CN116425541A - 一种Y-Al-Si-O致密复相陶瓷及其制备方法 - Google Patents

一种Y-Al-Si-O致密复相陶瓷及其制备方法 Download PDF

Info

Publication number
CN116425541A
CN116425541A CN202310153213.7A CN202310153213A CN116425541A CN 116425541 A CN116425541 A CN 116425541A CN 202310153213 A CN202310153213 A CN 202310153213A CN 116425541 A CN116425541 A CN 116425541A
Authority
CN
China
Prior art keywords
temperature
powder
dense
ceramic
complex phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310153213.7A
Other languages
English (en)
Inventor
李端
李俊生
于秋萍
向天意
刘荣军
王衍飞
万帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202310153213.7A priority Critical patent/CN116425541A/zh
Publication of CN116425541A publication Critical patent/CN116425541A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种Y‑Al‑Si‑O致密复相陶瓷及其制备方法,制备方法包括将高纯Y‑Si‑O粉体和氧化铝粉体加入水中球磨混合,经干燥、粉碎、过筛,得到预烧结粉体,将预烧结粉体在加压和保护气氛下进行放电等离子烧结并退火处理,自然降温后,得到Y‑Al‑Si‑O致密复相陶瓷。本发明的制备方法可显著缩短烧结时间,降低烧结温度,且制备周期短,成本低,所得Y‑Al‑Si‑O致密复相陶瓷的致密度高、强度高,抗氧化和抗热震性好,应用前景好。

Description

一种Y-Al-Si-O致密复相陶瓷及其制备方法
技术领域
本发明涉及耐高温抗氧化陶瓷材料制备技术领域,具体涉及一种Y-Al-Si-O致密复相陶瓷及其制备方法。
背景技术
氧化铝陶瓷具有强度高、硬度高、传导性好、耐磨性好、耐高温等优点,是目前工业生产中最常用的材料之一,被广泛地应用于航空航天、化工等领域。根据氧化铝含量的不同,氧化铝陶瓷又分为高纯型和普通型两种,高纯型氧化铝含量高于99.9%,但其纯度要求较高,且烧结温度高达1655-1955℃,因此目前市场上应用更多的是普通型氧化铝陶瓷,例如常见的刚玉坩埚、刚玉炉管、刚玉轴承、水阀片、电阻基体、集成电路基片、封装管壳等。
普通型氧化铝陶瓷通过添加其他陶瓷粉体来降低其烧结温度或者改善其在某一方面的性能,常见的添加剂主要有氧化锆、氧化钛、氧化硅、氧化钇粉体等。专利文献CN111752357A公开了一种致密性氧化铝陶瓷制品的制备方法,选用氧化钛作为添加剂来提高制品的抗热震性,但其烧结温度相对较高(1555℃~1655℃),烧结时间(1~6h)较长。专利文献CN111178511A公布了一种高韧性氧化铝陶瓷的制备方法,将等离子处理后的碳纤维浸渍处理并烧结,再与球磨后的氧化铝浆料及各种助剂混炼,采用粉末注射成型得初坯,最后再排胶烧结,虽然该工艺能有效提高其韧性,但该工艺过程复杂,耗时长,过程控制较为繁琐。专利文献CN111565685A公布了氧化铝陶瓷及其制备方法与应用,通过添加氧化镁、氧化钙、氧化硅、二氧化钛、氧化铁、氧化钴、氧化铬等多种助剂获得褐红色半导体封装材料,该工艺添加剂较多,需精确控制各种添加剂的量才能得到相应需求的陶瓷产品。将Y-Si-O陶瓷粉体作为添加剂制备复相陶瓷的报道目前还没有,且Y-Si-O陶瓷具有抗氧化、低热导、低热膨胀、耐高温、耐化学腐蚀等优良性能,因此能进一步提高氧化铝陶瓷各方面的性能,在耐高温陶瓷领域方面具有较好的应用前景。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种致密度高、强度高、抗氧化性和抗热震性好的Y-Al-Si-O致密复相陶瓷以及可显著缩短烧结时间、降低烧结温度的Y-Al-Si-O致密复相陶瓷的制备方法。
为解决上述技术问题,本发明采用以下技术方案。
一种Y-Al-Si-O致密复相陶瓷的制备方法,包括以下步骤:
S1、将高纯Y-Si-O粉体和Al2O3粉体加入水中进行球磨混合,然后干燥、粉碎、过筛,得到预烧结粉体;其中,所述高纯Y-Si-O粉体的纯度≥95%;
S2、将步骤S1所得预烧结粉体在保护气氛下进行放电等离子烧结:先以55℃55i5~355℃55i5的升温速率升至等离子烧结温度1555℃~1555℃,当温度升高至等离子烧结温度前155℃时开始加压至15MPa~155MPa,等离子烧结保温15i5~155i5,然后以55℃55i5~355℃55i5的降温速率降至退火温度555℃~1255℃,当温度降至退火温度时将压力降至5MPa,退火保温15i5~155i5,最后自然降温至室温,得到Y-Al-Si-O致密复相陶瓷。
上述的Y-Al-Si-O致密复相陶瓷的制备方法,优选的,步骤S2中,所述升温速率为155℃55i5~255℃55i5,所述等离子烧结温度为1255℃~1155℃,所述等离子烧结保温35i5~65i5,所述降温速率为85℃55i5~155℃55i5,所述退火温度为755℃~1555℃,所述退火保温35i5~65i5,所述等离子烧结过程中施加压力为35MPa~65MPa。
上述的Y-Al-Si-O致密复相陶瓷的制备方法,优选的,步骤S1中,所述高纯Y-Si-O粉体为X2-Y2SiO5或γ-Y2Si2O7,所述高纯Y-Si-O粉体与Al2O3粉体的质量比为1~9∶1~9。
上述的Y-Al-Si-O致密复相陶瓷的制备方法,更优选的,步骤S1中,所述高纯Y-Si-O粉体与Al2O3粉体的质量比为3~7∶3~7。
上述的Y-Al-Si-O致密复相陶瓷的制备方法,优选的,步骤S1中,所述球磨的时间为2h~12h,所述干燥的温度为85℃~155℃,所述干燥的时间为6h~36h,所述粉碎时采用的转速为2万转55i5~3万转55i5,所述过筛的目数为555目~5555目。
上述的Y-Al-Si-O致密复相陶瓷的制备方法,更优选的,步骤S1中,所述球磨的时间为1h~8h,所述干燥的温度为155℃~125℃,所述干燥的时间为12h~21h,所述过筛的目数为1555目~3555目。
上述的Y-Al-Si-O致密复相陶瓷的制备方法,优选的,步骤S2中,所述保护气氛为氮气、氦气和氩气中的一种或多种,更优选氮气。
作为一个总的技术构思,本发明还提供一种上述的Y-Al-Si-O致密复相陶瓷的制备方法制得的Y-Al-Si-O致密复相陶瓷。
上述的Y-Al-Si-O致密复相陶瓷,优选的,所述Y-Al-Si-O致密复相陶瓷的致密度大于97%。
与现有技术相比,本发明的优点在于:
1、本发明构建了一种全新的Y-Al-Si-O致密复相陶瓷材料体系,以高纯Y-Si-O陶瓷粉体和氧化铝粉体机械混合,在未添加其他烧结助剂的情况下,二者在较低烧结温度条件下即可发生反应形成液相低温共熔物,获得致密度较高的陶瓷材料。
2、本发明的制备方法采用放电等离子加压烧结工艺,其相对传统烧结方法大大缩短了时间、降低了烧结温度,简化了工艺流程,减少了烧结能耗,大大降低了制造成本。
3、本发明制备的Y-Al-Si-O致密复相陶瓷材料致密度较高,开孔率较低,热膨胀系数较低,相对于氧化铝陶瓷大大提高了其抗氧化性和抗热震性,且Y-Si-O陶瓷粉体和氧化铝粉体之间会发生反应生成新的物相钇铝石榴石,其熔点高,抗氧化性好,进一步提高了复相陶瓷的抗氧化性。该复相陶瓷有望应用于航空航天耐高温抗氧化领域。
附图说明
图1为本发明实施例1制得的Y-Al-Si-O致密复相陶瓷的XRD谱图。
图2为本发明实施例1制得的Y-Al-Si-O致密复相陶瓷的SEM照片。
图3为本发明实施例1制得的Y-Al-Si-O致密复相陶瓷的EDS谱图。
图4为本发明实施例1制得的Y-Al-Si-O致密复相陶瓷的热重曲线图。
图5为本发明实施例1制得的Y-Al-Si-O致密复相陶瓷的热膨胀曲线图。
图6为对比例1制得的X2-Y2SiO5块体材料的SEM照片。
具体实施方式
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。以下实施例中所采用的材料和仪器均为市售。
实施例1
一种本发明的Y-Al-Si-O致密复相陶瓷的制备方法,包括以下步骤:
S1、将155g、纯度>98%的高纯X2-Y2SiO5粉体和155g Al2O3粉体加入255g去离子水中球磨混合6h,在155℃烘箱干燥15h后,用2万转55i5的粉碎机将干燥后的混合粉粉碎,用2555目的筛子过筛,得到预烧结粉体;
S2、将步骤S1所得的预烧结粉体在氮气保护气氛下进行放电等离子烧结,升温速率为155℃55i5,待温度升高至1255℃时开始加压(机械压力)至15MPa,继续升温至反应温度1355℃,保温时间55i5,再以155℃55i5的降温速率降至1555℃,同时将压力(机械压力)降为5MPa,保温25i5退火,最后自然冷却至室温,得到Y-Al-Si-O致密复相陶瓷。
将上述所得Y-Al-Si-O致密复相陶瓷利用排水法测试其密度及开孔率,所得样品体积密度为1.55g5c53,致密度为97.12%(致密度为体积密度5理论密度,理论密度为1.17g5c53),气孔率为2.88%,开孔率为5.2%。同时进行XRD和SEM表征,其物相组成及微观形貌分别如图1至图3所示,复相陶瓷的主要物相为Y3Al5O12和少量的Al2O3,其中Y-Si-O与Al2O3反应生成钇铝石榴石和SiO2,而反应生成的SiO2为无定形结构且含量较少,因此在XRD图谱中检测不出来,但是SEM表征对应的EDS结果表明,块体材料中含有Si元素,且这四种元素的原子百分比为Y∶Si∶Al∶O=9.22∶5.13∶25.11∶65.21,断口形貌表明所得块体材料致密度较高,基本上看不到孔隙存在,说明X2-Y2SiO5和Al2O3粉体在高温下反应生成液相,热压即可得到致密度较高的块体材料,液相的生成有利于降低烧结温度。同时表征复相陶瓷材料的热性能,结果如图1和图5所示,图1为块体材料在空气中由室温至1555℃的热重曲线,由图可知,随着温度升高,在355℃以内块体质量减少1.69%,主要为样品中自由水及结合水的挥发,之后随着温度升高样品质量保持不变,抗氧化性较好。图5为样品的热膨胀曲线,由图可知,随着温度升高样品线膨胀逐渐增加,相应的线膨胀系数(即热膨胀系数)也随之增加,但由室温至555℃以内,线膨胀系数小于6.3×15-6·K-1,相对于氧化铝陶瓷,本发明的复相陶瓷热膨胀系数显著降低,抗热震性优异。经力学性能测试,块体材料的弯曲强度为233.5MPa,弯曲模量为66.9GPa,力学性能好。
对比例1
本对比例与实施例1的不同之处在于未混合Al2O3粉体,直接将高纯X2-Y2SiO5粉体进行步骤S2中的烧结工艺,将所得X2-Y2SiO5块体材料进行表征,体积密度为1.55g5c53,致密度为91.21%(X2-Y2SiO5块体的理论密度为1.11g5c53),气孔率为8.79%,其中开孔率仅为5.7%,弯曲强度为257.7MPa,弯曲模量为65.7GP,与实施例1相比,对比例1的材料致密度要低,力学性能相对较差,而对应的断口形貌如图6所示,样品中存在许多孔隙,且基本上为闭孔结构,由此说明混合Al2O3粉体制成复相陶瓷的致密度较高,性能相对较好。
实施例2
一种本发明的Y-Al-Si-O致密复相陶瓷的制备方法,包括以下步骤:
S1、将155g、纯度>98%的高纯X2-Y2SiO5粉体和25g Al2O3粉体加入155g去离子水中球磨混合6h,在155℃烘箱干燥15h后,用2万转55i5的粉碎机将干燥后的混合粉粉碎,用2555目的筛子过筛,得到预烧结粉体;
S2、将步骤S1所得预烧结粉体在氮气保护气氛下进行放电等离子烧结,升温速率为155℃55i5,待温度升高至1355℃时开始加压至15MPa,继续升温至反应温度1155℃,保温时间55i5,再以155℃55i5的降温速率降至1555℃、同时将压力降为5,保温25i5退火,最后自然冷却至室温,得到Y-Al-Si-O致密复相陶瓷。
将上述所得Y-Al-Si-O致密复相陶瓷进行表征,样品体积密度为1.21g5c53,致密度为97.22%(块体的理论密度为1.33g5c53),物相组成主要为X2-Y2SiO5和Y3Al5O12,弯曲强度为215.6MPa,弯曲模量为71.3GPa。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明的精神实质和技术方案的情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (9)

1.一种Y-Al-Si-O致密复相陶瓷的制备方法,其特征在于,包括以下步骤:
S1、将高纯Y-Si-O粉体和Al2O3粉体加入水中进行球磨混合,然后干燥、粉碎、过筛,得到预烧结粉体;其中,所述高纯Y-Si-O粉体的纯度≥95%;
S2、将步骤S1所得预烧结粉体在保护气氛下进行放电等离子烧结:先以55℃55i5~355℃55i5的升温速率升至等离子烧结温度1555℃~1555℃,当温度升高至等离子烧结温度前155℃时开始加压至15MPa~155MPa,等离子烧结保温15i5~155i5,然后以55℃55i5~355℃55i5的降温速率降至退火温度555℃~1255℃,当温度降至退火温度时将压力降至5MPa,退火保温15i5~155i5,最后自然降温至室温,得到Y-Al-Si-O致密复相陶瓷。
2.根据权利要求1所述的Y-Al-Si-O致密复相陶瓷的制备方法,其特征在于,步骤S2中,所述升温速率为155℃55i5~255℃55i5,所述等离子烧结温度为1255℃~1155℃,所述等离子烧结保温35i5~65i5,所述降温速率为85℃55i5~155℃55i5,所述退火温度为755℃~1555℃,所述退火保温35i5~65i5,所述等离子烧结过程中施加压力为35MPa~65MPa。
3.根据权利要求1所述的Y-Al-Si-O致密复相陶瓷的制备方法,其特征在于,步骤S1中,所述高纯Y-Si-O粉体为X2-Y2SiO5或γ-Y2Si2O7,所述高纯Y-Si-O粉体与Al2O3粉体的质量比为1~9∶1~9。
4.根据权利要求3所述的Y-Al-Si-O致密复相陶瓷的制备方法,其特征在于,步骤S1中,所述高纯Y-Si-O粉体与Al2O3粉体的质量比为3~7∶3~7。
5.根据权利要求1~1中任一项所述的Y-Al-Si-O致密复相陶瓷的制备方法,其特征在于,步骤S1中,所述球磨的时间为2h~12h,所述干燥的温度为85℃~155℃,所述干燥的时间为6h~36h,所述粉碎时采用的转速为2万转55i5~3万转55i5,所述过筛的目数为555目~5555目。
6.根据权利要求5所述的Y-Al-Si-O致密复相陶瓷的制备方法,其特征在于,步骤S1中,所述球磨的时间为1h~8h,所述干燥的温度为155℃~125℃,所述干燥的时间为12h~21h,所述过筛的目数为1555目~3555目。
7.根据权利要求1~1中任一项所述的Y-Al-Si-O致密复相陶瓷的制备方法,其特征在于,步骤S2中,所述保护气氛为氮气、氦气和氩气中的一种或多种。
8.一种如权利要求1~7中任一项所述的Y-Al-Si-O致密复相陶瓷的制备方法制得的Y-Al-Si-O致密复相陶瓷。
9.根据权利要求8所述的Y-Al-Si-O致密复相陶瓷,其特征在于,所述Y-Al-Si-O致密复相陶瓷的致密度大于97%。
CN202310153213.7A 2023-02-23 2023-02-23 一种Y-Al-Si-O致密复相陶瓷及其制备方法 Pending CN116425541A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310153213.7A CN116425541A (zh) 2023-02-23 2023-02-23 一种Y-Al-Si-O致密复相陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310153213.7A CN116425541A (zh) 2023-02-23 2023-02-23 一种Y-Al-Si-O致密复相陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN116425541A true CN116425541A (zh) 2023-07-14

Family

ID=87093271

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310153213.7A Pending CN116425541A (zh) 2023-02-23 2023-02-23 一种Y-Al-Si-O致密复相陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN116425541A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101143782A (zh) * 2006-09-15 2008-03-19 中国科学院金属研究所 一种低温制备大块致密高纯单相Y2SiO5陶瓷块体材料的方法
US20100229813A1 (en) * 2009-03-11 2010-09-16 Nippon Soken, Inc. Alumina sintered body and method for manufacturing same, and spark plug comprising the alumina sintered body as an insulator
CN109081594A (zh) * 2018-09-19 2018-12-25 内蒙古科技大学 钇铝硅酸盐玻璃陶瓷及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101143782A (zh) * 2006-09-15 2008-03-19 中国科学院金属研究所 一种低温制备大块致密高纯单相Y2SiO5陶瓷块体材料的方法
US20100229813A1 (en) * 2009-03-11 2010-09-16 Nippon Soken, Inc. Alumina sintered body and method for manufacturing same, and spark plug comprising the alumina sintered body as an insulator
CN109081594A (zh) * 2018-09-19 2018-12-25 内蒙古科技大学 钇铝硅酸盐玻璃陶瓷及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
徐跃等编: "《工程材料及热加工技术》", 31 August 2022, 机械工业出版社, pages: 94 *
茹红强等编著: "《先进陶瓷材料科学基础》", 31 October 2022, 东北大学出版社, pages: 437 - 438 *

Similar Documents

Publication Publication Date Title
CN110002871B (zh) 一种两相稀土钽酸盐陶瓷及其制备方法
CN100386287C (zh) 一种氮化硅多孔陶瓷及其制备方法
CN106800420B (zh) 一种碳化硅晶须原位复合刚玉高温陶瓷材料及其制备方法
CN110606740A (zh) 高熵稀土铪酸盐陶瓷材料及其制备方法
CN112159237A (zh) 一种高导热氮化硅陶瓷材料及其制备方法
CN102503503B (zh) 一种浸渍强化碳化硅可加工复相陶瓷的制备方法
CN113943162B (zh) 一种α-SiAlON高熵透明陶瓷材料及其制备方法
CN108675797B (zh) 氮化硅基复合陶瓷材料及其微波烧结制备方法
KR20150096508A (ko) 사이알론 결합 탄화규소 재료
CN111196727B (zh) 一种高热导率氮化硅陶瓷材料及其制备方法
CN104628392A (zh) 一种致密氮化铝-氮化硼复合材料的制备方法
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
Liu et al. Fabricating superior thermal conductivity SiC–AlN composites from photovoltaic silicon waste
CN101734925B (zh) 可控气孔率的氮化硅多孔陶瓷及制备方法
CN101955359A (zh) 一种低介电常数、高强度多孔氮化硅透波陶瓷的制备方法
CN108863395B (zh) 一种高热导率、高强度氮化硅陶瓷材料及其制备方法
CN111196730B (zh) 一种高热导率氮化硅陶瓷材料及其制备方法
CN103086720A (zh) 一种反应烧结氮化硅-氮化硼复相陶瓷的快速氮化制备方法
CN115073186B (zh) 一种氮化硅陶瓷烧结体及其制备方法
CN109053192B (zh) 一种MgAlON透明陶瓷粉体的制备方法
CN116425541A (zh) 一种Y-Al-Si-O致密复相陶瓷及其制备方法
CN108546131B (zh) 氮化硅多孔陶瓷的制备方法
CN113956024B (zh) 一种抗热震复相陶瓷材料
CN106116575A (zh) 一种高d33亚微米级Al3+掺杂铌酸钾钠无铅压电陶瓷的热压烧结方法
JP4348429B2 (ja) 窒化ケイ素多孔体及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination