CN116397126B - 一种高耐腐蚀性的金刚石增强铝基复合材料的制备方法 - Google Patents

一种高耐腐蚀性的金刚石增强铝基复合材料的制备方法 Download PDF

Info

Publication number
CN116397126B
CN116397126B CN202310290743.6A CN202310290743A CN116397126B CN 116397126 B CN116397126 B CN 116397126B CN 202310290743 A CN202310290743 A CN 202310290743A CN 116397126 B CN116397126 B CN 116397126B
Authority
CN
China
Prior art keywords
diamond
composite material
corrosion resistance
preparing
reinforced aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310290743.6A
Other languages
English (en)
Other versions
CN116397126A (zh
Inventor
张强
祝平
卫国梁
王平平
杨文澍
芶华松
修子扬
陈国钦
武高辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202310290743.6A priority Critical patent/CN116397126B/zh
Publication of CN116397126A publication Critical patent/CN116397126A/zh
Application granted granted Critical
Publication of CN116397126B publication Critical patent/CN116397126B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/04Casting by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • B22D27/13Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of gas pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种高耐腐蚀性的金刚石增强铝基复合材料的制备方法,涉及一种金刚石增强铝基复合材料的制备方法。为了解决金刚石颗粒增强铝基复合材料在复杂服役环境中的腐蚀失效问题,抑制界面产物Al4C3的生成。方法:金刚石颗粒表面镀覆:对金刚石颗粒在保护气氛下进行分段加热处理,利用磁控溅射法在金刚石颗粒表面再制备一层均匀的金属镀层,将金刚石颗粒填充至装配好的模具进行气压浸渗。本发明方法获得的金刚石/铝复合材料相比无镀层及处理的金刚石/铝复合材料的腐蚀速率降低了80%以上,说明本发明方法制备的金刚石颗粒增强铝基复合材料具有优异的抗腐蚀性能,能够提高复合材料使用寿命,可以应用于电子封装用热管理材料,应用前景广阔。

Description

一种高耐腐蚀性的金刚石增强铝基复合材料的制备方法
技术领域
本发明涉及一种金刚石增强铝基复合材料的制备方法。
背景技术
铝基复合材料由于具有高比强度、比模量、热膨胀系数小等优异的性能,近些年对其研究日渐迅速,且应用范围不断扩大;而金刚石作为自然界中热导率最高的材料,其在室温下热导率高达2200W/(m·K),热膨胀系数为0.8×10-6/K,且制备的封装材料不存在各向异性,是最有发展潜力的热管理材料之一。由此发展起来的金刚石颗粒增强铝基复合材料成为电子封装散热材料的代表。
作为电子封装用热管理材料,其无可避免地面临各种苛刻的使用环境,这就对其耐蚀性提出了更高的要求。由于金刚石颗粒的加入,基体中界面不连续,在腐蚀性环境介质中,如盐雾、海洋性气氛,金刚石增强铝基复合材料中的铝基体与金刚石可能组成腐蚀原电池,从而造成电子器件的损坏及功能的失效。因此,金刚石增强铝基复合材料的耐蚀性和稳定性对其实用价值和使用范围有着极大的限制。铝基复合材料受腐蚀的影响因素主要包括析出相、界面反应产物、孔隙、增强体与基体界面处的高位错以及增强相类型等。复合材料内成分较复杂,相比纯金属而言,往往具有更大的腐蚀倾向。目前关于铝基复合材料的研究多集中与复合材料的工艺优化及界面改性,对于提高金刚石增强铝基复合材料耐腐蚀性能的研究较少。
发明内容
本发明为解决金刚石颗粒增强铝基复合材料在复杂服役环境中的腐蚀失效问题,抑制界面产物Al4C3的生成,提供一种高耐腐蚀性的金刚石增强铝基复合材料的制备方法。
本发明高耐腐蚀性的金刚石增强铝基复合材料的制备方法按照以下步骤进行:
一、金刚石颗粒表面镀覆:
利用磁控溅射法在金刚石颗粒表面制备W镀层;
所述磁控溅射法的工艺为:选用纯度为99.99%的圆形钨靶材,溅射气压为4×10-3~9×10-3Pa,溅射电压为600V,在300~500℃的溅射温度下溅射180~540min,超声波振动频率为30kHz;
所述W镀层的厚度为100~300nm;
二、高温处理:
对步骤一所得金刚石颗粒在保护气氛下进行分段加热处理:首先以10℃/min的速度加热至350~500℃进行保温,实现镀层均匀化处理;随后以20℃/min的速度加热至800~1100℃保温,在金刚石表面原位生成碳化物,并采用分级工艺冷却;
三、制备金刚石复合镀层:
利用磁控溅射法在步骤二所得金刚石颗粒表面再制备一层均匀的金属镀层;
所述金属镀层为Ti、Cr、Mo或W;
所述金属镀层的厚度为50~200nm;
四、称料:
按照体积分数称取55~70%的金刚石颗粒及30~45%的铝块;
五、复合材料制备:
将步骤三所述金刚石颗粒填充至装配好的模具中,然后将铝锭及填装后的模具置于浸渗炉的炉腔内,将气压浸渗炉抽至真空状态以排除多余气体,随后进行气压浸渗,浸渗完成后以小于2℃/min的速度冷却至室温,进行脱模处理,即完成。
本发明具有如下有益效果:
1.本发明方法利用分段加热的方式对镀W金刚石颗粒进行处理,第一步低温加热实现了金刚石表面镀层的均匀化处理;第二步高温加热促进金属W与金刚石颗粒在界面处形成碳化物,进一步实现了两者之间的紧密连接。加热后采用分级冷却方式一方面避免冷速过快在镀层与金刚石之间产生热应力,另一方面可以调控生成碳化物的晶粒尺寸及形态,使中间层更加致密。
2.本发明金刚石颗粒的处理及复合材料制备均在保护气氛中进行,避免材料发生氧化。此外,加热处理后金刚石表面形成WC后,再在其表面镀覆金属镀层,在金刚石表面形成了“WC+金属”复合镀层结构。制备复合材料时,后镀覆的金属镀层与铝优先反应。保护金刚石表面原位形成的WC层,有效阻止了金刚石与铝的接触,抑制Al4C3形成,使复合材料在潮湿环境及腐蚀介质中具有良好的稳定性。
3.本发明方法获得的金刚石/铝复合材料相比无镀层及处理的金刚石/铝复合材料的腐蚀速率降低了80%以上,说明本发明方法制备的金刚石颗粒增强铝基复合材料具有优异的抗腐蚀性能,能够提高复合材料使用寿命,可以应用于电子封装用热管理材料,应用前景广阔。
附图说明
图1为实施例1所得金刚石/铝复合材料腐蚀后的断口显微组织形貌照片;
图2为对比例金刚石/铝复合材料腐蚀后的断口显微组织形貌照片。
具体实施方式
具体实施方式一:本实施方式高耐腐蚀性的金刚石增强铝基复合材料的制备方法按照以下步骤进行:
一、金刚石颗粒表面镀覆:
利用磁控溅射法在金刚石颗粒表面制备W镀层;
所述磁控溅射法的工艺为:选用纯度为99.99%的圆形钨靶材,溅射气压为4×10-3~9×10-3Pa,溅射电压为600V,在300~500℃的溅射温度下溅射180~540min,超声波振动频率为30kHz;在磁控溅射法中增加超声波振动能够翻滚颗粒,使镀层更均匀;
所述W镀层的厚度为100~300nm;
二、高温处理:
对步骤一所得金刚石颗粒在保护气氛下进行分段加热处理:首先以10℃/min的速度加热至350~500℃进行保温,实现镀层均匀化处理;随后以20℃/min的速度加热至800~1100℃保温,在金刚石表面原位生成碳化物,并采用分级工艺冷却;
三、制备金刚石复合镀层:
利用磁控溅射法在步骤二所得金刚石颗粒表面再制备一层均匀的金属镀层;
所述金属镀层为Ti、Cr、Mo或W;
所述金属镀层的厚度为50~200nm;
四、称料:
按照体积分数称取55~70%的金刚石颗粒及30~45%的铝块;
五、复合材料制备:
将步骤三所述金刚石颗粒填充至装配好的模具中,然后将铝锭及填装后的模具置于浸渗炉的炉腔内,将气压浸渗炉抽至真空状态以排除多余气体,随后进行气压浸渗,浸渗完成后以小于2℃/min的速度冷却至室温,进行脱模处理,即完成。
1.本实施方式方法利用分段加热的方式对镀W金刚石颗粒进行处理,第一步低温加热实现了金刚石表面镀层的均匀化处理;第二步高温加热促进金属W与金刚石颗粒在界面处形成碳化物,进一步实现了两者之间的紧密连接。加热后采用分级冷却方式一方面避免冷速过快在镀层与金刚石之间产生热应力,另一方面可以调控生成碳化物的晶粒尺寸及形态,使中间层更加致密。
2.本实施方式金刚石颗粒的处理及复合材料制备均在保护气氛中进行,避免材料发生氧化。此外,加热处理后金刚石表面形成WC后,再在其表面镀覆金属镀层,在金刚石表面形成了“WC+金属”复合镀层结构。制备复合材料时,后镀覆的金属镀层与铝优先反应。保护金刚石表面原位形成的WC层,有效阻止了金刚石与铝的接触,抑制Al4C3形成,使复合材料在潮湿环境及腐蚀介质中具有良好的稳定性。
3.本实施方式方法获得的金刚石/铝复合材料相比无镀层及处理的金刚石/铝复合材料的腐蚀速率降低了80%以上,说明本实施方式方法制备的金刚石颗粒增强铝基复合材料具有优异的抗腐蚀性能,能够提高复合材料使用寿命,可以应用于电子封装用热管理材料,应用前景广阔。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一所述金刚石颗粒的粒径为50~500μm。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤二所述保护气氛为真空气氛、氮气气氛、氩气气氛中的一种。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤二所述分段加热处理的工艺为:以10℃/min的速度加热至350~500℃,保温0.5~2h,实现镀层均匀化处理;随后以20℃/min的速度加热至700~900℃时,保温1~5h。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤二所述分级冷却工艺为:以5~15℃/min的速度冷却至500~600℃保温0.5~1h,再以5~10℃/min的速度冷却至200~300℃保温0.5~1h,最后随炉冷却至室温。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤三所述磁控溅射工艺为:选用纯度为99.99%的圆形靶材,溅射气压为4×10-3~9×10-3Pa,溅射电压为400~600V,在300~500℃的溅射温度下溅射90~360min,超声波振动频率为30kHz。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤四所述铝块为纯铝或铝合金。
具体实施方式八:本实施方式与具体实施方式七不同的是:步骤四所述铝合金为Al-Si、Al-Mg-Si、Al-Si-Cu、Al-Zn-Cu中的一种或其中几种的组合。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:步骤五所述气压浸渗的温度为700~850℃,浸渗时间为1~2h,浸渗完成后保压1~3h。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是:步骤五所述气压浸渗时的气压为5~20MPa。
实施例1:
本实施例高耐腐蚀性的金刚石增强铝基复合材料的制备方法按照以下步骤进行:
一、金刚石颗粒表面镀覆:
利用磁控溅射法在金刚石颗粒表面制备W镀层;
所述磁控溅射法的工艺为:选用纯度为99.99%的圆形钨靶材,溅射气压为8×10- 3Pa,溅射电压为600V,在300℃的溅射温度下溅射180min,超声波振动频率为30kHz;
所述W镀层的厚度为100nm;
所述金刚石颗粒的平均粒径为100μm;
二、高温处理:
对步骤一所得金刚石颗粒在保护气氛下进行分段加热处理:首先以10℃/min的速度加热至300℃进行保温1h,实现镀层均匀化处理;随后以20℃/min的速度加热至900℃保温1h,在金刚石表面原位生成碳化物,并采用分级工艺冷却;
所述保护气氛为真空气氛;
所述分级冷却工艺为:以2℃/min的速度冷却至500℃保温0.5h,再以5℃/min的速度冷却至300℃保温0.5h,最后随炉冷却至室温;
三、制备金刚石复合镀层:
利用磁控溅射法在步骤二所得金刚石颗粒表面再制备一层均匀的金属镀层;
所述金属镀层为W;
所述金属镀层的厚度为50nm;
所述磁控溅射工艺为:选用纯度为99.99%的圆形W靶材,溅射气压为9×10-3Pa,溅射电压为600V,在300℃的溅射温度下溅射90min,超声波振动频率为30kHz;
四、称料:
按照体积分数称取60%的金刚石颗粒及40%的铝块;
所述铝块为1060纯铝;
五、复合材料制备:
将步骤三所述金刚石颗粒填充至装配好的模具中,然后将铝锭及填装后的模具置于浸渗炉的炉腔内,将气压浸渗炉抽至真空状态以排除多余气体,随后进行气压浸渗,浸渗完成后以小于2℃/min的速度冷却至室温,进行脱模处理,即完成;
所述气压浸渗的温度为700℃,浸渗时间为1h,浸渗完成后保压1h;
所述气压浸渗的气压为5MPa。
将本实施例制备的金刚石/铝复合材料置于3.5wt%的NaCl溶液中腐蚀7天,经计算,平均腐蚀速率为0.07mm/a,相比对比例1制备的无镀层金刚石/铝复合材料腐蚀速率减少了92.4%。
实施例2:
本实施例高耐腐蚀性的金刚石增强铝基复合材料的制备方法按照以下步骤进行:
一、金刚石颗粒表面镀覆:
利用磁控溅射法在金刚石颗粒表面制备W镀层;
所述磁控溅射法的工艺为:选用纯度为99.99%的圆形钨靶材,溅射气压为8×10- 3Pa,溅射电压为600V,在300℃的溅射温度下溅射180min,超声波振动频率为30kHz;
所述W镀层的厚度为100nm;
所述金刚石颗粒的平均粒径为100μm;
二、高温处理:
对步骤一所得金刚石颗粒在保护气氛下进行分段加热处理:首先以10℃/min的速度加热至400℃进行保温2h,实现镀层均匀化处理;随后以20℃/min的速度加热至950℃保温3h,在金刚石表面原位生成碳化物,并采用分级工艺冷却;
所述保护气氛为真空气氛;
所述分级冷却工艺为:以5℃/min的速度冷却至600℃保温1h,再以10℃/min的速度冷却至300℃保温1h,最后随炉冷却至室温;
三、制备金刚石复合镀层:
利用磁控溅射法在步骤二所得金刚石颗粒表面再制备一层均匀的金属镀层;
所述金属镀层为W;
所述金属镀层的厚度为150nm;
所述磁控溅射工艺为:选用纯度为99.99%的圆形W靶材,溅射气压为9×10-3Pa,溅射电压为600V,在300℃的溅射温度下溅射270min,超声波振动频率为30kHz;
四、称料:
按照体积分数称取60%的金刚石颗粒及40%的铝块;
所述铝块为1060纯铝;
五、复合材料制备:
将步骤三所述金刚石颗粒填充至装配好的模具中,然后将铝锭及填装后的模具置于浸渗炉的炉腔内,将气压浸渗炉抽至真空状态以排除多余气体,随后进行气压浸渗,浸渗完成后以小于2℃/min的速度冷却至室温,进行脱模处理,即完成;
所述气压浸渗的温度为750℃,浸渗时间为1h,浸渗完成后保压1h;
所述气压浸渗的气压为10MPa。
将本实施例制备的金刚石/铝复合材料置于3.5wt%的NaCl溶液中腐蚀7天,经计算,平均腐蚀速率为0.11mm/a,相比对比例2制备的无镀层金刚石/铝复合材料腐蚀速率减少了88.0%。
对比例1:
本对比例1金刚石增强铝基复合材料的制备方法按照以下步骤进行:
按照体积分数称取60%的金刚石颗粒及40%的铝块;铝块为1060纯铝,金刚石颗粒的平均粒径为100μm;将金刚石颗粒填充至装配好的模具中,然后将铝锭及填装后的模具置于浸渗炉的炉腔内,将气压浸渗炉抽至真空状态以排除多余气体,随后进行气压浸渗,浸渗完成后以小于2℃/min的速度冷却至室温,进行脱模处理,即完成;所述气压浸渗的温度为700℃,浸渗时间为1h,浸渗完成后保压1h;所述气压浸渗的气压为5MPa。
对比例2:
金刚石增强铝基复合材料的制备方法按照以下步骤进行:
按照体积分数称取60%的金刚石颗粒及40%的铝块;铝块为1060纯铝,金刚石颗粒的平均粒径为100μm;将金刚石颗粒填充至装配好的模具中,然后将铝锭及填装后的模具置于浸渗炉的炉腔内,将气压浸渗炉抽至真空状态以排除多余气体,随后进行气压浸渗,浸渗完成后以小于2℃/min的速度冷却至室温,进行脱模处理,即完成;所述气压浸渗的温度为750℃,浸渗时间为1h,浸渗完成后保压1h;所述气压浸渗的气压为10MPa。
图1为实施例1所得金刚石/铝复合材料腐蚀后的断口显微组织形貌照片;图2为对比例1金刚石/铝复合材料腐蚀后的断口显微组织形貌照片。均在3.5wt%的NaCl溶液中腐蚀7天,能够看出本实施例制备的复合镀层金刚石/铝复合材料具有更好的界面结合。说明镀层的引入及分段加热处理形成的碳化物会抑制有害界面产物Al4C3的形成。金刚石与铝之间通过碳化物及金属间化合物具有良好的界面结合,因此复合材料的耐腐蚀性能提高。

Claims (9)

1.一种高耐腐蚀性的金刚石增强铝基复合材料的制备方法,其特征在于:高耐腐蚀性的金刚石增强铝基复合材料的制备方法按照以下步骤进行:
一、金刚石颗粒表面镀覆:
利用磁控溅射法在金刚石颗粒表面制备W镀层;
所述磁控溅射法的工艺为:选用纯度为99.99%的圆形钨靶材,溅射气压为4×10-3~9×10-3Pa,溅射电压为600V,在300~500℃的溅射温度下溅射180~540min,超声波振动频率为30kHz;
所述W镀层的厚度为100~300nm;
二、高温处理:
对步骤一所得金刚石颗粒在保护气氛下进行分段加热处理:首先以10℃/min的速度加热至350~500℃进行保温,保温0.5~2h,实现镀层均匀化处理;随后以20℃/min的速度加热至800~1100℃保温,保温1~5h,在金刚石表面原位生成碳化物,并采用分级冷却工艺;
步骤二所述分级冷却工艺为:以5~15℃/min的速度冷却至500~600℃保温0.5~1h,再以5~10℃/min的速度冷却至200~300℃保温0.5~1h,最后随炉冷却至室温;
三、制备金刚石复合镀层:
利用磁控溅射法在步骤二所得金刚石颗粒表面再制备一层均匀的金属镀层,在金刚石表面形成了“WC+金属”复合镀层结构;
所述金属镀层为Ti、Cr、Mo或W;
所述金属镀层的厚度为50~200nm;
四、称料:
按照体积分数称取55~70%的金刚石颗粒及30~45%的铝块;
五、复合材料制备:
将步骤三所述金刚石颗粒填充至装配好的模具中,然后将铝锭及填装后的模具置于浸渗炉的炉腔内,将气压浸渗炉抽至真空状态以排除多余气体,随后进行气压浸渗,浸渗完成后以小于2℃/min的速度冷却至室温,进行脱模处理,即完成。
2.根据权利要求1所述的高耐腐蚀性的金刚石增强铝基复合材料的制备方法,其特征在于:步骤一所述金刚石颗粒的粒径为50~500μm。
3.根据权利要求1所述的高耐腐蚀性的金刚石增强铝基复合材料的制备方法,其特征在于:步骤二所述保护气氛为真空气氛、氮气气氛、氩气气氛中的一种。
4.根据权利要求1所述的高耐腐蚀性的金刚石增强铝基复合材料的制备方法,其特征在于:步骤二所述分段加热处理的工艺为:以10℃/min的速度加热至350~500℃,保温0.5~2h,实现镀层均匀化处理;随后以20℃/min的速度加热至700~900℃时,保温1~5h。
5.根据权利要求1所述的高耐腐蚀性的金刚石增强铝基复合材料的制备方法,其特征在于:步骤三所述磁控溅射法为:选用纯度为99.99%的圆形靶材,溅射气压为4×10-3~9×10-3Pa,溅射电压为400~600V,在300~500℃的溅射温度下溅射90~360min,超声波振动频率为30kHz。
6.根据权利要求1所述的高耐腐蚀性的金刚石增强铝基复合材料的制备方法,其特征在于:步骤四所述铝块为纯铝或铝合金。
7.根据权利要求6所述的高耐腐蚀性的金刚石增强铝基复合材料的制备方法,其特征在于:步骤四所述铝合金为Al-Si、Al-Mg-Si、Al-Si-Cu、Al-Zn-Cu中的一种或其中几种的组合。
8.根据权利要求1所述的高耐腐蚀性的金刚石增强铝基复合材料的制备方法,其特征在于:步骤五所述气压浸渗的温度为700~850℃,浸渗时间为1~2h,浸渗完成后保压1~3h。
9.根据权利要求1所述的高耐腐蚀性的金刚石增强铝基复合材料的制备方法,其特征在于:步骤五所述气压浸渗时的气压为5~20MPa。
CN202310290743.6A 2023-03-23 2023-03-23 一种高耐腐蚀性的金刚石增强铝基复合材料的制备方法 Active CN116397126B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310290743.6A CN116397126B (zh) 2023-03-23 2023-03-23 一种高耐腐蚀性的金刚石增强铝基复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310290743.6A CN116397126B (zh) 2023-03-23 2023-03-23 一种高耐腐蚀性的金刚石增强铝基复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN116397126A CN116397126A (zh) 2023-07-07
CN116397126B true CN116397126B (zh) 2024-02-09

Family

ID=87017050

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310290743.6A Active CN116397126B (zh) 2023-03-23 2023-03-23 一种高耐腐蚀性的金刚石增强铝基复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN116397126B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117085A (ja) * 2010-11-29 2012-06-21 Denki Kagaku Kogyo Kk アルミニウム−ダイヤモンド系複合体及びその製造方法
JP2015178425A (ja) * 2014-03-19 2015-10-08 国立大学法人福井大学 ダイヤモンド複合粒子およびその製造方法
CN105886849A (zh) * 2016-06-22 2016-08-24 哈尔滨工业大学 镀w金刚石/铝复合材料的制备方法
CN108707770A (zh) * 2018-05-04 2018-10-26 北京科技大学 一种镀锆金刚石颗粒增强铝基复合材料的制备方法
CN111519076A (zh) * 2020-04-30 2020-08-11 成都本征新材料技术有限公司 一种金刚石颗粒增强金属基复合材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117085A (ja) * 2010-11-29 2012-06-21 Denki Kagaku Kogyo Kk アルミニウム−ダイヤモンド系複合体及びその製造方法
JP2015178425A (ja) * 2014-03-19 2015-10-08 国立大学法人福井大学 ダイヤモンド複合粒子およびその製造方法
CN105886849A (zh) * 2016-06-22 2016-08-24 哈尔滨工业大学 镀w金刚石/铝复合材料的制备方法
CN108707770A (zh) * 2018-05-04 2018-10-26 北京科技大学 一种镀锆金刚石颗粒增强铝基复合材料的制备方法
CN111519076A (zh) * 2020-04-30 2020-08-11 成都本征新材料技术有限公司 一种金刚石颗粒增强金属基复合材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
电子封装用金刚石/铝复合材料的显微组织与热膨胀性能;冯号;于家康;薛晨;马明辉;;热加工工艺(第14期);全文 *

Also Published As

Publication number Publication date
CN116397126A (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
He et al. A review of the mechanical and tribological behavior of cold spray metal matrix composites
JP4880447B2 (ja) 高熱伝導率のヒートシンク
AU2004280465B2 (en) High thermal conductivity metal matrix composites
US5130209A (en) Arc sprayed continuously reinforced aluminum base composites and method
CN110846530B (zh) 一种具有原位双相增强铝基复合材料的制备方法
CN110747380A (zh) 一种纳米陶瓷颗粒增强铝基复合材料及其制备方法
CN112981164B (zh) 一种高可靠性高导热金刚石增强金属基复合材料的制备方法
CN111893478B (zh) 一种镁合金表面铝基复合涂层及其制备方法
CN109778050B (zh) 一种WVTaTiZr难熔高熵合金及其制备方法
EP0533950B1 (en) Rotor made of aluminum alloy for oil pump and method of manufacturing said rotor
CN116397126B (zh) 一种高耐腐蚀性的金刚石增强铝基复合材料的制备方法
CN112375946B (zh) 一种高Mg2Si铝合金及其设计与快速凝固制备方法和应用
EP2213763A2 (en) Target/backing plate constructions, and methods of forming target/backing plate constructions
CN111482598B (zh) 一种激光焊接层预制件及其和铝碳化硅盒体的制备方法
EP0748879A1 (en) Method for producing a TiB2-based coating and the coated article so produced
CN113957298B (zh) 一种低残余应力金刚石颗粒增强铝基复合材料的制备方法
CN116200626B (zh) 一种金刚石与碳化硅混合增强的高导热高强度铝基复合材料的原位制备方法
CN116162819B (zh) 一种多相界面高导热金刚石/铝复合材料的制备方法
CN114752809B (zh) 一种金刚石铜复合材料及其制备方法
CN116037930B (zh) 一种石墨烯-氮化硅协同增强铝基复合材料的制备方法
JP3453825B2 (ja) 被覆切削工具部材及びその製造方法
Tong et al. High thermal conductivity metal matrix composites
CN113881863B (zh) 一种NiTi-Al基合金的制备方法
CN212551723U (zh) 一种简易熔渗装置
CN116408434B (zh) 一种大尺寸异形结构金刚石/铝复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant