其数值约为35nm),计算得出<K 1>值为13J/m 3。K u和<K 1>相近。
(5)在(2)-(4)条件下,获得纳米晶优异高频软磁性能,饱和磁感应强度B s~1.5T,矫顽力H c~1.5A/m,100kHz下的磁导率μ~21600,100kHz和0.2T下损耗P s~180kW/m 3
实施例2:
本实施例中,铁基纳米晶软磁合金材料的分子为Fe 77.8Si 10B 8Nb 2.6Cu 0.6P 1
该铁基纳米晶合金的具体制备方法如下:
(1)将工业纯度的Fe,Si,FeB,FeP,Cu和FeNb为原料按Fe 77.8Si 10B 8Nb 2.6Cu 0.6P 1的化学式进行配料、母合金熔炼、单辊急冷技术制得宽约60mm、厚约18μm的淬态非晶带材,铜辊转速为30m/s。将带材切割,卷绕成铁芯,宽10mm,内径19.7mm,外径22.6mm。
(2)对Fe 77.8Si 10B 8Nb 2.6Cu 0.6P 1合金进行纳米晶化热处理。将合金带材以5℃/min的升温速度升温至560℃保温0.5h,结束后随炉冷却至室温。
(3)热处理后的合金铁芯均分为8份,以10℃/min的升温速率升温至200℃,开始加0.08T横向磁场,以10℃/min的升温速度400℃保温1h,随后置于液氮环境中0.5h,之后取出置于280℃环境中保温0.5h。反复冷热循环2次。
(4)测得磁环的初始磁化曲线;将初始磁化曲线阶段做切线并延长至饱和磁化,对应横坐标值为各向异性场(H k),根据公式K u=1/2H k B s,计算得到感生各向异性值。对(2)(3)热处理后,计算得纳米晶铁芯得K u值为15.8J/m 3。根据XRD和TEM结果分析得出晶化体积分数V cr和晶粒尺寸D,通过公式<K 1>=K 1V cr(D/L 0) 6(K 1是α-Fe(Si)相的磁晶各向异性,数值为8.2kJ/m 3;V cr是晶化体积分数;L 0是铁磁交换长度,其数值约为35nm),计算得出<K 1>值为16.1J/m 3。K u和<K 1>相近。
(5)在(2)-(4)条件下,获得纳米晶优异高频软磁性能,饱和磁感应强度B s~1.5T,矫顽力H c~1.6A/m,100kHz下的磁导率μ~20000,100kHz和0.2T下损耗P s~205kW/m 3
实施例3:
本实施例中,铁基纳米晶软磁合金材料的分子为Fe 77Si 12B 7Nb 2Cu 1P 1
该铁基纳米晶合金的具体制备方法如下:
(1)将工业纯度的Fe,Si,FeB,FeP,Cu和FeNb为原料按Fe 77Si 12B 7Nb 2Cu 1P 1的化学式进行配料、母合金熔炼、单辊急冷技术制得宽约60mm、厚约18μm的淬态非晶带材,铜辊转速为30m/s。将带材切割,卷绕成铁芯,宽10mm,内径19.7mm,外径22.6mm。
(2)对Fe 77Si 12B 7Nb 2Cu 1P 1合金进行纳米晶化热处理。将合金带材以5℃/min的升温速度升温至580℃保温0.5h,结束后随炉冷却至室温。
(3)热处理后的合金铁芯均分为8份,以10℃/min的升温速率升温至200℃,开始加0.08T横向磁场,以10℃/min的升温速度380℃保温1h,随后置于液氮环境中0.5h,之后取出置于220℃环境中保温0.5h。反复冷热循环4次。
(4)测得磁环的初始磁化曲线;将初始磁化曲线阶段做切线并延长至饱和磁化,对应横坐标值为各向异性场(H k),根据公式K u=1/2H k B s,计算得到感生各向异性值。对(2)(3)热处理后,计算得纳米晶铁芯得K u值为8.6J/m 3。根据XRD和TEM结果分析得出晶化体积分数V cr和晶粒尺寸D,通过公式<K 1>=K 1V cr(D/L 0) 6(K 1是α-Fe(Si)相的磁晶各向异性,数值为8.2kJ/m 3;V cr是晶化体积分数;L 0是铁磁交换长度,其数值约为35nm),计算得出<K 1>值为8.3J/m 3。K u和<K 1>相近。
(5)在(2)-(4)条件下,获得纳米晶优异高频软磁性能,饱和磁 感应强度B s~1.46T,矫顽力H c~2A/m,100kHz下的磁导率μ~25000,100kHz和0.2T下损耗P s~220kW/m 3
实施例4:
本实施例中,铁基纳米晶软磁合金材料的分子为Fe 73.7Si 11B 10Nb 2.5Cu 1Mn 1P 0.8
该铁基纳米晶合金的具体制备方法如下:
(1)将工业纯度的Fe,Si,FeB,FeP,Cu,Mn和FeNb为原料按Fe 73.7Si 11B 10Nb 2.5Cu 1Mn 1P 0.8的化学式进行配料、母合金熔炼、单辊急冷技术制得宽约60mm、厚约18μm的淬态非晶带材,铜辊转速为30m/s。将带材切割,卷绕成铁芯,宽10mm,内径19.7mm,外径22.6mm。
(2)对Fe 73.7Si 11B 10Nb 2.5Cu 1Mn 1P 0.8合金进行纳米晶化热处理。将合金带材以5℃/min的升温速度升温至580℃保温0.5h,结束后随炉冷却至室温。
(3)热处理后的合金铁芯均分为8份,以10℃/min的升温速率升温至200℃,开始加0.08T横向磁场,以10℃/min的升温速度380℃保温1h,随后置于液氮环境中0.5h,之后取出置于260℃环境中保温1h。反复冷热循环2次。
(4)测得磁环的初始磁化曲线;将初始磁化曲线阶段做切线并延长至饱和磁化,对应横坐标值为各向异性场(H k),根据公式K u=1/2H k B s,计算得到感生各向异性值。对(2)(3)热处理后,计算得纳米晶铁芯得K u值为12.2J/m 3。根据XRD和TEM结果分析得出晶化体积分数V cr和晶粒尺寸D,通过公式<K 1>=K 1V cr(D/L 0) 6(K 1是α-Fe(Si)相的磁晶各向异性,数值为8.2kJ/m 3;V cr是晶化体积分数;L 0是铁磁交换长度,其数值约为35nm),计算得出<K 1>值为11.7J/m 3。K u和<K 1>相近。
(5)在(2)-(4)条件下,获得纳米晶优异高频软磁性能,饱和磁感应强度B s~1.45T,矫顽力H c~1.8A/m,100kHz下的磁导率μ~23400,100kHz和0.2T下损耗P s~250kW/m 3
实施例5:
本实施例中,铁基纳米晶软磁合金材料的分子为Fe 77.5Si 12B 6Nb 1Cu 1.5Mo 0.5V 0.5P 1
该铁基纳米晶合金的具体制备方法如下:
(1)将工业纯度的Fe,Si,FeB,FeP,Cu,V,FeMo和FeNb为原料按Fe 77.5Si 12B 6Nb 1Cu 1.5Mo 0.5V 0.5P 1的化学式进行配料、母合金熔炼、单辊急冷技术制得宽约60mm、厚约18μm的淬态非晶带材,铜辊转速为30m/s。将带材切割,卷绕成铁芯,宽10mm,内径19.7mm,外径22.6mm。
(2)对Fe 77.5Si 12B 6Nb 1Cu 1.5Mo 0.5V 0.5P 1合金进行纳米晶化热处理。将合金带材以5℃/min的升温速度升温至580℃保温0.5h,结束后随炉冷却至室温。
(3)热处理后的合金铁芯均分为8份,以10℃/min的升温速率升温至200℃,开始加0.08T横向磁场,以10℃/min的升温速度380℃保温1h,随后置于液氮环境中0.5h,之后取出置于260℃环境中保温0.5h。反复冷热循环2次。
(4)测得磁环的初始磁化曲线;将初始磁化曲线阶段做切线并延长至饱和磁化,对应横坐标值为各向异性场(H k),根据公式K u=1/2H k B s,计算得到感生各向异性值。对(2)(3)热处理后,计算得纳米晶铁芯得K u值为19J/m 3。根据XRD和TEM结果分析得出晶化体积分数V cr和晶粒尺寸D,通过公式<K 1>=K 1V cr(D/L 0) 6(K 1是α-Fe(Si)相的磁晶各向异性,数值为8.2kJ/m 3;V cr是晶化体积分数;L 0是铁磁交换长度,其数值约为35nm),计算得出<K 1>值为18.9J/m 3。K u和<K 1>相近。
(5)在(2)-(4)条件下,获得纳米晶优异高频软磁性能,饱和磁感应强度B s~1.52T,矫顽力H c~1.5A/m,100kHz下的磁导率μ~20300,100kHz和0.2T下损耗P s~190kW/m 3
实施例6:
本实施例中,铁基纳米晶软磁合金材料的分子为Fe 76.5Si 10B 8Nb 1Cu 1.5Cr 1V 1P 1
该铁基纳米晶合金的具体制备方法如下:
(1)将工业纯度的Fe,Si,FeB,FeP,Cu,V,Cr和FeNb为原料按Fe 76.5Si 10B 8Nb 1Cu 1.5Cr 1V 1P 1的化学式进行配料、母合金熔炼、单辊急冷技术制得宽约60mm、厚约18μm的淬态非晶带材,铜辊转速为30m/s。将带材切割,卷绕成铁芯,宽10mm,内径19.7mm,外径22.6mm。
(2)对Fe 76.5Si 10B 8Nb 1Cu 1.5Cr 1V 1P 1合金进行纳米晶化热处理。将合金带材以5℃/min的升温速度升温至580℃保温0.5h,结束后随炉冷却至室温。
(3)热处理后的合金铁芯均分为8份,以10℃/min的升温速率升温至200℃,开始加0.08T横向磁场,以10℃/min的升温速度380℃保温1h,随后置于液氮环境中0.5h,之后取出置于280℃环境中保温0.5h。反复冷热循环2次。
(4)测得磁环的初始磁化曲线;将初始磁化曲线阶段做切线并延长至饱和磁化,对应横坐标值为各向异性场(H k),根据公式K u=1/2H k B s,计算得到感生各向异性值。对(2)(3)热处理后,计算得纳米晶铁芯得K u值为9J/m 3。根据XRD和TEM结果分析得出晶化体积分数V cr和晶粒尺寸D,通过公式<K 1>=K 1V cr(D/L 0) 6(K 1是α-Fe(Si)相的磁晶各向异性,数值为8.2kJ/m 3;V cr是晶化体积分数;L 0是铁磁交换长度,其数值约为35nm),计算得出<K 1>值为8.3J/m 3。K u和<K 1>相近。
(5)在(2)-(4)条件下,获得纳米晶优异高频软磁性能,饱和磁感应强度B s~1.45T,矫顽力H c~2A/m,100kHz下的磁导率μ~22000,100kHz和0.2T下损耗P s~230kW/m 3
对比例1:
(1)对比例1的成分化学式为Fe 77.8Si 10B 8Nb 2.6Cu 0.6P 1进行上述实施例1中步骤(1)制得的铁芯进行步骤(2)常规的纳米晶化热处理,即将Fe 77.8Si 10B 8Nb 2.6Cu 0.6P 1合金带材样品以5℃/min的升温速度升温至560℃,保温0.5h,随炉冷却至室温。将铁芯进行实施例步骤(3)中加0.08T横向磁场,升温至320℃保温1h,随后置于液氮环境中0.5h,之后取出置于280℃环境中保温0.5h。反复冷热循环3次。
(2)经过磁场热处理后,平均磁各向异性<K 1>值为14.6J/m 3,感生各向异性K u值为8.9J/m 3,<K 1>和K u值相差较大。
(3)在(1)和(2)条件下,饱和磁感应强度B s~1.49T,矫顽力H c~10A/m,100kHz下的磁导率μ~7000,100kHz和0.2T下损耗P s~640kW/m 3
对比例2:
(1)作为对比,对比例2的成分化学式为Fe 77.8Si 10B 8Nb 2.6Cu 0.6P 1进行上述实施例1中步骤(1)制得的铁芯进行步骤(2)常规的纳米晶化热处理,即将Fe 77.8Si 10B 8Nb 2.6Cu 0.6P 1合金带材样品以5℃/min的升温速度升温至560℃,保温0.5h,随炉冷却至室温。将铁芯进行实施例步骤(3) 中加0.08T横向磁场,升温至360℃保温1h,随后置于液氮环境中0.5h,之后取出置于280℃环境中保温0.5h。反复冷热循环3次。
(2)经过磁场热处理后,平均磁各向异性<K 1>值为15.1J/m 3,感生各向异性K u值为10.9J/m 3,<K 1>和K u值相差较大。
(3)在(1)和(2)条件下,饱和磁感应强度B s~1.49T,矫顽力H c~3.6A/m,100kHz下的磁导率μ~10000,100kHz和0.2T下损耗P s~380kW/m 3
对比例3:
(1)对比例3的成分化学式为Fe 77.8Si 10B 8Nb 2.6Cu 0.6P 1进行上述实施例1中步骤(1)制得的铁芯进行步骤(2)常规的纳米晶化热处理,即将Fe 77.8Si 10B 8Nb 2.6Cu 0.6P 1合金带材样品以5℃/min的升温速度升温至560℃,保温0.5h,随炉冷却至室温。将铁芯进行实施例步骤(3)中加0.08T横向磁场,升温至440℃保温1h,随后置于液氮环境中0.5h,之后取出置于280℃环境中保温0.5h。反复冷热循环3次。
(2)经过磁场热处理后,平均磁各向异性<K 1>值为16.7J/m 3,感生各向异性K u值为22.8J/m 3,<K 1>和K u值相差较大。
(3)在(1)和(2)条件下,饱和磁感应强度B s~1.49T,矫顽力H c~5A/m,100kHz下的磁导率μ~15000,100kHz和0.2T下损耗P s~540kW/m 3
对比例4:
(1)对比例4的成分化学式为Fe 77.8Si 10B 8Nb 2.6Cu 0.6P 1进行上述实施例1中步骤(1)制得的铁芯进行步骤(2)常规的纳米晶化热处理,即将Fe 77.8Si 10B 8Nb 2.6Cu 0.6P 1合金带材样品以5℃/min的升温速度升温至560℃,保温0.5h,随炉冷却至室温。将铁芯进行实施例步骤(3)中加0.08T横向磁场,升温至500℃保温1h,随后置于液氮环境中0.5h,之后取出置于280℃环境中保温0.5h。反复冷热循环3次。
(2)经过磁场热处理后,平均磁各向异性<K 1>值为20.1J/m 3,感生各向异性K u值为25.1J/m 3,<K 1>和K u值相差较大。
(3)在(1)和(2)条件下,饱和磁感应强度B s~1.49T,矫顽力H c~11A/m,100kHz下的磁导率μ~8000,100kHz和0.2T下损耗P s~600kW/m 3
对比例1~4:
对比例1~4与实施例2合金成分Fe 77.8Si 10B 8Nb 2.6Cu 0.6P 1,其制备方法和软磁性能测试方法与对比例2基本相同,与实施例2不同之处在于,对比例1~4中合金的热处理工艺温度为320℃、360℃、440℃和480℃,具体结果如表1所示。
表1:
Figure PCTCN2022103259-appb-000001
对比例5:
对比例5的成分化学式为Fe 77Si 12B 7Nb 2Cu 1Al 1
该铁基纳米晶合金的具体制备方法如下:
(1)将工业纯度的Fe,Si,FeB,Al,Cu和Nb为原料按Fe 77Si 12B 7Nb 2Cu 1Al 1的化学式进行配料、母合金熔炼、单辊急冷技术制得宽约60mm、厚约18μm的淬态非晶带材,铜辊转速为30m/s。将带材切割,卷绕成铁芯,宽10mm,内径19.7mm,外径22.6mm。
(2)对Fe 77Si 12B 7Nb 2Cu 1P 1合金进行纳米晶化热处理。将合金带材以5℃/min的升温速度升温至560℃保温0.5h,结束后随炉冷却至室温。
(3)热处理后的合金铁芯均分为8份,以10℃/min的升温速率升温至200℃,开始加0.08T横向磁场,以10℃/min的升温速度,升温至420℃保温1h,随后置于液氮环境中0.5h,之后取出置于200℃环境中保温0.5h。反复冷热循环2次。
(4)经过(2)和(3)磁场热处理后,平均磁各向异性<K 1>值为36.6J/m 3,感生各向异性K u值为42.9J/m 3,<K 1>和K u值相差较大且数值较大。
(5)在(1)~(4)条件下,饱和磁感应强度B s~1.4T,矫顽力H c~26A/m,100kHz下的磁导率μ~8000,100kHz和0.2T下损耗P s~750kW/m 3
对比例6:
对比例6的成分化学式为Fe 74Si 13B 6P 4Cu 2C 1
该铁基纳米晶合金的具体制备方法如下:
(1)将工业纯度的Fe,Si,FeB,FeP,Cu和FeC为原料按Fe 74Si 13B 6P 4Cu 2C 1的化学式进行配料、母合金熔炼、单辊急冷技术制得宽约60mm、厚约18μm的淬态非晶带材,铜辊转速为30m/s。将带材切割,卷绕成铁芯,宽10mm,内径19.7mm,外径22.6mm。
(2)对Fe 74Si 13B 6P 4Cu 2C 1合金进行纳米晶化热处理。将合金带材以5℃/min的升温速度升温至540℃保温0.5h,结束后随炉冷却至室温。
(3)热处理后的合金铁芯均分为8份,以10℃/min的升温速率升温至200℃,开始加0.08T横向磁场,以10℃/min的升温速度,升温至400℃保温1h,随后置于液氮环境中0.5h,之后取出置于240℃环境中保温1h。反复冷热循环2次。。
(4)经过(2)和(3)磁场热处理后,平均磁各向异性<K 1>值为4.6J/m 3,感生各向异性K u值为6.9J/m 3,<K 1>和K u值相差较大且数值较小。
(5)在(1)~(4)条件下,饱和磁感应强度B s~1.42T,矫顽力H c~34A/m,100kHz下的磁导率μ~7000,100kHz和0.2T下损耗P s~630kW/m 3
对比例5、6与实施例1~6:
对比例5、6,其制备方法和软磁性能测试方法与实施例1~6基本相同,不同之处在于合金成分的不同,和在不同的热处理条件温度下获得最佳的各向异性值和软磁性能,具体结果如表2所示。
表2:
Figure PCTCN2022103259-appb-000002
Figure PCTCN2022103259-appb-000003
对比例7:
(1)作为对比,对比例7的成分化学式为Fe 77Si 12B 7Nb 2Cu 1P 1进行上述实施例1中步骤(1)制得的铁芯进行步骤(2)常规的纳米晶化热处理,即将Fe 77Si 12B 7Nb 2Cu 1P 1合金带材样品以5℃/min的升温速度升温至580℃,保温0.5h,随炉冷却至室温。将铁芯进行实施例步骤(3)中加0.08T横向磁场,升温至380℃保温1h,结束后随炉冷却至室温。
(2)经过磁场热处理后,平均磁各向异性<K 1>值为10.6J/m 3,感生各向异性K u值为8.1J/m 3,<K 1>和K u值相差较大。
(3)在(1)和(2)条件下,饱和磁感应强度B s~1.42T,矫顽力H c~5A/m,100kHz下的磁导率μ~11000,100kHz和0.2T下损耗P s~440kW/m 3
对比例8:
(1)作为对比,对比例7的成分化学式为Fe 77Si 12B 7Nb 2Cu 1P 1进行上述实施例1中步骤(1)制得的铁芯进行步骤(2)常规的纳米晶化热处理,即将Fe 77Si 12B 7Nb 2Cu 1P 1合金带材样品以5℃/min的升温速度升温至580℃,保温0.5h,随炉冷却至室温。将铁芯进行实施例步骤(3)中加0.08T横向磁场,升温至380℃保温1h,,随后置于液氮环境中0.5h,之后取出置于150℃环境中保温1h。反复冷热循环2次。
(2)经过磁场热处理后,平均磁各向异性<K 1>值为11.5J/m 3,感生各向异性K u值为9.2J/m 3,<K 1>和K u值相差较大。
(3)在(1)和(2)条件下,饱和磁感应强度B s~1.41T,矫顽力H c~3A/m,100kHz下的磁导率μ~15000,100kHz和0.2T下损耗P s~420kW/m 3
对比例7、8与实施例3:
对比例7、8,其成分、热场和磁场热处理与实施例3基本相同,不同之处在于冷场工艺处理,对比例7未进行冷场处理,对比例8冷场处理未在限定条件内,在不同的处理条件温度下获得的各向异性值和软磁性能,具体结果如表3所示。
表3:
Figure PCTCN2022103259-appb-000004
实施例1~6和对比例1~8性能测试结果分析:
1、合金的磁各向异性
测得磁环的初始磁化曲线;将初始磁化曲线阶段做切线并延长至饱和磁化,对应横坐标值为各向异性场(H k),根据公式K u=1/2H k B s,计算得到感生各向异性K u值。根据XRD和TEM结果分析得出晶化体积分数V cr和晶粒尺寸D,通过公式<K 1>=K 1V cr(D/L 0) 6计算得出<K 1>值。实施例1~6和对比例1~6在不同温度和时间热处理后磁各向异性结果如表4所示
表4:
Figure PCTCN2022103259-appb-000005
Figure PCTCN2022103259-appb-000006
其中,对比例5较对比例1~6的合金成分,实施例1~6掺杂P元素,有效降低了<K 1>,值小于20J/m 3,对比例5,晶粒尺寸较大,如图3所示,计算得<K 1>较大,值大于20J/m 3,对比例6的值太小,并且K u与<K 1>的值不相近。说明P元素的掺杂在保证饱和磁感应强度的情况下,提高了晶粒的形核速率,抑制晶粒的生长速率,有利于获得细小均匀的纳米晶结构,得到低<K 1>的纳米晶合金,有利于调控K u与<K 1>比例,改善合金的高频软磁性能。在经过P掺杂后,实施例1~6中,低<K 1>的纳米晶合金进行磁场退火,K u与<K 1>的值相近。
对比例1、2,实施例2与对比例3、4,合金成分都为Fe 77.8Si 10B 8Nb 2.6Cu 0.6P 1,磁场热处理工艺温度为320℃、360℃、400℃、440℃和480℃,其各向异性值如图1所示。随着退火温度升高,K u和<K 1>值随之增大,但K u增大的趋势大于<K 1>。明显看出,当退火温度为400℃时(实施例2),K u与<K 1>接近相等。
对比例7、8,与实施例3,合金成分都为Fe 77Si 12B 7Nb 2Cu 1P 1,其热场和磁场热相同,不同之处在于冷场工艺处理,对比例7未进行冷场处理,对比例8冷场处理未在限定条件内,K u与<K 1>的值不相近。
2、合金的软磁性能
采用振动样品磁强计(Lakeshore7410)、直流B~H仪(EXPH~100)和阻抗分析仪(Agilent 4294 A)分别测试实施例1~6和对比例1~8在不同温度和时间热处理后纳米晶软磁合金的饱和磁感应强度B s、矫顽力P s和磁导率μ,结果如图2、表5所示。
表5:
Figure PCTCN2022103259-appb-000007
对比例1、2,实施例2与对比例3、4,合金成分都为Fe 77.8Si 10B 8Nb 2.6Cu 0.6P 1,磁场热处理工艺温度为320℃、360℃、400℃、 440℃和480℃,其软磁性能如图2所示。当退火温度为400℃时(实施例2),软磁性能最佳。
3、合金的微观结构
为进一步解释本发明的纳米晶软磁合金具有优异高频软磁性能的原因,采用Talos型透射电子显微镜对实施例1(Fe 76Si 11B 8Nb 2Cu 1Mo 1P 1)、实施例2(Fe 77.8Si 10B 8Nb 2.6Cu 0.6P 1-400℃)和对比例1(Fe 77.8Si 10B 8Nb 2.6Cu 0.6P 1-320℃)、对比例5(Fe 77Si 12B 7Nb 2Cu 1Al 1)的样品微观结构进行分析。
结果如图3所示,晶相都是非晶相和纳米α-Fe晶粒组成。实施例1、2中,微量P元素的添加降低磁晶各向异性,抑制晶粒长大,形貌图和选区衍射图显示,在最佳退火温度下,析出细小均匀晶粒镶嵌在非晶基体上,晶粒为α-Fe晶粒,晶粒尺寸(D)分别为11.7nm和12.1nm。对比例1和实施例2对比,为同一成份合金在不同磁场退火温度下得到的纳米晶,实施例2的D为12.6nm,说明磁场退火晶粒尺寸基本不变。对比例5的D为15.5nm,晶粒尺寸略大,磁晶各向异性大,软磁性能较差。

Claims (10)

  1. 一种高磁感高频纳米晶软磁合金,其特征在于,分子式为Fe aSi bB cM dCu eP f,其中,M为Nb、Mo、V、Mn、Cr中的一种或多种,且元素的摩尔百分含量为6≤b≤15,5≤c≤12,0.5≤d≤3,0.5≤e≤1.5,0.5≤f≤3,余量为Fe和杂质,感生各向异性值和平均磁晶各向异性值差值为0.1-1J/m 3
  2. 根据权利要求1所述的高磁感高频纳米晶软磁合金,其特征在于,所述感生各向异性值和平均磁晶各向异性值均大于5J/m 3,小于20J/m 3
  3. 根据权利要求1所述的高磁感高频纳米晶软磁合金,其特征在于,所述高磁感高频纳米晶软磁合金的饱和磁感应强度B s大于1.45T,矫顽力小于2A/m。
  4. 根据权利要求1所述的高磁感高频纳米晶软磁合金,其特征在于,所述高磁感高频纳米晶软磁合金,在频率为100kHz以下的磁导率为20000以上。
  5. 根据权利要求1所述的高磁感高频纳米晶软磁合金,其特征在于,所述高磁感高频纳米晶软磁合金,在频率为100kHz以下,横向磁场为0.2T以下的损耗小于250kW/m 3
  6. 根据权利要求1-5任一项所述的高磁感高频纳米晶软磁合金的制备方法,包括:
    (1)按照所述高磁感高频纳米晶软磁合金的原子百分比分子式进行配料得到母合金,所述母合金熔化后,喷射到旋转的冷却铜辊上,冷却凝固得到具有长程无序结构的非晶合金,即淬态合金带材,通过叠压切割、绕卷方法,将所述淬态合金带材制成磁芯;
    (2)将所述磁芯放入480-640℃的热场中,保温0.5-1.5h,然后放入380-420℃的0-1T横向磁场中保温0.5-1.5h,冷却后放入液氮环境中0.5-1h,然后从液氮环境中取出放入200-300℃环境中保温0.5-1h;
    (3)重复步骤(2)1-5次得到高磁感高频纳米晶软磁合金。
  7. 根据权利要求6所述的高磁感高频纳米晶软磁合金的制备方法,其特征在于,所述磁芯为圆筒状。
  8. 根据权利要求6或7所述的高磁感高频纳米晶软磁合金的制备方法,其特征在于,所述磁芯为外径21-23mm,内径18-20mm的圆筒状。
  9. 根据权利要求6所述的高磁感高频纳米晶软磁合金的制备方法,其特征在于,所述冷却铜辊的转速为25m/s-40m/s。
  10. 根据权利要求6所述的高磁感高频纳米晶软磁合金的制备方法,其特征在于,将所述磁芯放入横向磁场前,所述磁芯的晶粒尺寸为10-20nm。
PCT/CN2022/103259 2022-01-10 2022-07-01 一种高磁感高频纳米晶软磁合金及其制备方法 WO2023130689A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023504528A JP2024506431A (ja) 2022-01-10 2022-07-01 高磁気誘導高周波ナノ結晶軟磁性合金及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210020959.6 2022-01-10
CN202210020959.6A CN114496440B (zh) 2022-01-10 2022-01-10 一种高磁感高频纳米晶软磁合金及其制备方法

Publications (1)

Publication Number Publication Date
WO2023130689A1 true WO2023130689A1 (zh) 2023-07-13

Family

ID=81510788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103259 WO2023130689A1 (zh) 2022-01-10 2022-07-01 一种高磁感高频纳米晶软磁合金及其制备方法

Country Status (3)

Country Link
JP (1) JP2024506431A (zh)
CN (1) CN114496440B (zh)
WO (1) WO2023130689A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114496440B (zh) * 2022-01-10 2023-04-18 中国科学院宁波材料技术与工程研究所 一种高磁感高频纳米晶软磁合金及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306314A (ja) * 1997-04-28 1998-11-17 Alps Electric Co Ltd 軟磁性合金の製造方法
CN102598164A (zh) * 2009-10-16 2012-07-18 三美电机株式会社 高频磁性材料及高频装置
CN110387500A (zh) * 2018-04-17 2019-10-29 中国科学院宁波材料技术与工程研究所 一种高磁感高频铁基纳米晶软磁合金及其制备方法
CN114496440A (zh) * 2022-01-10 2022-05-13 中国科学院宁波材料技术与工程研究所 一种高磁感高频纳米晶软磁合金及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6080094B2 (ja) * 2011-08-31 2017-02-15 日立金属株式会社 巻磁心およびこれを用いた磁性部品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306314A (ja) * 1997-04-28 1998-11-17 Alps Electric Co Ltd 軟磁性合金の製造方法
CN102598164A (zh) * 2009-10-16 2012-07-18 三美电机株式会社 高频磁性材料及高频装置
CN110387500A (zh) * 2018-04-17 2019-10-29 中国科学院宁波材料技术与工程研究所 一种高磁感高频铁基纳米晶软磁合金及其制备方法
CN114496440A (zh) * 2022-01-10 2022-05-13 中国科学院宁波材料技术与工程研究所 一种高磁感高频纳米晶软磁合金及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUN, YU ET AL.: "Influence of Microstructure and Anisotropy on the High-Frequency Soft Magnetic Properties of Nanocrystalline Fesibnbcup Alloys", JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, vol. 560, 24 June 2022 (2022-06-24), XP087121863, ISSN: 0304-8853, DOI: 10.1016/j.jmmm.2022.169639 *

Also Published As

Publication number Publication date
JP2024506431A (ja) 2024-02-14
CN114496440A (zh) 2022-05-13
CN114496440B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
Takenaka et al. Industrialization of nanocrystalline Fe–Si–B–P–Cu alloys for high magnetic flux density cores
CN109234628B (zh) 一种低损耗纳米晶软磁合金的制备方法
CN100445410C (zh) 一种纳米晶软磁合金材料及其制备方法
Xiao et al. Magnetic softness and magnetization dynamics of FeSiBNbCu (P, Mo) nanocrystalline alloys with good high-frequency characterization
CN109930080B (zh) 一种无铜纳米晶软磁合金及其制备方法
JP2022549384A (ja) サブナノスケールの秩序クラスターを含む鉄基アモルファス合金、その調製方法及びそれを用いたナノ結晶合金誘導体
Kwon et al. High saturation magnetic flux density of Novel nanocrystalline core annealed under magnetic field
CN111554465B (zh) 一种纳米晶软磁合金及其制备方法和应用
CN116479321B (zh) 一种纳米晶软磁合金带材及其制备方法和应用
WO2023130689A1 (zh) 一种高磁感高频纳米晶软磁合金及其制备方法
CN104233121A (zh) 一种Fe基非晶纳米晶软磁材料及其制备方法
CN101792890B (zh) 一种超高饱和磁感应强度铁基纳米晶薄带
Li et al. Optimization of crystallization behavior and soft magnetic properties of the Si-free Fe-BPC-Cu nanocrystalline alloys by Cu content tuning
Xu et al. Ultrafine-grained microstructure and controllable magnetic domains in Fe-based nanocrystalline alloys with excellent magnetic properties induced by hot isostatic pressing
CN111910054A (zh) 一种高性能铁基非晶纳米晶带材的热处理方法
Urata et al. Fe–Si–B–P–Cu Nanocrystalline Alloy Ribbons With High Saturation Magnetic Flux Density Prepared Using Industrial Materials
Zheng et al. Enhanced Ms of Fe-rich Fe-B-Cu amorphous/nanocrystalline alloys achieved by annealing treatments
CN110093565B (zh) 晶化窗口宽、软磁性能可控的铁基纳米晶合金及其制备方法
CN112962024B (zh) 一种类Finemet型Fe基纳米晶软磁合金及其制备方法
CN115732160A (zh) 一种全金属铁基纳米晶软磁合金及其制备方法和磁芯
CN109754974B (zh) 一种纳米晶合金磁芯及其制备方法
Kong et al. Enhancement of soft magnetic properties of FeCoNbB nanocrystalline alloys with Cu and Ni additions
Fu et al. Effect of low magnetic field heat treatment process on grain sizes and soft magnetic properties of Finemet cores
Kong et al. Effect of Cu additions on the magnetic properties and microstructure of FeCoNbB nanocrystalline alloy
CN109468540A (zh) 一种铁基纳米晶软磁合金及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023504528

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18019780

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918145

Country of ref document: EP

Kind code of ref document: A1