CN116397211B - 一种基于化学气相沉积法制备多层石墨烯的方法 - Google Patents

一种基于化学气相沉积法制备多层石墨烯的方法 Download PDF

Info

Publication number
CN116397211B
CN116397211B CN202310306980.7A CN202310306980A CN116397211B CN 116397211 B CN116397211 B CN 116397211B CN 202310306980 A CN202310306980 A CN 202310306980A CN 116397211 B CN116397211 B CN 116397211B
Authority
CN
China
Prior art keywords
copper film
vapor deposition
copper
multilayer graphene
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310306980.7A
Other languages
English (en)
Other versions
CN116397211A (zh
Inventor
王振华
李驰
李佳芮
刘思兰
孙东甲
张伟强
周顷禹
邵雪健
孙伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN202310306980.7A priority Critical patent/CN116397211B/zh
Publication of CN116397211A publication Critical patent/CN116397211A/zh
Application granted granted Critical
Publication of CN116397211B publication Critical patent/CN116397211B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种多层石墨烯的制备方法,属于材料制备技术领域,具体方案包括以下步骤:步骤一、在衬底上蒸镀铜薄膜;步骤二、对铜薄膜进行退火处理;步骤三、使用铜箔包裹在步骤二中退火处理后的铜薄膜的外周,且铜箔和铜薄膜之间留有间隙;步骤四、采用化学气相沉积的方法在铜薄膜上生长多层石墨烯。本发明采用铜箔包裹退火后的铜薄膜作为生长基底,通过化学气相沉积法生长多层石墨烯。即采用铜箔包裹腔体催化裂解空间中的碳源,使其形成微小石墨烯孪晶结构,在包裹腔体内沉积到铜薄膜表面生长的第一层石墨烯表面,沉积的石墨烯孪晶吸附周围碳源持续生长,从而形成石墨烯薄膜,则铜薄膜表面生长出多层石墨烯薄膜。

Description

一种基于化学气相沉积法制备多层石墨烯的方法
技术领域
本发明属于材料制备技术领域,具体涉及一种基于化学气相沉积法制备多层石墨烯的方法。
背景技术
石墨烯由于具有超薄完美的二维结构及特异的电学性能、热学性能、透光性能和机械性能等,使其在复合材料、能源环境、电子工业、光电工业等领域具有广阔的应用前景。目前大尺寸、工业化制备单层或少层石墨烯的主要方法是化学气相沉积方法(CVD)。利用高温管式炉在氢气、氩气的气氛下,甲烷气体裂解后在铜箔表面生长出具有原子级厚度的单层石墨烯薄膜。
随着石墨烯薄膜应用领域的不断扩大,双层石墨烯和少层石墨烯薄膜的需求在逐渐增加。然而,传统CVD法制备石墨烯薄膜仍然存在厚度限制问题,当第一层石墨烯生长覆盖铜箔表面时,后续的碳源很难透过第一层石墨烯,在铜表面形成均匀、大尺寸的第二层或多层石墨烯薄膜。因此,多层石墨烯的制备是未来石墨烯器件化应用中需要解决的重要问题之一。
综上所述,现有多层石墨烯薄膜制备工艺中存在尺寸与平整度方面问题,仍需要深入的科学研究。
发明内容
为了解决现有方法制备的多层石墨烯尺寸小、时间长、缺陷多的问题,本发明提供了一种利用物理气相沉积与化学气相沉积相结合制备多层石墨烯的方法。
为了实现上述目的,本发明采取以下技术方案:
一种多层石墨烯的制备方法,包括以下步骤:
步骤一、在衬底上蒸镀铜薄膜;
步骤二、对铜薄膜进行退火处理;
步骤三、使用铜箔包裹在步骤二中退火处理后的铜薄膜的外周,且铜箔和铜薄膜之间留有间隙;
步骤四、采用化学气相沉积的方法制备在铜薄膜上生长多层石墨烯。
进一步的,步骤一中,采用物理气相沉积的方法在衬底上蒸镀铜薄膜。
进一步的,步骤一中,在沉积铜薄膜时,调节加热电极电流范围60A-90A,铜薄膜的厚度为0.9-2μm。
进一步的,步骤一中,衬底在使用前,依次在丙酮、去离子水、无水乙醇、去离子水中超声清洗,取出衬底后采用氮气枪将衬底表面吹干。优选的,所述衬底为蓝宝石衬底。
进一步的,步骤一中,物理气相沉积的方法为:将衬底放入真空蒸发镀膜仪的沉积区域,在加热钨舟上放置高纯度铜粉,再将镀膜室内抽至真空,开启加热系统使铜粉熔化,产生金属蒸汽,通过控制蒸镀开关打开时间实现不同厚度的铜薄膜的制备。
进一步的,步骤二中,将沉积有铜薄膜的衬底放置于真空管式炉中,在H2和Ar载气气氛保护下进行退火处理,其中H2和Ar的流量比为1:10-3:10。
进一步的,所述退火处理的步骤为:设定45-60min从室温升温到1020-1050℃,保温40-80min,然后样品随炉冷却至室温。
进一步的,步骤三中,铜箔和铜薄膜之间的间隙为0.5-3.5mm。
进一步的,步骤四中,将包裹铜箔的样品置于管式炉中,通入H2和Ar载气,碳源甲烷在管式炉反应区发生反应,获得生长在铜薄膜上的多层石墨烯,其中H2和Ar的流量比为1:10-3:10,甲烷流量为10sccm-50sccm;管式炉反应区温度为1000℃-1050℃。
进一步的,步骤四中,将多层石墨烯转移的步骤为:将生长在铜薄膜上的多层石墨烯样品放置在匀胶机上,取聚甲基丙烯酸甲酯旋涂在样品上,放置在加热台上烘干,然后再进行二次匀胶后烘干,将匀胶后的样品放入过硫酸铵溶液中刻蚀掉铜薄膜,使用目标衬底硅片将PMMA/多层石墨烯捞起,并置于丙酮溶液中浸泡除胶,然后放入异丙醇中浸泡中和丙酮,去离子水清洗去除异丙醇,取出多层石墨烯/硅片样品后用氮气枪吹干,最后在高真空炉中退火处理进一步去除有机物得到多层石墨烯。其中,旋涂PMMA的目的是防止刻蚀铜薄膜后,石墨烯在转移过程发生卷曲。同时,旋涂PMMA可以有效保护石墨烯表面,不受到外界环境的污染。
进一步的,将聚甲基丙烯酸甲酯PMMA加入到去离子水中,超声分散配置成PMMA的溶液;将过硫酸铵加入到去离子水中,超声分散制成过硫酸铵溶液。
与现有技术相比,本发明的有益效果是:
本发明采用铜箔包裹退火后的铜薄膜作为生长基底,通过化学气相沉积法生长多层石墨烯。即采用铜箔包裹腔体催化裂解空间中的碳源,使其形成微小石墨烯孪晶结构,在包裹腔体内沉积到铜薄膜表面生长第一层石墨烯,沉积的石墨烯孪晶吸附周围碳源持续生长,从而形成石墨烯薄膜,则铜薄膜表面生长出多层石墨烯薄膜。
本发明利用铜薄膜与铜箔间气隙减缓了甲烷裂解后碳原子流过铜箔表面的速率,增大了铜薄膜表面碳原子的浓度,提高了单位时间内碳原子自组装生长多层石墨烯的效率。本发明中铜箔包裹空间形成较大的碳原子存储空间,为后续生长提供充足碳源,其中的碳源与整个生长界面接触,生长效率和均匀性均优于现有技术。
本发明采用物理气相沉积与化学气相沉积相结合制备多层石墨烯,解决了现有方法制备的多层石墨烯尺寸小、时间长、缺陷多的问题,提供了一种快速制备多层石墨烯的新方法。另外,目前传统CVD方法制备石墨烯薄膜所用的商业铜箔厚度为25μm,而本发明采用热蒸镀法制备了0.9-2.0μm厚度的铜薄膜作为石墨烯生长衬底,铜的用量远远小于目前商业制备石墨烯时铜的使用量,从环保节能的方面考虑,本发明极大降低了铜的消耗和铜刻蚀对环境污染的程度。
从后续石墨烯转移应用角度来讲,本发明更具有实际应用价值。当石墨烯生长结束后,生长在铜薄膜的石墨烯可以从铜箔中取出,并利用石墨烯湿法转移到目标衬底,在转移过程中仍然可以保证石墨烯的完整性。
附图说明
图1是本发明多层石墨烯的制备方法示意图;
图2是实施例2步骤一中所得铜薄膜照片;
图3是实施例2步骤三中所得单层、双层和三层石墨烯的拉曼光谱图;
图4是实施例2步骤七中所得多层石墨烯光学照片;
图5是实施例2步骤七中所得石墨烯的AFM照片;
图6是利用AFM测得实施例2中石墨烯高度图。
具体实施方式
下面将结合附图和实施例,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种基于化学气相沉积法制备多层石墨烯的方法,包括以下步骤:
一、铜薄膜的制备:采用物理气相沉积的方法进行铜薄膜的制备:将蓝宝石衬底依次顺序在丙酮、去离子水、无水乙醇、去离子水中超声清洗20min,取出衬底后采用氮气枪将衬底表面进行吹干;将上述衬底置于真空蒸发镀膜仪的沉积区域,并在加热器钨舟上放置高纯度铜粉,打开抽真空系统,将镀膜室内抽至1.5×10-4Pa;开启旋转支架,调节蒸发源电位器至30A-40A,铜粉预热30s-60s,继续调节电位器至目标功率电流,稳定30s后开启膜厚仪,并开启蒸发源挡板,根据设计薄膜厚度计时;蒸镀结束后,关闭蒸发源挡板,关闭膜厚仪,缓慢调节电位器至0A,真空系统继续工作15-20min,等待沉积铜薄膜的温度降至室温。关闭真空系统和旋转支架开关,充入氮气至常压,打开真空腔取出衬底,即得到在蓝宝石衬底表面制备的铜薄膜。
其中蒸镀电流强度为90A,每蒸镀15min关闭加热10min,保证铜表面的平整性。
二、铜薄膜的退火:利用真空管式炉对铜薄膜进行退火:将沉积有铜薄膜的衬底放置于真空管式炉中,通入H2流量为50sccm,Ar流量为200sccm,设置50min从室温升温到1050℃,保温60min,然后样品随炉冷却至室温。
其中退火温度区温度1050℃;所述H2的流量为50sccm,Ar的流量为200sccm。
三、多层石墨烯的制备:采用化学气相沉积的方法进行多层石墨烯的制备:将退火后的衬底用铜箔包裹,并且保证铜箔与铜薄膜间有一定间距,防止升温过程中铜薄膜与铜箔粘连到一起;将上述包覆有铜箔的铜薄膜/衬底放置真空管式炉内,抽真空至2Pa,通氩气至常压,关闭氩气阀门,再抽真空至2Pa,通氢气至常压,重复清洗真空管2次;通氢气至常压,重复清洗真空,通入氩气流量为300sccm,氢气流量为50sccm,当真空管内压力达到常压时打开尾气阀门;打开升温控制程序,从室温温度升温至1020℃,升温时间为40min,管式炉温度为1020℃时保温10min;调整氩气流量至500sccm,氢气流量为50sccm,甲烷流量50sccm,生长时间为10min;石墨烯生长结束后,样品随炉冷却至室温,关闭气体取出样品,即得到在铜薄膜上生长的石墨烯薄膜。
其中退火后的铜薄膜/衬底用铜箔包裹,铜箔厚度为25μm,铜箔与铜薄膜间距2mm。石墨烯生长区域温度为1020℃;所述H2、Ar和CH4气体流量分别为50sccm、500sccm和50sccm。
四、配置聚甲基丙烯酸甲酯PMMA溶液:将聚甲基丙烯酸甲酯PMMA加入到去离子水中配置成4wt%的溶液,电磁搅拌分散5h-24h,配置成4wt%PMMA的溶液。其中溶液放入密封罐体中电磁加热搅拌8h,加热温度为110℃。
五、配置过硫酸铵溶液:将过硫酸铵加入到去离子水中,超声分散20min制成2mol/L过硫酸铵溶液。
六、多层石墨烯的转移:将生长在铜薄膜上的多层石墨烯薄膜样品放置在匀胶机上,取PMMA溶液滴在样品上,分别以500转/分钟10秒,2000转/分钟90秒,500转/分钟10秒进行旋涂,旋涂后放置到加热台上150℃烘干15min,然后采用相同参数进行二次匀胶后烘干;将匀胶后的多层石墨烯放入到2mol/L过硫酸铵溶液中刻蚀16h,铜薄膜被刻蚀掉,旋涂PMMA/石墨烯薄膜与衬底分开漂浮在溶液表面,经过3次更换去离子水清洗残留过硫酸铵溶液和金属杂质,用硅片将PMMA/多层石墨烯从去离子水中捞起。
其中加热台升温至150℃后,温度稳定2min。
七、多层石墨烯除胶:将PMMA/多层石墨烯/硅片样品放入丙酮溶液浸泡20min,然后取出后放入异丙醇中浸泡20min,取出后再用去离子水清洗,然后用氮气枪把石墨烯吹干,最后在高真空炉中450℃退火30min。
实施例2
一种化学气相沉积法制备多层石墨烯的方法,包括以下步骤:
一、铜薄膜的制备:采用物理气相沉积的方法进行铜薄膜的制备:将蓝宝石衬底依次顺序在丙酮、去离子水、无水乙醇、去离子水中超声清洗20min,取出衬底后采用氮气枪将衬底表面进行吹干;将上述衬底置于真空蒸发镀膜仪的沉积区域,并在加热器钨舟上放置高纯度铜粉,打开抽真空系统,将镀膜室内抽至1.5×10-4Pa;开启旋转支架,调节蒸发源电位器至30A-40A,铜粉预热30s-60s,继续调节电位器至目标功率电流,稳定30s后开启膜厚仪,并开启蒸发源挡板,根据设计薄膜厚度计时;蒸镀结束后,关闭蒸发源挡板,关闭膜厚仪,缓慢调节电位器至0A,真空系统继续工作15-20min,等待沉积铜薄膜的温度降至室温。关闭真空系统和旋转支架开关,充入氮气至常压,打开真空腔取出衬底,即得到在蓝宝石衬底表面制备的铜薄膜。
其中蒸镀电流强度为80A,每蒸镀20min关闭加热10min,保证铜表面的平整性。
二、铜薄膜的退火:利用真空管式炉对铜薄膜进行退火:将沉积有铜薄膜的衬底放置于真空管式炉中,通入H2流量为50sccm,Ar流量为200sccm,设置50min从室温升温到1050℃,保温60min,然后样品随炉冷却至室温。
其中退火温度区温度1050℃;所述H2的流量为50sccm,Ar的流量为200sccm。
三、多层石墨烯的制备:采用化学气相沉积的方法进行多层石墨烯的制备:将退火后的衬底用铜箔包裹,并且保证铜箔与铜薄膜间有一定间距,防止升温过程中铜薄膜与铜箔粘连到一起;将上述包覆有铜箔的铜薄膜/衬底放置真空管式炉内,抽真空至2Pa,通氩气至常压,关闭氩气阀门,再抽真空至2Pa,通氢气至常压,重复清洗真空管2次;通氢气至常压,重复清洗真空,通入氩气流量为300sccm,氢气流量为50sccm,当真空管内压力达到常压时打开尾气阀门;打开升温控制程序,从室温温度升温至1020℃,升温时间为40min,管式炉温度为1020℃时保温10min;调整氩气流量至500sccm,氢气流量为50sccm,甲烷流量40sccm,生长时间为10min;石墨烯生长结束后,样品随炉冷却至室温,关闭气体取出样品,即得到在铜薄膜上生长的石墨烯薄膜。
其中退火后的铜薄膜/衬底用铜箔包裹,铜箔厚度为25μm,铜箔与铜薄膜间距2mm。石墨烯生长区域温度为1020℃;所述H2、Ar和CH4气体流量分别为50sccm、500sccm和40sccm。
四、配置聚甲基丙烯酸甲酯PMMA溶液:将聚甲基丙烯酸甲酯PMMA加入到去离子水中配置成4wt%的溶液,电磁搅拌分散5h-24h,配置成4wt%PMMA的溶液。其中溶液放入密封罐体中电磁加热搅拌8h,加热温度为110℃。
五、配置过硫酸铵溶液:将过硫酸铵加入到去离子水中,超声分散20min制成2mol/L过硫酸铵溶液。
六、多层石墨烯的转移:将生长在铜薄膜上的多层石墨烯薄膜样品放置在匀胶机上,取PMMA溶液滴在样品上,分别以500转/分钟10秒,2000转/分钟90秒,500转/分钟10秒进行旋涂,旋涂后放置到加热台上150℃烘干15min,然后采用相同参数进行二次匀胶后烘干;将匀胶后的多层石墨烯放入到2mol/L过硫酸铵溶液中刻蚀16h,铜薄膜被刻蚀掉,旋涂PMMA/石墨烯薄膜与衬底分开漂浮在溶液表面,经过3次更换去离子水清洗残留过硫酸铵溶液和金属杂质,用硅片将PMMA/多层石墨烯从去离子水中捞起。
其中加热台升温至150℃后,温度稳定2min。
七、多层石墨烯除胶:将PMMA/多层石墨烯/硅片样品放入丙酮溶液浸泡20min,然后取出后放入异丙醇中浸泡20min,取出后再用去离子水清洗,然后用氮气枪把石墨烯吹干,最后在高真空炉中450℃退火30min。
实施例3
一种化学气相沉积法制备多层石墨烯的方法,包括以下步骤:
一、铜薄膜的制备:采用物理气相沉积的方法进行铜薄膜的制备:将蓝宝石衬底依次顺序在丙酮、去离子水、无水乙醇、去离子水中超声清洗20min,取出衬底后采用氮气枪将衬底表面进行吹干;将上述衬底置于真空蒸发镀膜仪的沉积区域,并在加热器钨舟上放置高纯度铜粉,打开抽真空系统,将镀膜室内抽至1.5×10-4Pa;开启旋转支架,调节蒸发源电位器至30-40A,铜粉预热30s-60s,继续调节电位器至目标功率电流,稳定30s后开启膜厚仪,并开启蒸发源挡板,根据设计薄膜厚度计时;蒸镀结束后,关闭蒸发源挡板,关闭膜厚仪,缓慢调节电位器至0A,真空系统继续工作15-20min,等待沉积铜薄膜的温度降至室温。关闭真空系统和旋转支架开关,充入氮气至常压,打开真空腔取出衬底,即得到在蓝宝石衬底表面制备的铜薄膜。
其中蒸镀电流强度为70A,每蒸镀25min关闭加热10min,保证铜表面的平整性。
二、铜薄膜的退火:利用真空管式炉对铜薄膜进行退火:将沉积有铜薄膜的衬底放置于真空管式炉中,通入H2流量为50sccm,Ar流量为200sccm,设置50min从室温升温到1050℃,保温60min,然后样品随炉冷却至室温。
其中退火温度区温度1050℃;所述H2的流量为50sccm,Ar的流量为200sccm。。
三、多层石墨烯的制备:采用化学气相沉积的方法进行多层石墨烯的制备:将退火后的衬底用铜箔包裹,并且保证铜箔与铜薄膜间有一定间距,防止升温过程中铜薄膜与铜箔粘连到一起;将上述包覆有铜箔的铜薄膜/衬底放置真空管式炉内,抽真空至2Pa,通氩气至常压,关闭氩气阀门,再抽真空至2Pa,通氢气至常压,重复清洗真空管2次;通氢气至常压,重复清洗真空,通入氩气流量为300sccm,氢气流量为50sccm,当真空管内压力达到常压时打开尾气阀门;打开升温控制程序,从室温温度升温至1020℃,升温时间为40min,管式炉温度为1020℃时保温10min;调整氩气流量至500sccm,氢气流量为50sccm,甲烷流量30sccm,生长时间为10min;石墨烯生长结束后,样品随炉冷却至室温,关闭气体取出样品,即得到在铜薄膜上生长的石墨烯薄膜。
其中退火后的铜薄膜/衬底用铜箔包裹,铜箔厚度为25μm,铜箔与铜薄膜间距2mm。石墨烯生长区域温度为1020℃;所述H2、Ar和CH4气体流量分别为50sccm、500sccm和30sccm。
四、配置聚甲基丙烯酸甲酯PMMA溶液:将聚甲基丙烯酸甲酯PMMA加入到去离子水中配置成4wt%的溶液,电磁搅拌分散5h-24h,配置成4wt%PMMA的溶液。其中溶液放入密封罐体中电磁加热搅拌8h,加热温度为110℃。
五、配置过硫酸铵溶液:将过硫酸铵加入到去离子水中,超声分散20min制成2mol/L过硫酸铵溶液。
六、多层石墨烯的转移:将生长在铜薄膜上的多层石墨烯薄膜样品放置在匀胶机上,取PMMA溶液滴在样品上,分别以500转/分钟10秒,2000转/分钟90秒,500转/分钟10秒进行旋涂,旋涂后放置到加热台上150℃烘干15min,然后采用相同参数进行二次匀胶后烘干;将匀胶后的多层石墨烯放入到2mol/L过硫酸铵溶液中刻蚀16h,铜薄膜被刻蚀掉,旋涂PMMA/石墨烯薄膜与衬底分开漂浮在溶液表面,经过3次更换去离子水清洗残留过硫酸铵溶液和金属杂质,用硅片将PMMA/多层石墨烯从去离子水中捞起。
其中加热台升温至150℃后,温度稳定2min。
七、多层石墨烯除胶:将PMMA/多层石墨烯/硅片样品放入丙酮溶液浸泡20min,然后取出后放入异丙醇中浸泡20min,取出后再用去离子水清洗,然后用氮气枪把石墨烯吹干,最后在高真空炉中450℃退火30min。
实施例4
一种化学气相沉积法制备多层石墨烯的方法,包括以下步骤:
一、铜薄膜的制备:采用物理气相沉积的方法进行铜薄膜的制备:将蓝宝石衬底依次顺序在丙酮、去离子水、无水乙醇、去离子水中超声清洗20min,取出衬底后采用氮气枪将衬底表面进行吹干;将上述衬底置于真空蒸发镀膜仪的沉积区域,并在加热器钨舟上放置高纯度铜粉,打开抽真空系统,将镀膜室内抽至1.5×10-4Pa;开启旋转支架,调节蒸发源电位器至30A-40A,铜粉预热30s-60s,继续调节电位器至目标功率电流,稳定30s后开启膜厚仪,并开启蒸发源挡板,根据设计薄膜厚度计时;蒸镀结束后,关闭蒸发源挡板,关闭膜厚仪,缓慢调节电位器至0A,真空系统继续工作15-20min,等待沉积铜薄膜的温度降至室温。关闭真空系统和旋转支架开关,充入氮气至常压,打开真空腔取出衬底,即得到在蓝宝石衬底表面制备的铜薄膜。
其中蒸镀电流强度为60A,每蒸镀25min关闭加热10min,保证铜表面的平整性。
二、铜薄膜的退火:利用真空管式炉对铜薄膜进行退火:将沉积有铜薄膜的衬底放置于真空管式炉中,通入H2流量为50sccm,Ar流量为200sccm,设置50min从室温升温到1050℃,保温50min,然后样品随炉冷却至室温。
其中退火温度区温度1050℃;所述H2的流量为50sccm,Ar的流量为200sccm。。
三、多层石墨烯的制备:采用化学气相沉积的方法进行多层石墨烯的制备:将退火后的衬底用铜箔包裹,并且保证铜箔与铜薄膜间有一定间距,防止升温过程导致铜薄膜与铜箔粘连到一起;将上述包覆有铜箔的铜薄膜/衬底放置真空管式炉内,抽真空至2Pa,通氩气至常压,关闭氩气阀门,再抽真空至2Pa,通氢气至常压,重复清洗真空管2次;通氢气至常压,重复清洗真空,通入氩气流量为300sccm,氢气流量为50sccm,当真空管内压力达到常压时打开尾气阀门;打开升温控制程序,从室温温度升温至1020℃,升温时间为40min,管式炉温度为1020℃时保温10min;调整氩气流量至500sccm,氢气流量为50sccm,甲烷流量20sccm,生长时间为10min;石墨烯生长结束后,样品随炉冷却至室温,关闭气体取出样品,即得到在铜薄膜上生长的石墨烯薄膜。
其中退火后的铜薄膜/衬底用铜箔包裹,铜箔厚度为25μm,铜箔与铜薄膜间距2mm。
石墨烯生长区域温度为1020℃;所述H2、Ar和CH4气体流量分别为50sccm、500sccm和20sccm。
四、配置聚甲基丙烯酸甲酯PMMA溶液:将聚甲基丙烯酸甲酯PMMA加入到去离子水中配置成4wt%的溶液,电磁搅拌分散5h-24h,配置成4wt%PMMA的溶液。其中溶液放入密封罐体中电磁加热搅拌8h,加热温度为110℃。
五、配置过硫酸铵溶液:将过硫酸铵加入到去离子水中,超声分散20min制成2mol/L过硫酸铵溶液。
六、多层石墨烯的转移:将生长在铜薄膜上的多层石墨烯薄膜样品放置在匀胶机上,取PMMA溶液滴在样品上,分别以500转/分钟10秒,2000转/分钟90秒,500转/分钟10秒进行旋涂,旋涂后放置到加热台上150℃烘干15min,然后采用相同参数进行二次匀胶后烘干;将匀胶后的多层石墨烯放入到2mol/L过硫酸铵溶液中刻蚀16h,铜薄膜被刻蚀掉,旋涂PMMA/石墨烯薄膜与衬底分开漂浮在溶液表面,经过3次更换去离子水清洗残留过硫酸铵溶液和金属杂质,用硅片将PMMA/多层石墨烯从去离子水中捞起。
其中加热台升温至150℃后,温度稳定2min。
七、多层石墨烯除胶:将PMMA/多层石墨烯/硅片样品放入丙酮溶液浸泡20min,然后取出后放入异丙醇中浸泡20min,取出后再用去离子水清洗,然后用氮气枪把石墨烯吹干,最后在高真空炉中450℃退火30min。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (9)

1.一种基于化学气相沉积法制备多层石墨烯的方法,其特征在于:包括以下步骤:
步骤一、在衬底上蒸镀铜薄膜;
步骤二、对铜薄膜进行退火处理;
步骤三、使用铜箔包裹在步骤二中退火处理后的铜薄膜的外周,且铜箔和铜薄膜之间留有间隙,在间隙的一端设置有开口,铜箔和铜薄膜之间的间隙为0.5-3.5mm;
步骤四、采用化学气相沉积的方法在铜薄膜上生长多层石墨烯。
2.根据权利要求1所述的一种基于化学气相沉积法制备多层石墨烯的方法,其特征在于:步骤一中,采用物理气相沉积的方法在衬底上蒸镀铜薄膜。
3.根据权利要求1或2所述的一种基于化学气相沉积法制备多层石墨烯的方法,其特征在于:步骤一中,铜薄膜的厚度为0.9-2μm。
4.根据权利要求1所述的一种基于化学气相沉积法制备多层石墨烯的方法,其特征在于:步骤一中,衬底在使用前,依次在丙酮、去离子水、无水乙醇、去离子水中超声清洗,取出衬底后采用氮气枪将衬底表面吹干。
5.根据权利要求2所述的一种基于化学气相沉积法制备多层石墨烯的方法,其特征在于:步骤一中,物理气相沉积的方法为:将衬底放入真空蒸发镀膜仪的沉积区域,在加热钨舟上放置高纯度铜粉,再将镀膜室内抽至真空,开启加热系统使铜粉熔化,产生金属蒸汽,通过控制蒸镀时间实现不同厚度铜薄膜的制备。
6.根据权利要求1所述的一种基于化学气相沉积法制备多层石墨烯的方法,其特征在于:步骤二中,将沉积有铜薄膜的衬底放置于真空管式炉中,在H2和Ar载气气氛保护下进行退火处理,其中H2和Ar的流量比为1:10-3:10。
7.根据权利要求6所述的一种基于化学气相沉积法制备多层石墨烯的方法,其特征在于:所述退火处理的步骤为:设定45-60min从室温升温到1020-1050℃,保温40-80min,然后样品随炉冷却至室温。
8.根据权利要求1所述的一种基于化学气相沉积法制备多层石墨烯的方法,其特征在于:步骤四中,将包裹铜箔的样品置于管式炉中,通入H2和Ar载气,碳源甲烷在管式炉反应区发生反应,获得生长在铜薄膜上的多层石墨烯,其中H2和Ar的流量比为1:10-3:10,甲烷流量为10sccm-50sccm;管式炉反应区温度为1000℃-1050℃。
9.根据权利要求1所述的一种基于化学气相沉积法制备多层石墨烯的方法,其特征在于:步骤四中,将生长在铜薄膜上的多层石墨烯样品放置在匀胶机上,取聚甲基丙烯酸甲酯PMMA溶液旋涂在样品上,烘干,然后再进行二次匀胶后烘干,将匀胶后的样品放入过硫酸铵溶液中刻蚀掉铜薄膜,将PMMA/多层石墨烯捞起,并置于丙酮溶液中浸泡,然后放入异丙醇中浸泡,去离子水清洗,干燥后退火处理去除有机物得到多层石墨烯。
CN202310306980.7A 2023-03-27 2023-03-27 一种基于化学气相沉积法制备多层石墨烯的方法 Active CN116397211B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310306980.7A CN116397211B (zh) 2023-03-27 2023-03-27 一种基于化学气相沉积法制备多层石墨烯的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310306980.7A CN116397211B (zh) 2023-03-27 2023-03-27 一种基于化学气相沉积法制备多层石墨烯的方法

Publications (2)

Publication Number Publication Date
CN116397211A CN116397211A (zh) 2023-07-07
CN116397211B true CN116397211B (zh) 2024-01-16

Family

ID=87013569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310306980.7A Active CN116397211B (zh) 2023-03-27 2023-03-27 一种基于化学气相沉积法制备多层石墨烯的方法

Country Status (1)

Country Link
CN (1) CN116397211B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534545A (zh) * 2012-03-20 2012-07-04 上海大学 一种羟基磷灰石表面生长图案化石墨烯膜的方法
GB201414594D0 (en) * 2014-08-18 2014-10-01 Bgt Materials Ltd Method of making a Graphene-cu-Graphene Heterogeneous Film
CN105483824A (zh) * 2016-01-11 2016-04-13 信阳师范学院 制备单晶双层石墨烯的方法
CN106756870A (zh) * 2016-12-12 2017-05-31 大连理工大学 一种等离子体增强化学气相沉积生长石墨烯的方法
CN108706574A (zh) * 2018-07-11 2018-10-26 无锡市惠诚石墨烯技术应用有限公司 一种生长铜基多层石墨烯的方法
AU2020103599A4 (en) * 2020-11-23 2021-02-04 Xidian University Preparation Method of CVD Graphene Planar Micro Super Capacitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101751271B1 (ko) * 2015-06-16 2017-06-29 광주과학기술원 다층 그래핀의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534545A (zh) * 2012-03-20 2012-07-04 上海大学 一种羟基磷灰石表面生长图案化石墨烯膜的方法
GB201414594D0 (en) * 2014-08-18 2014-10-01 Bgt Materials Ltd Method of making a Graphene-cu-Graphene Heterogeneous Film
CN105483824A (zh) * 2016-01-11 2016-04-13 信阳师范学院 制备单晶双层石墨烯的方法
CN106756870A (zh) * 2016-12-12 2017-05-31 大连理工大学 一种等离子体增强化学气相沉积生长石墨烯的方法
CN108706574A (zh) * 2018-07-11 2018-10-26 无锡市惠诚石墨烯技术应用有限公司 一种生长铜基多层石墨烯的方法
AU2020103599A4 (en) * 2020-11-23 2021-02-04 Xidian University Preparation Method of CVD Graphene Planar Micro Super Capacitor

Also Published As

Publication number Publication date
CN116397211A (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
CN107188161B (zh) 石墨烯及其制备方法
CN108342716B (zh) 等离子体增强化学气相沉积制备二维材料的系统及方法
CN106868469B (zh) 一种在硅基上无金属催化剂制备石墨烯的方法
CN104495829A (zh) 一种在低温衬底上制备石墨烯薄膜的方法
CN105483824A (zh) 制备单晶双层石墨烯的方法
CN109440081B (zh) 一种基于化学气相沉积法制备磁性石墨烯薄膜的方法
CN110666158A (zh) 一种石墨烯包覆纳米铜的方法
CN103613094A (zh) 一种同时制备石墨烯和多孔非晶碳薄膜的方法
TW202021904A (zh) 石墨烯膠膜的製備方法及石墨烯的轉移方法
CN108314019B (zh) 一种层数均匀的大面积高质量石墨烯薄膜的制备方法
CN113564699B (zh) 基于Cu2O介质层生长单层单晶石墨烯的方法
CN109573991B (zh) 一种利用复合金属模板制备阵点厚度不同石墨烯阵列的方法
CN116397211B (zh) 一种基于化学气相沉积法制备多层石墨烯的方法
CN111155065B (zh) 一种六方氮化硼薄膜的制备剥离及转移方法
CN110724931A (zh) 一种原子层沉积制备二硫化铼薄膜的方法
CN112746263B (zh) 一种常压化学气相沉积制备少层石墨烯膜的方法
CN113620279B (zh) 一种在绝缘衬底上制备石墨烯的方法
CN114566424A (zh) 一种在集成电路芯片上直接生长图形化石墨烯的工艺方法
Soler et al. Hot-wire chemical vapor deposition of few-layer graphene on copper substrates
CN109468604B (zh) 高透射率igzo薄膜的制备方法
CN113373423A (zh) 一种非金属基材表面直接生长石墨烯薄膜的方法
CN112919822A (zh) 基于刻蚀辅助机制的石墨烯玻璃制备方法
CN115011922B (zh) 一种石墨烯薄膜及由原位非晶碳转为石墨烯薄膜的方法
CN113293353B (zh) 一种金属掺杂的二硼化锆薄膜及其制备方法
CN114524431B (zh) 一种在绝缘衬底上低温生长高质量石墨烯的工艺方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant