CN116445441A - 一种大豆的糖基转移酶及其编码基因与应用 - Google Patents

一种大豆的糖基转移酶及其编码基因与应用 Download PDF

Info

Publication number
CN116445441A
CN116445441A CN202211525631.6A CN202211525631A CN116445441A CN 116445441 A CN116445441 A CN 116445441A CN 202211525631 A CN202211525631 A CN 202211525631A CN 116445441 A CN116445441 A CN 116445441A
Authority
CN
China
Prior art keywords
soybean
gene
recombinant
vector
glycosyltransferase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211525631.6A
Other languages
English (en)
Other versions
CN116445441B (zh
Inventor
韩英鹏
姜海鹏
赵雪
周长军
袁明
李永光
滕卫丽
战宇航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Agricultural University
Original Assignee
Northeast Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Agricultural University filed Critical Northeast Agricultural University
Priority to CN202211525631.6A priority Critical patent/CN116445441B/zh
Publication of CN116445441A publication Critical patent/CN116445441A/zh
Application granted granted Critical
Publication of CN116445441B publication Critical patent/CN116445441B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8285Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for nematode resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开一种大豆的糖基转移酶及其编码基因与应用,属于植物育种技术领域。为了提供一种抗大豆胞囊线虫的大豆基因以及在大豆增产中的应用,解决大豆如何抗胞囊线虫和如何增产的技术问题。本发明提供一种大豆的糖基转移酶,所述大豆的糖基转移酶的氨基酸序列如SEQ ID NO.4所示。GmUGT88A1是本发明新发现的具有抗大豆胞囊线虫作用的基因,在大豆中过量表达该基因可显著提高受体大豆种质的产量、其对大豆胞囊线虫的抗性为高产抗胞囊线虫病大豆分子设计育种提供有效的分子标记和基因资源。

Description

一种大豆的糖基转移酶及其编码基因与应用
技术领域
本发明属于植物育种技术领域,具体涉及一种大豆的糖基转移酶及其编码基因与应用。
背景技术
大豆(Glycine max(L.)Merr.)起源于中国,是世界范围内重要的油料作物和经济作物,为人类提供着丰富的油分及蛋白质。大豆胞囊线虫病(Soybean cyst nematode,SCN)是由大豆胞囊线虫引起的世界性大豆病害,具有分布广、危害重、其休眠体(胞囊)存活时间长等特点,是一种极难防治的土传性病害。一般情况下可造成大豆减产30-50%,严重时可造成绝产,严重危害大豆的产量和品质。大豆对SCN的抗性是受少量主效基因(rhg1和Rhg4)和多微效基因控制的复杂数量性状。目前,两个主效基因已经克隆且只能解释60%左右的抗性变异,过度使用有限的抗SCN品种已经导致SCN群体的转移,因此,持续鉴定新的抗病基因是全球大豆生产可持续发展的需要。黄酮作为重要的广谱抗菌活性植保素,在防止植物受到紫外线伤害的防御反应等方面发挥着重要作用,当植物受到病原物侵染时会诱导其合成并在植物体内积累。
此外,大豆异黄酮还是植物和微生物信号物质。李海燕等(2015)研究发现抗感大豆植株中的异黄酮粗提物对大豆胞囊线虫J2有显著的毒杀效果和卵孵化抑制作用,并对其相关酶系进行了检测验证。有研究发现核盘菌侵染大豆时,大豆中染料木素、黄豆苷元和黄豆黄素显著増加。也有研究表明蚜虫侵害前后大豆叶片组织内黄酮类物质代谢产物的含量都发生了明显变化,并且在不同蚜虫侵害时间和抗性基因型之间存在明显差异,表明这类物质与大豆抗蚜性有很大关联(姜伊娜等,2009)。现在亟需寻找可以抗大豆胞囊线虫的大豆基因,为大豆的抗病育种提供扎实的基础。
发明内容
本发明的目的是为了提供一种抗大豆胞囊线虫的大豆基因以及在增产大豆中的应用,解决大豆如何抗胞囊线虫和如何增产的技术问题。
本发明提供一种大豆的糖基转移酶,所述大豆的糖基转移酶的氨基酸序列如SEQID NO.4所示。
本发明提供编码上述的大豆的糖基转移酶的基因。
进一步地限定,所述基因序列如SEQ ID NO.3所示。
本发明提供一种含有上述的基因的重组载体。
进一步地限定,所述重组载体的出发载体为pCambia3300。
本发明提供一种重组微生物细胞,所述重组微生物细胞携带上述的基因或表达上述的大豆的糖基转移酶。
进一步地限定,所述重组微生物细胞为真核微生物细胞或者原核微生物细胞。
本发明提供一种提高大豆产量的方法,所述方法的具体步骤如下:
步骤1:将SEQ ID NO.3所示的基因与载体pCAMBIA3300载体连接,获得重组载体;
步骤2:将步骤1所述的重组载体转化至农杆菌中,获得重组农杆菌;
步骤3:将步骤2所述的重组农杆菌转入大豆中获得转基因大豆植株,鉴定后获得阳性的转基因大豆植株。
本发明提供一种制备抗大豆抗胞囊线虫病的植株的方法,所述方法的具体步骤如下:
步骤1:将SEQ ID NO.3所示的基因与载体pCAMBIA3300载体连接,获得重组载体;
步骤2:将步骤1所述的重组载体转化至农杆菌中,获得重组农杆菌;
步骤3:将步骤2所述的重组农杆菌转入大豆中获得转基因大豆植株,鉴定后获得阳性的转基因大豆植株。
本发明提供上述的大豆的糖基转移酶、上述的基因、上述的重组载体、上述的重组微生物细胞或超表达SEQ ID NO.3所示基因的大豆植株在提高大豆产量和提高大豆抗抗胞囊线虫病中的应用。
有益效果:本发明的目的是提供一个抗大豆胞囊线虫病的新基因GmUGT88A1,GmUGT88A1是本发明新发现的具有抗大豆胞囊线虫作用的基因,在大豆中过量表达该基因可显著提高受体大豆种质的大豆的产量、大豆胞囊线虫的抗性,为大豆抗胞囊线虫病分子设计育种提供有效的分子标记和基因资源。
附图说明
图1为GmUGT88A1基因的克隆,M:DL2000;1:水对照;2:PCR产物;
图2为大豆不同组织和线虫胁迫后GmUGT88A1基因的表达分析,a是基因GmUGT88A在不同大豆材料不同组织中的表达情况,b是基因GmUGT88A在线虫胁迫下不同大豆材料中的表达情况;
图3为不同激素和低温诱导下抗病候选基因的表达丰度,
图4为植物表达载体转化大肠杆菌,M:DL2000;1:水对照;2-7:PCR产物;
图5为重组载体转化根癌农杆菌,M:DL2000;1-6:PCR产物;7:水对照;
图6为转基因大豆的PCR检测,M:DL2000;1-11:受体为‘东农50’的GmUGT88A1基因过表达植株;12:阴性对照;13:水;14:阳性对照;
图7为转GmUGT88A1基因大豆植株的qRT-PCR检测,CK:感病品种“东农50”;1-5:GmUGT88A1基因过表达感病品种T2代植株;
图8为T2代转基因大豆植株Bar试纸条检测;
图9为T2代转基因植株根部酸性品红染色,a.过表达pCAMBIA3300空载对照;b.pCAMBIA3300-GmUGT88A1转基因阳性根;
图10为野生型和T2代转基因植株单位长度根系中胞囊雌虫数量统计分析,“**”表示0.01水平的显著性。
具体实施方式
植物品种(系):抗病品种‘东农L-10’,LHN-Line 102(极端抗病),极端感病家系LHN-Line89(不含任何抗病QTL),感病品种‘东农50’、‘黑农37’。SCN 3号生理小种:采自黑龙江省大庆大豆胞囊线虫发病地块,经实验室分离纯化,保存。
抗线虫品种东农L-10和感线虫品种黑农37记载在文献Chang et al.QTLunderlying resistance to two HG types of Heterodera glycines found in soybeancultivar‘L-10’,BMC Genomics 2011,12:233中。
LHN-Line 102和LHN-Line 89为抗线虫亲本东农L-10和感线虫品种黑农37杂交衍生的重组自交系,为文章记载的140个后代中的两个。这两个后代为文章中的对应的两个F7世代连续自交8次获得的F16代株系,LHN-Line 102特征为高抗大豆胞囊线虫病,LHN-Line89为高感大豆胞囊线虫病。
大豆品种东农50记载在崔慧敏等,大豆CHR2-1基因生物信息学分析与大豆遗传转化,大豆科学2022,41(3):274-280中。
实施例1.GmUGT88A1的生物信息学分析
1.通过ProtParam软件预测出候选基因UGT88A1的亲水性/疏水性,总平均亲水性-0.029,不稳定指数37.29,是一种稳定性的蛋白。结合Interproscan和NCBI网站对GmUGT88A1基因编码蛋白进行保守结构域分析发现,GmUGT88A1蛋白属于糖基转移酶家族1,该家族在生物体内催化活化的糖连接到不同的受体分子,如蛋白、核酸、寡糖、脂和小分子上,糖基化的产物具有很多生物学功能。
2.获得GmUGT88A1基因的方法
GmUGT88A1基因的克隆
1)以大豆抗胞囊线虫品种‘东农L-10’为材料,待长出第一组三出复叶时,取材,提取总RNA并反转录合成cDNA第一链。
2)根据Phytozome上GmUGT88A1基因序列,利用Primer 5软件设计基因克隆引物(引物1,S:5’-AGAACACGGGGGACTATGAAAGATTCCATTGTTCT-3’(SEQ ID NO.1),A:5’-ATCCTCTGTTTCTAGTTAGTGATGGTGATGGTGATGATGCTCCCTCCATATTTCTAC-3’
(SEQ ID NO.2)),以cDNA为模板进行RT-PCR反应,反应体系如下,反应程序:94℃5min;37个循环:95℃ 30s,60℃ 30s,72℃ 80s;72℃ 10min。反应后取PCR产物进行1%琼脂糖凝胶电泳检测并进行胶回收纯化目的片段(图1)。
根据Phytozome数据库中大豆基因组注释信息,并通过pfam数据库对GmUGT88A1保守结构域进行分析,发现从259位到435位的氨基酸是UDPGT结构域,证明GmUGT88A1就是糖基转移酶。
利用Phyre软件对GmUGT88A1基因编码的蛋白质进行三级结构预测,并使用Rasmol软件对该蛋白三级结构的图形化进行分析。结果表GmUGT88A1基因编码的蛋白质主要存在三种结构,分别为α螺旋(40.55%)、β转角结构(7.43%)和无规则卷曲(37.79%)。截取GmUGT88A1基因ATG上游2000bp的序列,并在PlantCARE在线分析软件上中分析启动子的顺式作用元件元件,发现该基因上游存在33种顺式作用元件,这些元件部分为应激、胁迫相应相关元件,部分在响应非生物胁迫中起到重要作用推测该基因可能感受逆境胁迫,并参与抗逆过程。
>GmUGT88A1基因编码序列(SEQ ID NO.3):
ATGAAAGATTCCATTGTTCTATATTCAGCTTTGGGAAGAGGACACCTTGTTTCAATGGTGGAACTAGGTAAACTCATACTAAGCCACCACCCTTCACTTTCCATCACCATTCTTTTC CTAACCCCACCCCCCAACCAAGACACCCCCACCTCCCCCACCGCCTTCACCTGCGACGCCACCGCCAAATACATCGCCGGTGTCACCGCAGCCACCCCCTCCATCACCTTCCACCGCATCCCTCAGATCTCCATCCTCACCGTCCTCCCTCCCATGGCCCTCACCTTCGAGCTCTGCCGCGCCACCGGCCACCACCTCCGCCGCATCCTCAGCTACATCTCCCAAACCTCAAACCTCAAAGCAATAGTCTTGGACTTCATGAACTACAGCGCCGCACGTGTCACCAACACGCTTCAAATCCCCACTTACTTCTACTACACTTCCGGCGCCTCCACCCTCGCCGCTCTTCTTTATCAAACCATCTTTCACGAAACCTGCACCAAGTCCCTCAAGGACCTCAACACGCACGTTGTAATCCCAGGGTTACCGAAAATTCACACTGATGACATGCCAGACGGAGCGAAAGATCGTGAAAACGAAGCTTACGGGGTTTTTTTTGACATAGCCACGTGCATGAGGGGCAGTTACGGGATTATAGTAAACACGTGTGAAGCCATCGAAGAGAGTGTGTTGGAAGCGTTCAACGAAGGGTTGATGGAAGGAACCACGCCGAAAGTGTTTTGCATTGGACCCGTGATTTCTTCTGCTCCTTGTAGAAAGGATGATAACGGGTGTCTGAGTTGGTTAAACTCGCAACCGAGTCAGAGTGTTGTGTTTTTGAGTTTTGGAAGCATGGGAAGATTCTCGAGGACTCAGTTGAGAGAGATTGCTATTGGGTTGGAGAAGAGTGAACAAAGGTTTCTGTGGGTCGTGAGGAGCGAGTTCGAAGAGGGTGAGTCGGCGGAGCCACCGAGTTTGGAGGAGTTGTTACCAGAAGGGTTTTTGGATAGGACTAAGGAGAAGGGAATGGTGGTGAGGGACTGGGCCCCACAGGCGGCGATTCTGAGTCATGACTCGGTGGGTGGGTTCGTGACTCACTGCGGGTGGAACTCGGTGTTGGAAGCGATTTGTGAAGGGGTTCCAATGGTGGCGTGGCCTTTGTACGCGGAGCAGAAGCTGAATAGGGTGATTTTGGTGGAGGAAATGAAGGTGGGGTTGGCGGTGGAGCAGAACAATAACGGGTTAGTGAGTTCCACCGAGTTGGGTGACCGAGTCAAGGAGCTCATGAACTCGGATAGGGGAAAAGAGATTAGACAGAGGATTTTCAAAATGAAAAACAGTGCCACCGAAGCAATGACTGAAGGTGGATCCTCAGTAGTTGCATTGAATAGGTTGGTAGAAATATGGAGGGAGCATTAA;
>GmUGT88A1氨基酸序列(SEQ ID NO.4):
MKDSIVLYSALGRGHLVSMVELGKLILSHHPSLSITILFLTPPPNQDTPTSPTAFTCDATAKYIAGVTAATPSITFHRIPQISILTVLPPMALTFELCRATGHHLRRILSYISQTSNLKAIVLDFMNYSAARVTNTLQIPTYFYYTSGASTLAALLYQTIFHETCTKSLKDLNTHVVIPGLPKIHTDDMPDGAKDRENEAYGVFFDIATCMRGSYGIIVNTCEAIEESVLEAFNEGLMEGTTPKVFCIGPVISSAPCRKDDNGCLSWLNSQPSQSVVFLSFGSMGRFSRTQLREIAIGLEKSEQRFLWVVRSEFEEGESAEPPSLEELLPEGFLDRTKEKGMVVRDWAPQAAILSHDSVGGFVTHCGWNSVLEAICEGVPMVAWPLYAEQKLNRVILVEEMKVGLAVEQNNNGLVSSTELGDRVKELMNSDRGKEIRQRIFKMKNSATEAMTEGGSSVVALNRLVEIWREH。
实施例2.GmUGT88A1基因的表达模式分析
1.取材
(1)播种抗感病材料,在长至成熟的过程中分别取其对生和三出时期的根、茎、叶、花各三次重复。
(2)采用淘洗-过筛法,将获得的胞囊土样置于40目筛网上,下方连接60目筛网,用湍急水流冲刷滤网上的土壤样品,将40目的滤筛中病土洗涤至水流清澈,将大豆胞囊线虫冲至60目筛网。采用63%的蔗糖-重悬浮法,用小勺将60目筛上的样品移入50mL离心管中,倒入蔗糖溶液,摇匀,以5000rpm离心5min,利用滤纸过滤蔗糖上清液,将胞囊留在滤纸上。将分离获得的胞囊利用机械法破碎,释放的卵粒在26℃条件下孵育7d,孵化的二龄幼虫(J2)混制成2000条/ml的卵悬液,用于下一步接种鉴定。细砂和土壤以1:1的比例混合,将卵悬液洒入砂土混合物,播种抗感病品种于蛭石中,待长出根后移栽到病土中,分别于0d、5d、10d、15d、进行根部的定时取样,每个时间点各取三次重复。
3.cDNA合成
提取2中样本的总RNA(Trizol总RNA提取试剂,TIANGEN BIOTECH,DP405—02),并反转录合成cDNA第一链(ReverTra Ace qpcr RT Master Mix withgDNAremover,TOYOBO,FSQ-301)。
4.荧光定量PCR分析
1)内参基因选取大豆管家基因GmActin 4(Genbank No:AF049106),根据qRT-PCR方法设计候选基因GmUGT88A1的定量引物(引物2),依照TIANGEN公司的荧光定量SYBRGreen试剂盒的反应体系进行加样,使用罗氏LightCycler 480定量仪器,PCR反应条件:95℃5min;95℃10s,60℃20s,72℃32s,40个循环;95℃1min,65℃30s,97℃30s。
2)GmUGT88A1基因特异性表达分析
提取包括抗病品种‘东农L-10’,LHN-Line 102(极端抗病),极端感病家系LHN-Line 89,感病品种‘黑农37’在内4份材料的根、花、茎、叶的RNA,利用荧光定量PCR分别检测GmUGT88A1基因在上述大豆中4个组织/器官中的表达水平,结果如图2中的a所示,发现4个组织/器官中均检测到GmUGT88A1基因的表达,总体而言,其在根和花中表达量高,其次是茎和叶,该基因在花、茎、叶中的表达,不同大豆材料间差异不显著,而在在根系中的表达则是抗病材料中的表达量明显高于感病材料,说明该基因在抗感病大豆材料中差异表达,可能与抗病性高度相关。
3)对大豆抗感病品种进行SCN 3(大豆胞囊线虫(Soybean Cyst Nematode,简称:SCN)病)胁迫处理,具体操作为:利用浓度为每毫升2000个二零幼虫的SCN卵悬液接种生长7d的大豆根系(处理包括抗病品种‘东农L-10’,LHN-Line 102(极端抗病),极端感病家系LHN-Line 89(不含任何抗病QTL),感病品种‘黑农37’的4份材料),相应未接种大豆根系作为对照,接种15d后,利用酸性品红染色方法观察处理和对照组大豆根系,结果如图2中的b所示,表明SCN 3号生理小种胁迫后GmUGT88A1基因在抗病材料中表达量显著提高,在感病品种中提高幅度较小。表明GmUGT88A1基因参与大豆抗胞囊线虫反应。
4)激素胁迫诱导表达分析
播种品种LHN-Line 102(抗病)和LHN-Line 89(感病)于蛭石中,生长至V2时期,进行50mmol/L的茉莉酸(JA)和0.5mmol/L的水杨酸(SA)、0.5mmol/L的乙烯(CT)、4℃低温处理,分别取处理0h、2h、4h、8h、12h、24h、36h、48h的大豆叶片,每个时间点三次重复。水杨酸(SA)、茉莉酸(JA)和乙烯(ET)是植物防御反应信号转导途径中重要的信号分子,参与调节植物对生物与非生物胁迫反应的响应。对大豆V2期(第二轮三出复叶叶缘分离)抗感品种进行SA、JA、ET、4℃低温处理,分别提取处理0h、2h、4h、8h、12h、24h、36h、48h的大豆叶片RNA,通过qRT-PCR方法对GmUGT88A1基因的相对表达量进行分析(图3),结果表明GmUGT88A1基因在JA处理下表达量有明显变化,表达量先升后降,并在处理4h后达到最大,GmUGT88A1基因在SA、ET、4℃低温处理下表达量没有明显变化;说明JA可快速激活大豆中GmUGT88A1基因的表达,SA、ET和低温对GmUGT88A1基因的表达无影响。初步推断GmUGT88A1基因可能在JA介导的抗病信号传导途径中起作用来参与植物抗病过程。
实施例3.GmUGT88A1基因克隆及植物表达载体构建
1.按照TIANGEN公司的PGM-T克隆试剂盒的步骤,将实施例1得到的胶回收产物与克隆载体进行连接,并转化Top10大肠感受态细胞,挑取单克隆并进行PCR及测序验证。最终得到目的片段大小为1416bp的GmUGT88A1基因。表明GmUGT88A1基因与PGM-T载体连接并成功转化到大肠杆菌中。
2.将pCambia3300载体质粒和pGM-T-GmUGT88A1载体质粒分别用限制性内切酶BamH I和Spe I进行双酶切,酶切后经琼脂糖凝胶电泳检测后回收纯化,将纯化后的产物进行连接,转化大肠杆菌后,挑单斑,进行PCR扩增鉴定,结果表明在1416bp位置上有GmUGT88A1基因目的条带,表明GmUGT88A1基因与表达载体连接并成功转化到大肠杆菌中(图4)。
3.重组载体转化根癌农杆菌
将pCambia3300-GmUGT88A1质粒通过冻融法转入根癌农杆菌EHA105中,转化后的菌液经PCR鉴定,获得长度为1416bp的目标条带,证明pCambia3300-GmUGT88A1已经成功转入到根癌农杆菌EHA105中(图5)。
实施例4.根癌农杆菌介导法转化大豆植株
1.通过根癌农杆菌介导的大豆半种子法创制GmUGT88A1基因过量表达材料,过表达转化受体为感病品种‘东农50’。
2.菌液制备:取制备好的菌液分别在YEP固体平板(50mg/mL Str,50mg/mL Kan,25mg/mL Rif)上划线28℃培养,挑取单菌落接种于YEP液体培养基(50mg/mL Str,50mg/mLKan,25mg/mL Rif)中,28℃ 200rpm震荡培养1-2天,取1-2ml菌液接种于50ml新鲜的YEP液体培养基中震荡培养至OD600为0.6-0.8。
3.种子灭菌:选取饱满、无菌斑种子于培养皿中,采用氯气灭菌法,将种子放入通风厨的干燥器内,在干燥器的三角瓶中倒入96ml次氯酸钠,再快速加入6ml浓盐酸后迅速盖紧封盖。灭菌16h后置于超净工作台内吹走残留的氯气,大约30min左右,密封待用。
4.种子萌发:采用氯气灭菌法,将饱满、无病斑的东农50种子放入通风厨的干燥器内,依次加入NaClO 96mL、浓HCL 6mL,灭菌16h,播种于萌发培养基,暗培养16h。
5.外植体制备:选取充分吸涨的大豆种子,用试验刀刮去种皮后,沿着胚轴中线将两片子叶分开,去除腋芽,并在子叶与胚轴交接处约3mm的范围内轻轻划3-5刀,即为外植体。
6.侵染与共培养:将制备好的外植体放入侵染液中,室温条件下,150rpm震荡30min,倒掉侵染液,用无菌纸将外植体表面的侵染液吸干,将外植体倒置平铺在共培养培养基(垫一层滤纸)上,暗培养3-5d。
7.丛生芽的筛选:将共培养后的外植体装入无菌三角瓶中,无蒸馏水清洗2-3次,倒出多余菌液,将外植体放置于无菌纸上,直至表面液体吹干,斜插在筛选培养基中培养14d后,重复筛选一次。
8.丛生芽的伸长与生根:仅保留丛生芽,用试验刀切除其他部分,并刮掉丛生芽的黑头,将其插入到伸长培养基中,待伸长60d左右(期间继代培养4次),将丛生芽上长出两轮三出叶的大豆苗切下,插入生根培养基中,观察2-3周,将再生大豆苗移载至营养钵中(营养土:蛭石=1:1)。
实施例5.GmUGT88A1基因过表达植株的鉴定表型分析
1.GmUGT88A1基因过表达植株的鉴定
1)T2代过表达植株的PCR检测
通过根癌农杆菌介导的大豆半种子转化法,将GmUGT88A1基因过表达载体转入感病品种‘东农50’中,将获得的植株提取DNA,用Bar(引物3,S:5’-CAATCCCACTATCCTTCGC-3',A:5’-CAATCCCACTATCCTTCGC-3’,(SEQ ID NO.5))引物进行PCR鉴定,共鉴定3次,都检测得到目的片段的植株鉴定为阳性,并用Bar试纸条插入离心管的样品中,出现第二条线(检测线)的植株视为转GmUGT88A1基因大豆阳性植株。最终得到7株T2代阳性植株(图6)。
2)T2代过表达植株的qRT-PCR检测
根据GmUGT88A1基因序列设计定量引物(引物2,
S:5-CCATTGCCCAGCTATCTGTCACTTTATT-3',(SEQ ID NO.6)A:5’-TGAAGGGTGGTGGCTTAGTATGAGTTTA-3’(SEQ ID NO.7)),利用qRT-PCR的方法对T2代阳性植株进行检测,结果检测到转GmUGT88A1基因的大豆叶片中GmUGT88A1基因的相对表达量高于对照品种,以超过对照2.5倍的相对表达量为基准,筛选到4个过表达转基因植株(图7)。对PCR和qPCR筛选获得的4个T2代转基因植株进行Bar试纸条检测,每个植株取少许叶片进行充分研磨并加入适量蒸馏水,充分混匀后插入Bar试纸条,静置观察,出现两条检测线,说明4个T2代植株均为阳性植株(图8)。
3.GmUGT88A1基因过表达植株的表型鉴定
1)T2代转基因植株大豆胞囊线虫接种表型分析
接种SCN 15d后,采用酸性品红染色法分别对两个试验组合转pCAMBIA3300-GmUGT88A1基因和pCAMBIA3300空载体的大豆根部进行染色(图9),光学显微镜下观察线虫侵染情况,每株取3个侧根作为生物学重复,取5株计数并测量对应侧根长度,计算侧根单位长度的雌虫数,计算平均值。并采用成对t检验法检验。
pCAMBIA3300空载体对照根部雌虫数目平均值为2.60个/cm,pCAMBIA3300-GmUGT88A1转基因阳性根雌虫数目平均值为1.83个/cm,低于对照组,成对样本t检验的结果,在P=0.05和0.01水平上双尾t值分别为2.14和3.00,双尾P值(Sig)均为为0.007;根据雌虫指数,转基因阳性根部与阴性对照根部存在着极显著差异,初步证实GmUGT88A1基因对大豆胞囊线虫病有明显抗性(图10,表1)。
表1野生型和T2代转基因植株单位长度根系中胞囊雌虫数量成对t检验结果
2)GmUGT88A1基因过表达植株的产量分析和3种异黄酮苷元含量测定
将T2代过表达GmUGT88A1基因植株和非转基因植株分别播种,并对转基因植株和非转基因植株的单株荚数、单株粒数、单株粒重和百粒重进行考种数据分析,应用SPSS软件对数据进行t-检测(表2),结果表明转基因大豆的单株荚数、单株粒数、单株粒重和百粒重都高于野生型大豆,其中两者在单株荚数和单株粒数方面达到显著水平(P<0.05),而转基因植株和非转基因植株单株粒重的差异达到极显著水平(P<0.01)。
表2转基因植株与野生型植株荚数、粒数和粒重的差异分析
注:*表示P<0.05水平差异显著,*表示P<0.01水平差异极显著。

Claims (10)

1.一种大豆的糖基转移酶,其特征在于,所述大豆的糖基转移酶的氨基酸序列如SEQID NO.4所示。
2.编码权利要求1所述的大豆的糖基转移酶的基因。
3.根据权利要求2所述的基因,其特征在于,所述基因序列如SEQ ID NO.3所示。
4.含有权利要求2所述的基因的重组载体。
5.根据权利要求4所述的重组载体,其特征在于,所述重组载体的出发载体为pCambia3300。
6.一种重组微生物细胞,其特征在于,所述重组微生物细胞携带权利要求2所述的基因或表达权利要求1所述的大豆的糖基转移酶。
7.根据权利要求6所述的重组微生物细胞,其特征在于,所述重组微生物细胞为真核微生物细胞或者原核微生物细胞。
8.一种提高大豆产量的方法,其特征在于,所述方法的具体步骤如下:
步骤1:将SEQ ID NO.3所示的基因与载体pCAMBIA3300载体连接,获得重组载体;
步骤2:将步骤1所述的重组载体转化至农杆菌中,获得重组农杆菌;
步骤3:将步骤2所述的重组农杆菌转入大豆中获得转基因大豆植株,鉴定后获得阳性的转基因大豆植株。
9.一种制备抗大豆抗胞囊线虫病的植株的方法,其特征在于,所述方法的具体步骤如下:
步骤1:将SEQ ID NO.3所示的基因与载体pCAMBIA3300载体连接,获得重组载体;
步骤2:将步骤1所述的重组载体转化至农杆菌中,获得重组农杆菌;
步骤3:将步骤2所述的重组农杆菌转入大豆中获得转基因大豆植株,鉴定后获得阳性的转基因大豆植株。
10.权利要求1所述的大豆的糖基转移酶、权利要求2或3所述的基因、权利要求4或5所述的重组载体、权利要求6或7所述的重组微生物细胞或超表达SEQ ID NO.3所示基因的大豆植株在提高大豆产量、提高大豆对胞囊线虫病抗性中的应用。
CN202211525631.6A 2022-11-30 2022-11-30 一种大豆的糖基转移酶及其编码基因与应用 Active CN116445441B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211525631.6A CN116445441B (zh) 2022-11-30 2022-11-30 一种大豆的糖基转移酶及其编码基因与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211525631.6A CN116445441B (zh) 2022-11-30 2022-11-30 一种大豆的糖基转移酶及其编码基因与应用

Publications (2)

Publication Number Publication Date
CN116445441A true CN116445441A (zh) 2023-07-18
CN116445441B CN116445441B (zh) 2023-11-03

Family

ID=87124341

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211525631.6A Active CN116445441B (zh) 2022-11-30 2022-11-30 一种大豆的糖基转移酶及其编码基因与应用

Country Status (1)

Country Link
CN (1) CN116445441B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001051627A2 (en) * 2000-01-07 2001-07-19 Monsanto Technology Llc. Soybean cyst nematode (scn) resistance loci rhg1 and rhg4
CN1814810A (zh) * 2005-12-16 2006-08-09 沈阳农业大学 与大豆抗胞囊线虫病基因相关的分子标记及其获得方法和应用
CN102206651A (zh) * 2011-04-27 2011-10-05 东北农业大学 一种大豆胞囊线虫抗性基因及其应用
CN107254487A (zh) * 2017-06-09 2017-10-17 吉林省农业科学院 培育抗大豆胞囊线虫转基因植物的方法
CN110029118A (zh) * 2019-04-19 2019-07-19 南京工业大学 一种合成槲皮素-4’-葡萄糖苷的方法
CN110862995A (zh) * 2019-12-18 2020-03-06 东北农业大学 一种抗大豆菌核病基因GmPR5、GmPR5转基因植株的构建与应用
CN111471689A (zh) * 2019-01-23 2020-07-31 东北农业大学 一种提高大豆对胞囊线虫病抗性的基因及其应用
CN111690049A (zh) * 2020-07-29 2020-09-22 青岛农业大学 基因g20e03、其编码的蛋白及其在提高烟草植株抗大豆孢囊线虫病中的应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001051627A2 (en) * 2000-01-07 2001-07-19 Monsanto Technology Llc. Soybean cyst nematode (scn) resistance loci rhg1 and rhg4
CN1814810A (zh) * 2005-12-16 2006-08-09 沈阳农业大学 与大豆抗胞囊线虫病基因相关的分子标记及其获得方法和应用
CN102206651A (zh) * 2011-04-27 2011-10-05 东北农业大学 一种大豆胞囊线虫抗性基因及其应用
CN107254487A (zh) * 2017-06-09 2017-10-17 吉林省农业科学院 培育抗大豆胞囊线虫转基因植物的方法
CN111471689A (zh) * 2019-01-23 2020-07-31 东北农业大学 一种提高大豆对胞囊线虫病抗性的基因及其应用
CN110029118A (zh) * 2019-04-19 2019-07-19 南京工业大学 一种合成槲皮素-4’-葡萄糖苷的方法
CN110862995A (zh) * 2019-12-18 2020-03-06 东北农业大学 一种抗大豆菌核病基因GmPR5、GmPR5转基因植株的构建与应用
CN111690049A (zh) * 2020-07-29 2020-09-22 青岛农业大学 基因g20e03、其编码的蛋白及其在提高烟草植株抗大豆孢囊线虫病中的应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Soybean cyst nematodes: a destructive threat to soybean production in China", PHYTOPATHOLOGY RESEARCH, pages 1 - 16 *
"大豆对孢囊线虫Heterodera glycines的分子遗传抗性机制研究", 中国博士学位论文全文数据库(电子期刊)农业科技辑, pages 046 - 46 *
MAMOON REHMAN H: "isoflavone 7-O-glucosyltransferase UGT3 [Glycine max],accession NO.NP_001353995.1", GENBANK DATABASE, pages 1 - 2 *
NOGUCHI A: "A UDP-glucose:isoflavone 7-O-glucosyltransferase from the roots of soybean (glycine max) seedlings. Purification, gene cloning, phylogenetics, and an implication for an alternative strategy of enzyme catalysis.", J BIOL CHEM, pages 23581 - 23590 *
ZHAO XUE: "Loci and candidate genes conferring resistance to soybean cyst nematode HG type 2.5.7", BMC GENOMICS, pages 1 - 14 *
韩英鹏: "大豆胞囊线虫病4号生理小种抗性候选基因GmRSCN4-3克隆与功能初步鉴定", 东北农业大学学报, pages 32 - 38 *

Also Published As

Publication number Publication date
CN116445441B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
CN103562395B (zh) 对昆虫害虫具有抗性的植物
Melito et al. A nematode demographics assay in transgenic roots reveals no significant impacts of the Rhg1 locus LRR-Kinase on soybean cyst nematode resistance
Zhang et al. Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation
CN103189512A (zh) 用于寄生体控制的植物miRNA的过表达
BR112013033494B1 (pt) Método para aumentar a resistência a ferrugem de soja phacosporacea em plantas de soja, método para a produção de uma planta de soja que tem resistência aumentada contra ferrugem de soja phacosporacea e vetor de transformação
CN107429259A (zh) 通过增加莨菪亭含量,增加转基因植物中大豆锈病抗性的方法
CN109384837B (zh) 一种杨树抗旱基因及其应用
CN101123870A (zh) 用于产生具有增加的角质层水透过性的植物的分离多肽以及编码该多肽的多核苷酸
BRPI0807018A2 (pt) Mólecula de dsrna, coleção de moléculas de dsrna, planta transgênica, e, método de preparar uma planta transgênica
CN110283824A (zh) 一种利用CsXTH04基因沉默以提高柑橘对溃疡病抗性的方法
CN110862995B (zh) 一种抗大豆菌核病基因GmPR5、GmPR5转基因植株的构建与应用
CN110904130B (zh) 一种抗菌核病基因GmGST1、转GmGST1基因植株的构建与应用
CN104293802B (zh) 百脉根erf类转录因子、其编码基因及表达载体和应用
CN110128514A (zh) 水稻孕穗期耐冷性相关蛋白CTB4b及编码基因与应用
CA2872128C (en) Dirigent gene eg261 and its orthologs and paralogs and their uses for pathogen resistance in plants
CN112322633B (zh) 一种水稻根结线虫抗性基因OsBetvI及其应用
CN113684225A (zh) 番茄SlHMGA3基因在培育果实延迟成熟的番茄中的应用
CN116445441B (zh) 一种大豆的糖基转移酶及其编码基因与应用
Li et al. Analysis of physiological characteristics of abscisic acid sensitivity and salt resistance in Arabidopsis ANAC mutants (ANAC019, ANAC072 and ANAC055)
CN116445446A (zh) 野生甘蓝糖基转移酶BoUGT76C2基因及应用
CN103789325B (zh) 棉花细胞壁伸展蛋白基因GbEXPATR及应用
CN109988761A (zh) 一种核苷酸序列及其在增强植物抗有害生物能力中的应用
CN110468128A (zh) 一株高抗褐飞虱及耐盐的水稻突变体miR393am及其应用
BR112019022369A2 (pt) Controle da densidade estomática em plantas
CN104673803B (zh) 基因甲基化在调控基因表达方面的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant